
NNT/NL : 2021AIXM0187/001ED184

THÈSE DE DOCTORAT
Soutenue à Aix-Marseille Université
le 29 Mars 2021 par

Youssouf NASSERI
Analyse numérique de schémas volumes finis à mailles décalées

pour certains systèmes hyperboliques issus de la mécanique
des fluides

Discipline
Mathématiques

Spécialité
Mathématiques appliquées

École doctorale
184 Mathématique et Informatique

Laboratoire/Partenaires de recherche
Institut de Mathématiques de Marseille,
Institut de Rapiotrotection et Sûreté Nucléaire

Composition du jury

Enrique D. FERNÀNDEZ-NIETO Rapporteur
Université de Séville

Nicolas SEGUIN Rapporteur
Université de Rennes 1

Robert EYMARD Examinateur
Université de Marne la Vallée

Charlotte PERRIN Examinatrice
Aix-Marseille Université

Antonin NOVOTNY Examinateur
Université de Toulon

Raphaèle HERBIN Directrice de thèse
Aix-Marseille Université

Jean-Claude LATCHÉ co-directeur de thèse
IRSN Cadarache



Je soussigné, Youssouf Nasseri, déclare par la présente que le travail présenté dans
ce manuscrit est mon propre travail, réalisé sous la direction scientifique de Raphaèle
Herbin et Jean-Claude Latché, dans le respect des principes d’honnêteté, d’intégrité
et de responsabilité inhérents à la mission de recherche. Les travaux de recherche
et la rédaction de ce manuscrit ont été réalisés dans le respect à la fois de la charte
nationale de déontologie des métiers de la recherche et de la charte d’Aix-Marseille
Université relative à la lutte contre le plagiat.

Ce travail n’a pas été précédemment soumis en France ou à l’étranger dans une
version identique ou similaire à un organisme examinateur.

Fait à Marseille le · · ·
signature

Cette œuvre est mise à disposition selon les termes de la Licence Creative Commons
Attribution - Pas d’Utilisation Commerciale - Pas de Modification 4.0 International.

https://creativecommons.org/licenses/by-nc-nd/4.0/deed.fr
https://creativecommons.org/licenses/by-nc-nd/4.0/deed.fr


Résumé
Cette thèse s’inscrit dans la continuité de collaborations entre l’IRSN (Institut de

Radioprotection et Sûreté Nucléaire) et l’I2M (Institut de Mathématiques de Marseille)
sur le développement et l’analyse de schémas de discrétisation en temps et en espace
pour la résolution numérique de certains problèmes de mécanique des fluides. La
première partie de ce manuscrit concerne les équations de Saint-Venant. On propose
une analyse d’un schéma numérique pour les équations Saint-Venant avec gradient
de fond, avec un schéma de Heun en temps et un schéma MUSCL en espace pour des
volumes finis sur grilles à mailles décalées (schéma MAC). La stabilité du schéma est
démontrée, ainsi qu’un résultat de consistance "à la Lax" pour un opérateur général
de convection non linéaire sur maillages décalées, qui s’applique à tous les systèmes
de lois de conservation. Des tests numériques sont effectués pour établir la validité du
schéma. On s’intéresse aussi aux mêmes équations, mais avec un terme source qui
modélise la force de Coriolis pour la modélisation d’écoulements géostrophiques. La
discrétisation MAC upwind est comparée à une discrétisation par éléments finis de
type Rannacher-Turek avec une stabilisation qui permet de réduire la diffusion. Des
résultats numériques permettent de comparer les deux schémas avec une résolution
de type Godunov. Ensuite, on considère les équations de Saint-Venant en une dimen-
sion d’espace couplées avec une équation dite "d’Exner", qui modélise le transport
de sédiment. Une régularisation de la loi de frottement permet d’obtenir un bilan
d’énergie. Plusieurs formules de flux de sédiment déjà proposées dans la littérature
sont étudiées. Les équations résultantes sont discrétisées par un schéma explicite par
équation en temps et un schéma à mailles décalées en espace. Le tout est illustré par
des résultats numériques.
La deuxième partie est consacrée à la résolution numérique d’un modèle de simula-
tion de déflagration turbulente régi par les équations d’Euler réactif. La modélisation
de la combustion est basée sur une approche phénoménologique : la propagation de
la flamme est représentée par le transport de la fonction caractéristique de la zone
brûlée, où la réaction chimique est complète ; en dehors de cette zone, l’atmosphère
reste à l’état frais. Numériquement on adopte une approche de type pénalisation,
c’est-à-dire en utilisant un taux de conversion fini avec un temps caractéristique ten-
dant vers zéro avec les pas d’espace et de temps. Ici encore, le schéma numérique est
à maillage décalé, et l’algorithme en temps consiste à résoudre d’abord les bilans de
masse des espéces chimiques, puis, les bilans de masse, de quantité de mouvement
et d’énergie du fluide. Des propriétés de stabilité sont démontrées, et on observe
numériquement que la procédure de pénalisation converge. Une solution exacte pour
le problème de la déflagration sphérique modélisée par les équations d’Euler réactif
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est construite, dans le but d’obtenir une solution de référence pour les tests du code
PREMICS d’incendie et sûreté nucléaire de l’IRSN.

Mots clés : Équations d’Euler, équations de Saint-Venant, équation d’exner, inter-
polation MUSCL, schéma de Heun, méthode de correction de pression, maillages
décalés, analyse de consistance.
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Abstract
This thesis is a continuation of collaborations between IRSN and I2M on the devel-

opment and analysis of discretization schemes in time and space for the numerical
resolution of certain fluid mechanics problems. The first part of this thesis concerns
the shallow water equations. We propose an analysis of a numerical scheme for the
shallow water equations with a gradient of the topography, based on a Heun scheme in
time combined with a MUSCL scheme in space for finite volumes on staggered grids
(MAC scheme). The stability of the scheme is proven, as well as a "Lax consistency"
property. In addition, a lemma of consistency "in the sens of Lax" for a general opera-
tor of non-linear convection on staggered mesh grids is proved, which is applicable to
all conservation law systems. Numerical tests are carried out to establish the validity
of the scheme. We are also interested in the same equations, but with a source term
that models the Coriolis force for modelling geostrophic flows. The MAC upwind
discretization is compared to a Rannacher-Turek finite element discretization with a
stabilization technique that reduces diffusion. Numerical results allow to compare
the two schemes with a Godunov type solver. Then, the shallow water equations are
considered in one dimension of space coupled with a so-called Exner equation, which
models the sediment transport. A regularization of the friction law allows us to obtain
an energy balance. Several sediment flow formulae already proposed in the literature
are studied. The resulting equations are discretized by an explicit scheme equation
by equation in time and by a staggered scheme in space. The whole is illustrated by
numerical results.
The second part is devoted to the numerical resolution of a turbulent deflagration
simulation model governed by reactive Euler equations. Combustion modelling is
based on a phenomenological approach: flame propagation is represented by the
transport of the characteristic function of the burnt zone, where the chemical reaction
is complete; outside this zone, the atmosphere remains at fresh state. Numerically a
penalty type approach is adopted, i.e. using a finite conversion rate with a characteris-
tic time tending towards zero with space and time steps. Here again, the numerical
scheme is with staggered meshes, and the time algorithm consists in solving first
the mass balances of the chemical species, then the mass, momentum and energy
balances. Stability properties are demonstrated, and it is numerically observed that
the penalty procedure converges. An exact solution for the problem of spherical defla-
gration modelled by the reactive Euler equations is built, in order to obtain a reference
solution for the tests of the IRSN’s PREMICS fire and nuclear safety code.

Keywords: Euler equations, shallow water equations, Exner equation, MUSCL-like
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interpolation, Heun scheme, pressure correction scheme, staggered discretization,
numerical analysis.
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Introduction générale
La modélisation mathématique des phénomènes naturels liés aux tsunamis, inonda-

tions, courants océaniques et atmosphériques, avalanches ou encore aux problèmes
de sécurité industrielle (explosions), s’appuie sur des modèles de mécanique des
fluides qui font intervenir des équations mathématiques de type lois de conserva-
tion physiques couplées à des lois phénoménologiques. Les écoulements de fluides
compressibles ou incompressibles sont régis par les équations de Navier-Stokes. Sous
certaines hypothèses physiques, on peut déduire des équations de Navier-Stokes des
modèles simplifiés, par exemple au moyen d’une réduction d’échelle ou en négligeant
certains termes. Certains des modèles ainsi obtenus sont des systèmes d’équations
hyperboliques non linéaires. Dans le cadre de cette thèse, nous nous intéressons à
de tels systèmes, et plus précisément principalement aux équations de Saint-Venant
pour les écoulements en eau peu profonde et aux équations d’Euler compressible
pour des gaz non visqueux.

Les équations de Saint-Venant en deux dimensions d’espace avec topographie
s’écrivent :

∂t h +div(hu) = 0 in Ω× (0,T ), (0.1a)

∂t (hui )+div(hu ui )+∂i (
1

2
g h2)+ g h ∂i z = 0 i = 1,2 in Ω× (0,T ), (0.1b)

oùΩ est un ouvert borné de R2, t désigne la variable en temps, g la constante d’accé-
lération et z la topographie, donnée supposée régulière, sauf en cas de spécification
contraire. Le symbole ∂i dénote la dérivée partielle en espace par rapport à la i -ème
coordonnée d’espace xi et ∂t désigne la dérivée partielle par rapport à la variable t .
Les inconnues principales sont la hauteur d’eau h, sensée être positive et le champ de
vitesse u = (u1,u2)T . Les équations (0.1) sont souvent utilisées pour la modélisation
des écoulements à surface libre de faible profondeur tels que les fleuves, les lacs ou
les zones cotières.

On souhaite ensuite tenir compte de la force de Coriolis, qui est un terme d’inertie qui
résulte du mouvement de rotation uniforme. Elle intervient comme un terme source
dans les équations de Saint-Venant, qui s’écrivent alors, en considérant un fond plat,
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c.à.d. z = 0 :

∂t h +div(hu) = 0 in Ω× (0,T ), (0.2a)

∂t (hu)+div(hu ⊗u)+∇
(

1

2
g h2

)
=−ωhu⊥ in Ω× (0,T ), (0.2b)

où ω est la vitesse angulaire, u = (u1,u2)T et u⊥ = (−u2,u1)T . Ces équations sont
utilisées dans le cadre des mouvements des fluides atmosphériques ou océaniques en
rotation.

On s’intéresse également à la linéarisation du système (0.2) autour d’un état constant
(h0,u0) avec u0 = 0, qui produit le système suivant :

∂t h +h0div(u) = 0 in Ω× (0,T ), (0.3a)

∂t u + g ∇h =−ωu⊥ in Ω× (0,T ). (0.3b)

Un modèle de transport de sédiment par charriage en dimension un d’espace est
ensuite étudié. Le modèle est constitué d’un système de deux équations de conser-
vation : les équations de Saint-Venant vues précédemment pour la modélisation de
l’écoulement fluide, et l’équation dite “d’Exner ", qui exprime la conservation du flux
de sédiment, avec une loi phénoménologique qui donne l’expression de ce flux en
fonction des inconnues.

∂t h +∂x(hu) = 0 dans Ω× (0,T ), (0.4a)

∂t (hu)+∂x(hu2 + 1

2
g h2)+ g h∂x z =−τ/ρw dans Ω× (0,T ), (0.4b)

∂t z + 1

1−φ∂x qb = 0 dans Ω× (0,T ), (0.4c)

où z désigne la profondeur de la couche de sédiment dépendant de x et de t , ρw est
la densité de l’eau, φ est la porosité (constante) appartenant à l’intervalle [0,1) et τ
est la contrainte de cisaillement, définie en fonction de h et u. Le terme qb est le flux
de sédiment qui dépend généralement de h et u. Les quantités τ et qb peuvent dans
certains cas dépendre aussi de z.
On s’intéresse également aux équations d’Euler compressibles couplées avec les équa-
tions de bilan de masse des espèces chimiques lors d’une combustion dans le cadre
d’un modèle dit "relaxé". Les équations de Euler décrivant l’écoulement du fluide
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s’écrivent :

∂tρ+div(ρu) = 0 in Ω× (0,T ), (0.5a)

∂t (ρui )+div(ρui u)+∂i p = 0 i = 1,d , in Ω× (0,T ), (0.5b)

∂t (ρE)+div(ρEu)+div(pu) = 0 in Ω× (0,T ), (0.5c)

p = (γ−1)ρes , E = 1

2
|u|2 +e, e = es +

∑
i∈I

yi∆h0
f ,i , (0.5d)

où ρ est la densité, p la pression, E l’énergie totale, e l’énergie interne, es l’entropie
sensible du fluide, I est l’ensemble des espèces chimiques présentes dans la réaction
distinguées par leurs masses volumiques yi , i ∈I et ∆h0

f ,i est la variation de l’enthal-
pie de formation de la i−éme espèce chimique. Le modèle relaxé consiste à écrire que
les espèces chimiques satisfont une équation de la forme :

∂t (ρyi )+div(ρyi u) = ω̇i , for i ∈I , in Ω× (0,T ), (0.6)

où ω̇i désigne un terme réactif spécifique pour chacune des espèces présentes dans la
réaction, qui dépend d’une fonction caractéristique G satisfaisant une équation de
transport non linéaire, ainsi que des concentrations du fuel et de l’oxydant.

Dans cette thèse, nous proposons et nous analysons des méthodes numériques pour
la résolution des systèmes (0.1) à (0.6). La discrétisation en espace mise en œuvre
dans ce travail, s’inscrit dans la continuation des travaux HERBIN, LATCHÉ et NGUYEN

2013; HERBIN, LATCHÉ et NGUYEN 2018, THERME 2015, GUNAWAN 2015; GUNAWAN,
EYMARD et PUDJAPRASETYA 2015. Les premiers travaux HERBIN, LATCHÉ et NGUYEN

2013 ; HERBIN, LATCHÉ et NGUYEN 2018, THERME 2015 sont le fruit de la collaboration
initiée il y a une quinzaine d’années par l’Institut de Mathématiques de Marseille et
l’Institut de Radioprotection et Sûreté Nucléaire à Cadarache, qui a d’abord porté sur le
développement de l’analyse de schémas de correction de pression pour les équations
de Navier-Stokes et d’Euler compressible GASTALDO, HERBIN et LATCHÉ 2010, HERBIN,
KHERIJI et LATCHÉ 2014. Ces derniers schémas introduits par CHORIN 1968 et TEMAM

1969 dans les années 60 pour les équations de Navier-Stokes incompressible, utilisent
une discrétisation sur des mailles décalées, qui assure la stabilité du schéma grâce à la
condition inf-sup. L’extension de ces schémas aux équations de Navier-Stokes et Euler
compressible permettent la simulation numérique des écoulements fluides à tout
nombre de Mach KHERIJI 2011, GRAPSAS 2017, GRAPSAS, HERBIN, KHERIJI et al. 2016,
HERBIN, LATCHÉ et SALEH 2020, et c’est ce type de schéma que nous retenons pour la
discrétisation des équations d’Euler réactif qui est l’objet du chapitre 4. Un schéma de
type Euler explicite équation par équation a aussi été étudiée dans le cas des équations
d’Euler isentropiques et Euler complet HERBIN, LATCHÉ et NGUYEN 2018. Ce schéma
explicite a été repris par GUNAWAN 2015 pour les équations de Saint Venant, ainsi
que pour le système de Saint-Venant Exner GUNAWAN, EYMARD et PUDJAPRASETYA
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2015 en une dimension d’espace. Ces travaux utilisent pour la discrétisation en espace
des schémas à mailles décalées, dont fait partie le célèbre schéma Marker-and-Cell
(MAC) introduit dans les années 60 HARLOW et WELSH 1965. Des travaux relatifs à
ces méthodes ont été réalisés par les hydrologues ARAKAWA et LAMB 1981 pour la
discrétisation des équations de Saint-Venant.

Dans les schémas à mailles décalées, les inconnues discrètes correspondant aux
variables scalaires (densité ou hauteur par exemples) sont situées au centre des mailles
tandis que les inconnues discrètes correspondant aux champs de vecteurs sont locali-
sés au centre des faces en 3D (ou arêtes en 2D). Cette technique d’arrangement des
inconnues discrètes diffère donc de la méthode standard de volumes finis, souvent
qualifiée de co-localisée, où toutes les variables sont calculées au centre des mailles.

Dans cette famille de schémas, on peut noter les trois grandes techniques de discré-
tisation suivantes :

— La stratégie MAC déjà mentionnée, correspondant aussi au schéma “C-grid "
d’Arakawa et Lamb ARAKAWA et LAMB 1981. Cette discrétisation nécessite des
maillages rectangulaires en 2D ou en parallèpipèdes rectangles en 3D mais pas
forcément uniformes. Pour cette première technique les variables scalaires sont
situées au centre alors que les composantes normales des champs de vecteurs
sont localisées aux faces orthogonales à la normale en question.

— Les éléments finis de RANNACHER et TUREK 1992 qui fonctionnent pour des
maillages de quadrilatères en 2D ou d’hexaèdres en 3D , rectangulaires ou non.
Les inconnues sont alors toutes les composantes du champ de vecteur aux faces
du maillage, et des champs scalaires au centre des mailles.

— Les éléments finis de CROUZEIX et P. RAVIART 1973 qui partagent la même ap-
proche que les éléments de Rannacher-Turek, la seule différence étant qu’on
utilise maintenant des maillages simpliciaux.

Plusieurs types de discrétisation en temps ont été étudiées, selon le type d’applica-
tions. La plus simple est une méthode d’intégration de type Euler explicite équation
par équation. C’est elle que nous appliquons pour les équations de Saint-Venant et
d’Exner, en considérant également une montée à l’ordre 2 par un schéma de Heun
dans le cas des équations de Saint-Venant. Cependant, comme toute méthode expli-
cite, elle nécessite une restriction de pas de temps pour des raisons de stabilité. Dans
le cas des équations d’Euler réactif, une méthode de correction de pression est donc
mise en œuvre.

Ce travail s’articule en cinq chapitres : les trois premiers traitent des systèmes fai-
sant intervenir les équations de Saint-Venant (0.1), (0.2) et (0.4), tandis que Les deux
derniers chapitres s’intéressent à la résolution des équations d’Euler réactif (0.5). Nous
donnons maintenant une description succincte des différents chapitres.

Dans le premier chapitre, on analyse des schémas numériques pour les équations de
Saint-Venant construits à partir d’une discrétization MAC. L’étude menée par DOYEN

et GUNAWAN 2014 ; GUNAWAN 2015 s’intéressait déjà à une telle discrétisation en une
dimension d’espace, en effectuant d’une part une étude de la stabilité du schéma, et
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d’autre part une analyse de consistance au sens de Lax par rapport à la solution faible
entropique des équations. On étend ces résultats dans plusieurs directions. En premier
lieu, le schéma et son analyse sont écrits en deux dimensions d’espace. En second lieu,
pour améliorer la précision, les opérateurs de convection intervenant dans le bilan de
masse et dans la quantité de mouvement sont discrétisés par un schéma de type de
type MUSCL PIAR, BABIK, HERBIN et al. 2013. Enfin, après avoir étudié une discréti-
sation de type Euler explicite, toujours dans un souci d’amélioration de la précision,
nous considérons une discrétisation en temps de Heun. On démontre que les schémas
envisagés assurent, sous condition de CFL, la positivité de la hauteur d’eau ainsi que
des solutions d’équilibre tels que le “lac au repos". On démontre aussi que, sous des
conditions de CFL éventuellement plus strictes, ces schémas sont consistants au sens
de Lax par rapport à la formulation faible des équations continues, au sens suivant :
si la suite des solutions approchées est bornée dans L∞ et tend vers vers une limite
presque partout lorsque les pas de temps et d’espace tendent vers 0, alors la limite
est solution faible des équations de Saint-Venant. Dans le cas du schéma d’Euler, on
démontre également la consistance au sens de Lax pour l’entropie. Enfin, différents
cas tests sont présentés pour évaluer la performance de ces schémas et en particulier
mesurer l’efficacité du schéma de Heun par rapport au shéma d’Euler explicite.

Le second chapitre est consacré à la construction de schémas numériques pour les
équations de Saint-Venant avec le terme source de Coriolis. L’objectif est de construire
des schémas qui soient stables par rapport à la dissipation de l’énergie mécanique
semi-discrète et linéairement bien équilibrés par rapport à la préservation de l’état
d’équilibre géostrophique. Ce chapitre est constitué de deux parties : la première
partie propose une adaptation du schéma MAC découplé d’ordre un en temps et en
espace pour la résolution des équations (0.2) et (0.3). Une discrétisation en espace par
les éléments finis de Rannacher-Turek (RT) est ensuite présentée. Nous procéderons à
une méthode de stabilisation de schéma qui repose sur une technique de correction
des flux numériques et du gradient discret. Les schémas non linéaires et linéaires
stabilisés obtenus satisfont une dissipation de l’énergie mécanique semi-discrète qui
leur est associée. Le schéma entièrement discret correspondant pour les équations
non linéaires préserve la positivité de la hauteur d’eau grâce à une restriction locale du
pas temps de type CFL. De plus, les schémas RT linéaires et non linéaires, préservent
parfaitement l’équilibre géostrophique, état stable des équations linéaires. Des tests
numériques sont éffectués pour comparer la précision des différents schémas avec
ceux obtenus par un schéma habituel de type Godunov.

Dans le troisième chapitre, nous appliquons une version du schéma découplé pré-
senté dans le chapitre 1 pour la résolution du système (0.4) couplant les équations
de Saint-Venant en dimension un d’espace avec celle d’Exner, qui nécessite la don-
née de deux lois de fermeture : une loi sur la contrainte τ et une définition pour le
flux de sédiment qb . Une étude de ce modèle avec le même schéma avait déjà été
entreprise par GUNAWAN 2015; GUNAWAN, EYMARD et PUDJAPRASETYA 2015 en pre-
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nant des expressions de flux classiques, qui ont l’inconvénient de ne pas respecter
la conservation de la masse de sédiment ni la dissipation de l’énergie. Nous intro-
duisons tout d’abord un terme algébrique de friction, obtenu par une technique de
stabilisation du terme source τ. Nous reprenons ensuite un modèle obtenu récem-
ment par développement des équations asymptotique des équations de Navier-Stokes
FERNÀNDEZ-NIETO, MORALES DE LUNA, NARBONA-REINA et al. 2017 qui a l’avantage
de respecter la conservation de la masse de sédiment et la dissipation de l’énergie.
Nous illustrons les atouts et les limites et des différentes formules de flux par des tests
numériques.

Le chapitre 4 est consacré à un modèle de simulation de déflagration turbulente.
L’écoulement est régi par les équations d’Euler pour un mélange de composition
variable, tandis que la modélisation de la combustion est basée sur une approche
phénoménologique : la propagation de la flamme est représentée par le transport de
la fonction caractéristique de la zone brûlée, où la réaction chimique est complète ;
en dehors de cette zone, l’atmosphère reste à l’état frais. Le problème est approché
numériquement par une technique de type pénalisation qui utilise un taux de conver-
sion fini et un temps caractéristique tendant vers zéro avec les pas d’espace et de
temps. Le schéma numérique fonctionne sur des maillages décalés, éventuellement
non structurés. L’algorithme de la marche dans le temps est de type itératif : on résout
dans un premier temps les bilans de masse des espèces chimiques, puis, dans un
second temps, les bilans de masse, de quantité de mouvement et d’énergie. Pour cette
dernière étape de l’algorithme, on utilise une technique de correction de la pression,
et on résout une équation d’équilibre pour l’enthalpie dite “sensible" plutôt que le
bilan énergétique total, avec des termes correctifs qui assure la consistance du schéma.
On prouve que les solutions approchées satisfont les mêmes propriétés de stabilité
que le problème continu : les fractions massiques des espèces chimiques sont mainte-
nues dans l’intervalle [0, 1], la densité et l’énergie interne sensible restent positives
et l’intégrale sur le domaine de calcul d’une énergie totale discrète est conservée. De
plus, nous montre que le schéma est en fait conservatif, c’est-à-dire que les solutions
approchées satisfont une équation de conservation de bilan énergétique total discret
consistante au sens de Lax-Wendroff. Enfin, on observe numériquement que la pro-
cédure de pénalisation converge, c’est-à-dire que le fait de faire tendre l’échelle de
temps chimique vers zéro permet de converger vers la solution du problème continu
limite (chimie infiniment rapide). Les tests montrent également que la précision du
schéma dépend fortement de la discrétisation de l’opérateur de convection dans les
bilans massiques des espèces chimiques.

On présente dans le dernier chapitre un algorithme pour calculer une solution de
référence pour un écoulement gazeux induit par une flamme sphérique se dilatant à
partir d’une source ponctuelle à une vitesse d’expansion constante, en supposant une
réaction chimique instantanée. La solution exacte est auto-similaire et l’écoulement
est divisé en trois zones : une zone intérieure composée de gaz brûlés au repos, une
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zone intermédiaire où la solution est régulière et l’atmosphère initiale composée
de gaz frais au repos. La zone intermédiaire est délimitée par le choc réactif (côté
intérieur) et le choc dit précurseur (côté extérieur), pour lesquels les conditions de
Rankine-Hugoniot sont écrites ; la solution dans cette zone est régie par deux équa-
tions différentielles ordinaires qui sont résolues numériquement. Nous montrons
que, pour toute vitesse de choc précurseur admissible, la construction combinant
cette résolution numérique avec l’exploitation des conditions de saut est unique,
et donne des profils de pression, de densité et de vitesse décroissants dans la zone
intermédiaire. En outre, la vitesse du choc réactif est supérieure à la vitesse du côté
extérieur du choc, ce qui est cohérent avec le fait que la différence entre ces deux
quantités est ce qu’on appelle la vitesse de la flamme, c’est-à-dire la vitesse (relative) à
laquelle la réaction chimique progresse dans les gaz frais. Enfin, nous observons aussi
numériquement que la fonction donnant la vitesse de la flamme en fonction de la
vitesse du choc précurseur augmente; cela permet d’intégrer la résolution dans une
procédure de type Newton pour calculer le débit pour une vitesse de flamme donnée
(au lieu d’une vitesse de choc précurseur donnée). L’algorithme numérique qui en
résulte est appliqué au mélange stoechiométrique hydrogène-air.

Certains résultats de cette thèse ont déjà fait l’objet de publication : deux articles
dans des congrès publiés, un article de congrès à paraître, un article en révision dans
une revue et un article soumis.
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1 First and second order MAC schemes for the two−dimensional shallow water
equations –

Abstract. A Lax-Wendroff type result of consistency is given for convection op-
erators on staggered meshes. It is applied to a class of second order finite volume
schemes developed to obtain approximate solutions of the shallow water equations
with bathymetry. These schemes are based on staggered grids for the space discretiza-
tion: scalar and vector unknowns are defined on different meshes. MUSCL-like inter-
polations for the discrete convection operators in the water height and momentum
equations are performed in order to improve the precision of the scheme. The time
discretization is performed either by a first order segregated forward Euler scheme
in time or by the second order Heun scheme. Both schemes are shown to preserve
the water height positivity under a CFL condition and an important state equilibrium
known as the lake at rest. Using the above mentioned staggered Lax-Wendroff type
results, these schemes are shown to be Lax-consistent with the weak formulation of
the continuous equations; besides, the forward Euler scheme is shown to be consistent
with a weak entropy inequality. Numerical results confirm the efficiency and accuracy
of the schemes.

Keywords MAC discretization, Heun scheme, consistency analysis, shallow water
equations, partial dam break problem.
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1 First and second order MAC schemes for the two−dimensional shallow water
equations – 1.1 Introduction

1.1 Introduction
The shallow water equations form a hyperbolic system of two conservation equa-

tions (mass and momentum) which models the flow of an incompressible fluid, as-
suming that the mean vertical height of the fluid is small compared to the plane scale.
It is widely used for the simulation of numerous geophysical phenomena, such as flow
in rivers and coastal areas. For a fluid occupying the space-time domain Ω× (0,T ),
where Ω is an open bounded subset of R2 and T > 0, the shallow water equations with
bathymetry solve the water height h and the (vector) velocity of the fluid u = (u1,u2)
and read:

∂t h +div(hu) = 0 in Ω× (0,T ), (1.1a)

∂t (hui )+div(hu ui )+∂i p + g h∂i z = 0, i = 1,2 in Ω× (0,T ), (1.1b)

p = 1

2
g h2 in Ω× (0,T ), (1.1c)

u ·n = 0 on ∂Ω× (0,T ), (1.1d)

h(x ,0) = h0, u(x ,0) = u0 inΩ. (1.1e)

where ∂t is the partial time derivative, div denotes the spatial divergence operator,
∂i stands to the partial space derivative, g is the standard gravity constant and z
the (given) bathymetry, which is supposed to be regular in this paper. The initial
conditions are h0 ∈ L∞(Ω) and u0 = (u0,1,u0,2) ∈ L∞(Ω,R2) with h0 ≥ 0. This system
has therefore been intensively studied, both theoretically and numerically, so that it
is impossible to give an exhaustive list of references. We refer to the books Tan 1992;
Bouchut 2004 and to the more recent books or parts of books Audusse 2018; Castro,
Morales de Luna, and Parés 2017; Xing 2017 and the references therein. We recall
that it is wellknown that if no dry zone exists, the system is strictly hyperbolic. In
all cases, the solution of the system may develop shocks, so that the finite volume
method is often preferred for numerical simulations. Two main approaches are found:
one is the colocated approach which is usually based on some approximate Riemann
solver, see e.g. Bouchut 2004; Castro, Morales de Luna, and Parés 2017 and references
therein; the other one is based on a staggered arrangement of the unknowns on the
grid, which is quite classical in the hydraulic and ocean engineering community, see
e.g. Arakawa and Lamb 1981; Bonaventura and Ringler 2005; Stelling and Duinmeijer
2003. These latter staggered schemes have been implemented with an upwind choice
for the convection operators and a forward Euler time discretization and analysed in
the case of one space dimension Doyen and Gunawan 2014; Gunawan 2015, following
the works on the related barotropic Euler equations, see Herbin, Latché, and Nguyen
2018 and references therein. In particular, the weak consistency of the scheme is
shown as well as a weak entropy consistency. Let us recall that if (h,u) is a regular
solution of (1.1), the following elastic potential energy balance and kinetic energy

20



1 First and second order MAC schemes for the two−dimensional shallow water
equations – 1.1 Introduction

balance are obtained by manipulations on the mass and momentum equations:

∂t (
1

2
g h2)+div(

1

2
g h2u)+ 1

2
g h2divu = 0 (1.2)

∂t (
1

2
h|u|2)+div(

1

2
h|u|2u)+u ·∇p + g hu ·∇z = 0. (1.3)

Summing these equations, we obtain an entropy balance equation: ∂t E +divΦ= 0,
where the entropy-entropy flux pair (E ,Φ) is given by:

E = 1

2
h|u|2 + 1

2
g h2 + g hz andΦ= (E + 1

2
g h2)u. (1.4)

For non regular functions the above manipulations are no longer valid, and the entropy
inequality ∂t E +divΦ ≤ 0 is satisfied in a distributional sense. The weak entropy
consistency consists in showing that any possible limit of the scheme satisfies a weak
form of the entropy inequality (1.4) given in (1.31) below.

In the case of two space dimensions, the consistency of the upwind scheme with
respect to the weak formulation and to a weak entropy inequality is stated in Herbin,
Latché, Nasseri, et al. 2019; a quasi-second order scheme in time and space using the
second order Heun method in time dependent and a MUSCL-like interpolation in
space was proposed in Gallouët, Herbin, Latché, et al. 2020.

Here, we analyse the former schemes both theoretically and numerically. The
framework that is developed here includes three schemes : the first order scheme of
Herbin, Latché, Nasseri, et al. 2019, the same scheme replacing the upwind choice in
the numerical convection operator by a MUSCL-like procedure, and the quasi second
order scheme proposed in Gallouët, Herbin, Latché, et al. 2020. Generic properties are
shown to be preserved, such as the positivity of the water height and the preservation
of the "lake at rest" steady state. The weak consistency of the schemes is proven thanks
to a generalisation of Lax-Wendroff type result; this consistency result is interesting
for its own sake and valid for general convection operators on general colocated or
staggered grids in any space dimension. Furthermore, the two first schemes are shown
to be entropy-weak consistent in the sense that a weak entropy inequality is satisfied
by any possible limit of the scheme as the time and space steps tend to 0, under some
CFL condition.

The remainder of the paper is organized as follows: In Section 2 we introduce the
space and time discretization. The resulting approximate solutions have some discrete
stability and well balance properties which are studied in Section 3.2. Furthermore,
under some convergence and boundedness assumptions, the approximate solutions
are shown in Section 4.6 to converge to a weak solution of (1.1). This proof of these
results heavily relies on the general Lax-Wendroff consistency lemma which is given
in the appendix 1.A. In Section 1.5 we consider the first order time discretization and
show that any possible limit of the scheme satifies a weak entropy inequality, again
using the consistency result of the appendix. Numerical results comparing the first
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order scheme of Herbin, Latché, Nasseri, et al. 2019, the same scheme replacing the
upwind choice in the numerical convection operator by a MUSCL-like procedure, and
the quasi second order scheme proposed in Gallouët, Herbin, Latché, et al. 2020 are
presented in Section 5.5. Finally, the appendix 1.A contains the general consistency
result for a nonlinear convection operator on general meshes with a staggered arrange-
ment of the unknowns, which generalizes the result obtained in Gallouët, Herbin, and
Latché 2019, while the appendix 1.B contains some technical lemmas which were
proved formerly and which are recalled for the sake of completeness.

1.2 Space and time discretization

1.2.1 Definitions and notations
We concentrate on the MAC discretization in space, see Harlow and Welsh 1965;

Harlow and Amsden 1971 for some seminal papers and Gallouët, Herbin, Latché, and
Mallem 2018 for the convergence analysis of the scheme applied to the incompressible
Navier-Stokes equations. This scheme is also widely used by the hydrologist and
known as the Arakawa scheme Arakawa and Lamb 1981.

LetΩ be a connected subset of R2 consisting in a union of rectangles whose edges
are assumed to be orthogonal to the canonical basis vectors, denoted by (e(1),e(2)).

Definition 1.1 (MAC discretization). A discretization (M ,E ) of Ω with a staggered
rectangular grid (or MAC grid), is defined by:

– A primal mesh M which consists in a conforming structured, possibly non uni-
form, rectangular grid ofΩ. A generic cell of this grid is denoted by K , and its mass
center by xK . The scalar unknowns (water height and pressure) are associated to
this mesh.

– A set E of all edges of the mesh, with E = Eint ∪Eext, where Eint (resp. Eext) are the
edges of E that lie in the interior (resp. on the boundary) of the domain. The set
of edges that are orthogonal to e(i ) is denoted by E (i ), for i ∈ {1,2}. We then have
E (i ) = E (i )

int ∪E (i )
ext, where E (i )

int (resp. E (i )
ext) are the edges of E (i ) that lie in the interior

(resp. on the boundary) of the domain.

For σ ∈ Eint, we write σ= K |L if σ= ∂K ∩∂L. A dual cell Dσ associated to an edge
σ ∈ E is defined as follows:

- if σ = K |L ∈ Eint then Dσ = DK ,σ ∪DL,σ, where DK ,σ (resp. DL,σ) is the
half-part of K (resp. L) adjacent to σ (see Fig. 4.1);

- if σ ∈ Eext is adjacent to the cell K , then Dσ = DK ,σ.

For each dimension i = 1,2, the domain Ω can also be split up in dual cells:
Ω = ∪σ∈E (i ) Dσ, i ∈ {1,2}; the i th grid is refered to as the i th dual mesh; it is
associated to the i th velocity component, in a sense which is clarified below.
The set of the edges of the i th dual mesh is denoted by Ẽ (i ) (note that these edges
may be non-orthogonal to e(i )); the set Ẽ (i ) is decomposed into the internal and
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boundary edges: Ẽ (i ) = Ẽ (i )
int ∪ Ẽ (i )

ext. The dual edge separating two duals cells Dσ

and Dσ′ is denoted by ε=σ|σ′. We denote by Dε the cell associated to a dual edge
ε ∈ Ẽ defined as follows:

- if ε = σ|σ′ ∈ Ẽi nt then Dε = Dσ,ε ∪Dσ′,ε, where Dσ,ε (resp. Dσ′,ε) is the
half-part of Dσ (resp. Dσ′) adjacent to ε (see Fig. 4.1);

- if ε ∈ Ẽext is adjacent to the cell Dσ, then Dε = Dσ,ε.

In order to define the scheme, we need some additional notations. The set of edges
of a primal cell K and of a dual cell Dσ are denoted by E (K ) ⊂ E and Ẽ (Dσ) respectively;
note that Ẽ (Dσ) ⊂ Ẽ (i ) if σ ∈ E (i ). For σ ∈ E , we denote by xσ the mass center of σ. The
vector nK ,σ stands for the unit normal vector to σ outward K . In some cases, we need
to specify the orientation of various geometrical entities with respect to the axis:

- a primal cell K is denoted K = [
−−→
σσ′] if σ,σ′ ∈ E (i )(K ) for some i ∈ {1,2} are such

that (xσ′ −xσ) ·e(i ) > 0;

- we write σ=−−→
K |L if σ ∈ E (i ), σ= K |L and −−−→xK xL ·e(i ) > 0 for some i ∈ {1,2};

- the dual edge ε separating Dσ and Dσ′ is written ε = −−→
σ|σ′ if −−−−→xσxσ′ · e(i ) > 0 for

some i ∈ {1,2}.

K L
σ= K |L

nK ,σ

σ
DσK L Mσ′ = L|Mε=σ|σ′

nσ,εDK ,σ DL,σ

Figure 1.1 – Notations for the primal and dual meshes (in two space dimensions, for
the first component of the velocity).

The size δM of the mesh and its regularity θM are defined by:

δM = max
K∈M

diam(K ), and θM = max
K∈M

max
σ∈EK

|Dσ|
|K | , (1.5)

where | · | stands for the one (or two) dimensional measure of a subset of R (or R2).
Note that in the rectangular case that is considered here, the regularity parameter θM

is also equal to:

θM = 1

2
(1+max

{ |σ|
|σ′| , (σ,σ′) ∈ E (i )2

, i = 1,2
}

).

The discrete velocity unknowns are associated to the velocity cells and are denoted
by (ui ,σ)σ∈E (i ) , i ∈ {1,2}, while the discrete scalar unknowns (water height and pres-
sure) are associated to the primal cells and are denoted respectively by (hK )K∈M and
(pK )K∈M .
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Let us consider a uniform discretisation 0 = t0 < t1 < ·· · < tN = T of the time interval
(0,T ), and let δt = tn+1 − tn for n = 0,1, · · · , N − 1 be the (constant, for the sake of
simplicity) time step.

Here we present two schemes: a first order in time segregated scheme using the
forward Euler scheme and the second order in time Heun scheme. Both schemes use
a MUSCL-like technique for the computation of the numerical flux, see Piar, Babik,
Herbin, et al. 2013, so that they are quasi second-order in space.

1.2.2 The segregated forward Euler scheme
We propose here a first order in time segregated discretisation and MAC discretiza-

tion in space of the system (1.1); the scheme is written in compact form as follows:

Initialisation: u0
i ,σ = 1

|Dσ|
∫

Dσ

ui ,0(x)dx , h0 = 1

|K |
∫

K
h0(x)dx , p0 = 1

2
g (h0)2.

(1.6a)

For 0 ≤ n ≤ N −1 : solve for hn+1, pn+1 and un+1 = (un+1
i )i=1,2 :

ðt hn+1
K +divK (hnun) = 0, ∀K ∈M (1.6b)

pn+1
K = 1

2
g (hn+1

K )2, (1.6c)

ðt (h ui )n+1
σ +divDσ(hnunun

i )+ (ði pn+1)σ+ g hn+1
σ,c (ði z)σ = 0,∀σ ∈ E (i )

int,
(1.6d)

where the different discrete terms and operators introduced here are now defined.

Discrete time derivative - In the sequel, we shall denote by ðt vn+1 the discrete
forward time derivative of a given discrete function of time v , i.e.:

ðt vn+1 = vn+1 − vn

δt
(1.7)

Discrete divergence and gradient operators - The discrete divergence operator on the
primal mesh denoted by divK is defined as follows:

divK (hu) = 1

|K |
∑

σ∈E (K )
|σ| Fσ ·nK ,σ, with Fσ = hσ uσ, (1.8)

with uσ = ui ,σ e(i ) for σ ∈ E (i ), i ∈ {1,2} and hσ is approximated by the MUSCL-like
interpolation technique with respect to uσ; in the subsequent analysis, we do not
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need to have an explicit formula for hσ, but we need the following conditions to be
satisfied:

∀ K ∈M , ∀σ= K |L ∈ Eint(K ),

−∃λK ,σ ∈ [0,1] : hσ =λK ,σhK + (1−λK ,σ)hL if Fσ ·nK ,σ ≥ 0. (1.9)

−∃ αK
σ ∈ [0,1] and M K

σ ∈M : hσ−hK =
{
αK
σ (hK −hM K

σ
) if uσ ·nK ,σ ≥ 0,

αK
σ (hM K

σ
−hK ) otherwise.

(1.10)

By (1.9), hσ is a convex combination of hK and hL , and if uσ ·nK ,σ < 0, the cell M K
σ in

(1.10) can be chosen as L and αK ,σ as 1−λK ,σ. In the case of a discrete divergence free
velocity field u, this assumption ensures that hn+1

K is a convex combination of the val-
ues hn

K and (hn
M )M∈Nm ((K ), where Nm(K ) denotes the set of cells M K

σ satisfying (1.10),
see Piar, Babik, Herbin, et al. 2013, Lemma 3.1, for any structured or unstructured
mesh.

Note that if K = [σ′σ] with σ′ = J |K and σ = K |L and uσ ·nK ,σ ≥ 0, the cell M K
σ

in Relation (1.10) can be chosen as the cell J and the value hσ computed using the
following limitation procedure:

hσ−hK = 1

2
ψ

(
hL ,hK ,h J

)
, where

ψ
(
hL ,hK ,h J

)=
minmod

(hL −h J

2
,ζ+(hL −hK ),ζ−(hK −h J )

)
, if (hL −hK )(hK −h J ) > 0,

0, otherwise,

where the limitation parameters ζ+,ζ− are such that ζ+,ζ− ∈ [0,2]. Observe that if
ζ+ = ζ− = 1, the classical minmod limiter (minmod

(
hL −hK ,hK −h J

)
) is recovered.

A local discrete derivative applied to a discrete scalar field ξ (with ξ= p,h or z) is
defined by:

(ðiξ)σ = |σ|
|Dσ|

(ξL −ξK ) for σ=−−→
K |L ∈ E (i )

int, i = 1,2. (1.11)

The above defined discrete divergence and discrete derivatives satisfy the following
div-grad duality relationship Gallouët, Herbin, Latché, and Mallem 2018, Lemma 2.4:

∑
K∈M

|K |ξK divK (hu)+
2∑

i=1

∑
σ∈E (i )

int

|Dσ|hσui ,σ (ðiξ)σ = 0. (1.12)

Discrete water height for the bathymetry term – In equation (1.6d) the term ðσz de-
notes the discrete derivative (in the sense of (1.11)) of the piecewise constant function
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zM =∑
K∈M z(xK )11K , that is:

ðσz = |σ|
|Dσ|

(
z(xL)− z(xK )

)
for σ=−−→

K |L ∈ Eint. (1.13)

The value hσ,c of the water height is defined so as to satisfy:

ðσp + g hσ,c ðσz = 0 if ðσ(h + z) = 0, ∀i = 1,2. (1.14)

This requirement is fulfilled if hσ,c is centered:

hσ,c =
{ 1

2 (hK +hL) for σ= K |L ∈ Eint,
hK for σ ∈ Eext ∩E (K ).

(1.15)

Indeed, if hσ,c is defined by (1.15), since p = 1
2 g h2, one has from the definition of the

discrete gradient (1.11), for σ= K |L ∈ E (i )
int,

(ði p)σ+ g hσ,c (ði z)σ = 1

2
g

|σ|
|Dσ|

(hK +hL) (ði (h + z))σ

and therefore (1.14) holds, so that the “lake at rest" steady state is preserved, see
Lemma 1.2 below.

Discrete convection operator – The term (h ui )n+1
σ in the discrete time derivative in

(1.6d) is defined by

(h ui )n+1
σ = hn+1

Dσ
un+1

i ,σ , (1.16a)

hDσ =
1

|Dσ|
(
|DK ,σ| hK +|DL,σ| hL

)
, with σ= K |L ∈ Eint, (1.16b)

where Dσ, DK ,σ and DL,σ are defined in Definition 1.1.
The discrete divergence operator on the dual mesh divDσ is given by:

divDσ(hui u) = 1

|Dσ|
∑

ε∈Ẽ (i )(Dσ)

|ε| Gε ·nσ,ε, with Gε = F εui ,ε, (1.17)

where
— the flux F ε is computed from the primal numerical mass fluxes; following Herbin

and Latché 2010 (see also Herbin, Latché, and Nguyen 2013, and Ansanay-Alex,
Babik, Latché, et al. 2011 for an extension to triangular or quandrangular meshes
using low order non-conforming finite element), it is defined as follows:
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for ε=σ|σ′, ε⊂ K , F ε = 1

2

(
Fσ+Fσ′

)
, ε⊂ K , (left on 1.2) (1.18a)

for ε=σ|σ′, ε 6⊂ K , F ε = 1

|ε|
(1

2
|τ| F τ+ 1

2
|τ′| F τ′

)
, (right on 1.2), (1.18b)

J K L
σ′ σε

K L

M N

σ

σ′
τ τ′ε

Figure 1.2 – Notation for the definition of the momentum flux on the dual mesh for
the first component of the velocity- left: ε⊂ K - right: ε⊂ τ∪τ′.

— the value ui ,ε is expressed in terms of the unknowns ui ,σ, for σ ∈ E (i ) by a second
order MUSCL-like interpolation scheme with respect to F ε ·nσ,ε Piar, Babik,
Herbin, et al. 2013; the values ui ,σ satisfy the following property:

∀ σ ∈ E (i )
int, i = 1,2, ∀ ε=σ|σ′ ∈ Ẽ (Dσ),

ui ,ε is a convex combination of ui ,σ and ui ,σ′ :

∃µσ,ε ∈ [0,1] : ui ,ε =µσ,εui ,σ+ (1−µσ,ε)ui ,σ′ (1.19)

∃ ασε ∈ [0,1] and τσε ∈ E (i )
int : ui ,ε−ui ,σ =

{
ασε (ui ,σ−ui ,τσε ) if F ε ·nσ,ε ≥ 0,
ασε (ui ,τσε −ui ,σ) otherwise.

(1.20)

Again note that in the case F ε ·nσ,ε < 0, the edge τσε may be chosen as σ′.
Let us emphasize that owing to the definitions (1.16b) and (1.18) the following discrete
mass balance version on the dual mesh holds:

|Dσ|
δt

(hn+1
Dσ

−hn
Dσ

)+ ∑
ε∈Ẽ (Dσ)

|ε| F n
ε ·nσ,ε = 0. (1.21)

1.2.3 A second order in time Heun scheme
We retain here the quasi-second order space discretization which we just set up, but

consider now a second order time discretization using the Heun (or Runge Kutta 2)
scheme.

The initialization of the scheme is the same as that of the forward Euler scheme, see
(1.6a), but the n-th step now reads:
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Step n : For hn and un = (un
i )i=1,2 known,

ĥn+1
K = hn

K −δt divK (hnun), ∀K ∈M (1.22a)

ĥn+1
Dσ

ûn+1
i ,σ = hn

Dσ
un

i ,σ−δt FDσ(hn ,un
i ), ∀σ ∈ E (i )

int (1.22b)

h̃n+1
K = ĥn+1

K −δt divK (ĥn+1ûn+1), ∀K ∈M (1.22c)

h̃n+1
Dσ

ũn+1
i ,σ = ĥn+1

Dσ
ûn+1

i ,σ −δt FDσ(ĥn+1, ûn+1
i ), ∀σ ∈ E (i )

int (1.22d)

hn+1
K = 1

2
(hn

K + h̃n+1
K ), ∀K ∈M (1.22e)

hn+1
Dσ

un+1
i ,σ = 1

2

(
hn

Dσ
un

i ,σ+ h̃n+1
Dσ

ũn+1
i ,σ

)
, ∀σ ∈ E (i )

int (1.22f)

where
FDσ(hn ,un

i ) = divDσ(hnunun
i )+ g hn

σ,c

(
(ði hn)σ+ (ði z)σ

)
(1.23)

and the dual cell values ĥn+1
Dσ

, h̃n+1
Dσ

and hn+1
Dσ

are computed from the corresponding
cell values by the analogue of the formula (1.16b), so that they satisfy a dual mass
balance of the type (1.21).

The steps (1.22c)-(1.22f) of the above scheme (1.22) may be replaced by the more
compact form

ðt hn+1
K =−1

2

(
divK (hnun)+divK (ĥn+1ûn+1)

)
, ∀K ∈M (1.24a)

ðt (hDσ ui ,σ)n+1 =−1

2

(
FDσ(hn ,un

i )+FDσ(ĥn+1, ûn+1
i )

)
, ∀σ ∈ E (i ), (1.24b)

where the dual cell value hn+1
Dσ

is computed by the formula (1.16b) and hence satisfies
a dual mass balance of the type (1.21).

1.3 Stability of the schemes
The positivity of the water height under a CFL like condition is ensured by both

the schemes (1.6) and (1.22); it is a consequence of the property (1.10) of the MUSCL
choice for the interface values. Indeed, the proof of the positivity in Piar, Babik, Herbin,
et al. 2013, Lemma 3.1 remains valid even if the discrete velocity field is not divergence
free, as is the case here.

Lemma 1.1 (Positivity of the water height). Let n ∈ {0, · · · , Nt −1}, let (hn
K )K∈M ⊂ R∗+

and (un
σ)σ∈E ⊂Rd be given, and let hn+1

K be computed by the forward Euler scheme, step
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(1.6b). Then hn+1
K > 0, for all K ∈M under the following CFL condition,

2 δt ≤ |K |∑
σ∈E (K )

|σ| |un
σ ·nK ,σ|

. (1.25)

If (2.16) is fullfilled and if furthermore

2 δt ≤ |K |∑
σ∈E (K )

|σ| |ûn+1
σ ·nK ,σ|

, (1.26)

then hn+1
K computed by the Heun scheme (1.22) is positive.

Secondly, thanks to the choice (1.15) for the reconstruction of the water height, the
property (1.14) holds, so that the so-called "lake at rest" steady state is preserved by
both schemes.

Lemma 1.2 (Steady state "lake at rest"). Let n ∈ {0, · · · , Nt −1}, C ∈R+; let (hn
K )K∈M ⊂R

such that hn
K +zK =C for all K ∈M and un

σ = 0 forσ ∈ E . Then the solution (hn+1
K )K∈M ,

(un+1
σ )σ∈E of the forward Euler scheme (1.6) (resp. Heun scheme (1.22)) satisfies hn+1

K +
z =C for all K ∈M and un+1

σ = 0 for σ ∈ E .

As a consequence of the careful discretisation of the convection term, the segregated
forward Euler scheme satisfies a discrete kinetic energy balance, as stated in the
following lemma. The proof of this result is an easy adaptation of Herbin, Latché, and
Nguyen 2018, Lemma 3.2.

Lemma 1.3 (Discrete kinetic energy balance, forward Euler scheme). A solution to the
scheme (1.6) satisfies the following equality, for i = 1,2, σ ∈ E (i ) and 0 ≤ n ≤ N −1:

|Dσ|
2δt

(hn+1
Dσ

(un+1
i ,σ )2 −hn

Dσ
(un

i ,σ)2)+ 1

2

∑
ε∈Ẽ (i )(Dσ)

|ε| (un
i ,ε)

2 F n
ε ·nσ,ε

+|Dσ| un+1
i ,σ (ði pn+1)σ+|Dσ| g hn+1

σ,c un+1
i ,σ (ði z)σz =−Rn+1

i ,σ , (1.27)

with

Rn+1
i ,σ = 1

2δt
|Dσ| hn+1

Dσ

(
un+1

i ,σ −un
i ,σ

)2 − 1

2

∑
ε∈Ẽ (i )(Dσ)

|ε| F n
ε ·nσ,ε

(
un

i ,ε−un
i ,σ

)2

+ ∑
ε∈Ẽ (i )(Dσ)

|ε| F n
ε ·nσ,ε

(
un

i ,ε−un
i ,σ

)(
un+1

i ,σ −un
i ,σ

)
.

The scheme also satisfies the following potential energy balance.

Lemma 1.4 (Discrete potential balance, forward Euler scheme). Let, for K ∈M and
0 ≤ n ≤ N the potential energy be defined by (Ep )n

K = 1
2 g (hn

K )2 + g hn
K zK . A solution to
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the scheme (1.6) satisfies the following equality, for K ∈M and 0 ≤ n ≤ N −1:

ðt (Ep )n+1
K +divK (pnun)+pn

K divK (un)+ g zK divK (hnun) =−Rn+1
K , (1.28)

with

ðt (Ep )n+1
K = 1

δt

(
(Ep )n+1

K − (Ep )n
K

)
, divK (pnun) = ∑

σ∈E (K )
|σ|1

2
g (hn

σ)2 uσ ·nK ,σ

and

|K | Rn+1
K = 1

2

|K |
δt

g (hn+1
K −hn

K )2 − 1

2

∑
σ∈E (K )

|σ| g (hn
σ−hn

K )2 un
σ ·nK ,σ

+ ∑
σ∈E (K )

|σ|g (hn+1
K −hn

K ) hn
σ un

σ ·nK ,σ. (1.29)

Proof. Applying Herbin, Latché, and Nguyen 2018, Lemma A1, (re-stated in Lemma
1.11 below for the sake of completeness), with P = K , ψ : x 7→ 1

2 g x2 , ρP = hn+1
K ,

ρ∗
P = hn

K , η=σ, ρ∗
η = hn

σ and V ∗
η = |σ|un

σ ·nK ,σ, and Rn+1
K = |K | r n+1

K , we get that

g

2
ðt (hn+1

K )2 +divK (pnun)+pn
K divK (un) =− g

2δt
(hn+1

K −hn
K )2

+ g

2

1

|K |
∑

σ∈E (K )
|σ| (hn

σ−hn
K )2 un

σ ·nK ,σ− 1

|K |
∑

σ∈E (K )
|σ|g (hn+1

K −hn
K ) hn

σ un
σ ·nK ,σ,

Then, multiplying the discrete mass balance equation (1.6b) by g zK yields

1

δt

(
(g zh)n+1

K − (g zh)n
K

)+ g zK
1

|K |
∑

σ∈E (K )(m)

|σ|hn
σ un

σ ·nK ,σ = 0

Summing the two above equations yields (1.29).

Since the discrete kinetic and potential energies are computed on the dual and
primal meshes respectively, the obtention of a discrete entropy inequality is not
straightforward. In Herbin, Latché, Nasseri, et al. 2019, a kinetic energy inequality on
the primal cell is obtained from the inequality (1.1d) to get a discrete local entropy
inequality. Here, however we proceed otherwise, thanks to a general Lax-Wendroff
Lemma for staggered grids (Lemma 1.8 in the section 1.A), which allows to handle
each energy inequality on its respective mesh, without any reconstruction, see Section
1.5 below.
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1.4 Weak consistency of the schemes
We now wish to prove the weak consistency of the scheme in the Lax-Wendroff

sense, namely to prove that if a sequence of solutions is controlled in suitable norms
and converges to a limit, this latter necessarily satisfies a weak formulation of the
continuous problem.

The pair of functions (h̄, ū) ∈ L1(Ω× [0,T ))×L1(Ω× [0,T ))2 is a weak solution to the
continuous problem if it satisfies, for any ϕ ∈C∞

c

(
Ω× [0,T )

)
(ϕ ∈C∞

c

(
Ω× [0,T )

)2):∫ T

0

∫
Ω

[
h̄∂tϕ+ h̄ ū ·∇ϕ

]
dx dt +

∫
Ω

h0(x)ϕ(x ,0)dx = 0, (1.30a)∫ T

0

∫
Ω

[
h̄ ū ·∂tϕ+ (h̄ū ⊗ ū) : ∇ϕ+ 1

2
g h̄2divϕ+ g h̄∇zϕ

]
dx dt

+
∫
Ω

h0(x)u0(x) ·ϕ(x ,0)dx = 0. (1.30b)

A weak solution of (1.30) is an entropy weak solution if for any nonnegative test
function ϕ ∈C∞

c

(
Ω× [0,T ),R+

)
:∫ T

0

∫
Ω

[
Ē ∂tϕ+ Φ̄ ·∇ϕ

]
dx dt +

∫
Ω

E0(x)ϕ(x ,0)dx ≥ 0, (1.31)

with

Ē = 1

2
h̄|ū|2 + 1

2
g h̄2 + g h̄z and Φ̄= (Ē + 1

2
g h̄2)ū.

Before stating the global weak consistency of the schemes (1.6) and (1.22), some
definitions and assumptions are needed.

Let (M (m),E (m))m∈N be a sequence of meshes in the sense of Definition 1.1 and let
(h(m), u(m))m∈N be the associated sequence of solutions of the scheme (1.6)) defined
almost everywhere on (Ω× [0,T ) by:

u(m)
i (x , t ) =

N−1∑
n=0

∑
σ∈(E (i ))(m)

(u(m)
i )n+1

σ 11Dσ(x)11[tn ,tn+1)(t ), for i ∈ {1,2}

h(m)(x , t ) =
N−1∑
n=0

∑
K∈M (m)

(h(m))n+1
K 11K (x)11[tn ,tn+1)(t ),

where 11A is the characteristic function of a given set A, that is 11A(y) = 1 if y ∈ A,
11A(y) = 0 otherwise.

Assumed estimates - Some boundedness and compactness assumptions on the
sequence of discrete solutions (h(m), u(m))m∈N are needed in order to prove the Lax-
Wendroff type consistency result. First of all we assume that h(m) > 0, ∀m ∈Nwhich
can be obtained under uniform versions of the CFL conditions (2.16) and (1.26), thanks
to Lemma 1.1. Furthermore, we assume that:

31



1 First and second order MAC schemes for the two−dimensional shallow water
equations – 1.4 Weak consistency of the schemes

– the water height h(m) and its inverse are uniformly bounded in L∞(Ω× (0,T )),
i.e. there exists C h

M
∈R∗+ such that for m ∈N and 0 ≤ n < N (m):

1

C h
< (h(m))n

K ≤C h , ∀K ∈M (m), (1.32)

– the velocity u(m) is also uniformly bounded in L∞(Ω× (0,T ))2, i.e. there exists
C u ∈R∗+ such that

|(u(m))n
σ| ≤C u , ∀σ ∈ E (m). (1.33)

Theorem 1.1 (Weak consistency of the schemes). Let (M (m),E (m))m∈N be a sequence
of meshes such that δt (m) and δM (m) → 0 as m →+∞ ; assume that there exists θ > 0
such that θM (m) ≤ θ for any m ∈N (with θM (m) defined by (1.5)).

Let (h(m),u(m))m∈N be a sequence of solutions to the scheme (1.6) satisfying (1.32)
and (1.33) converging to (h̄, ū) in L1(Ω× (0,T ))×L1(Ω× (0,T ))2. Then (h̄, ū) satisfies
the weak formulation (1.30) of the shallow water equations.

Similarly, if (h(m),u(m))m∈N, (ĥ(m), û(m))m∈N are sequences of solutions to the scheme
(1.22) both uniformly bounded in the sense of (1.32) and (1.33) and converging to (h̄, ū)
in L1(Ω× (0,T ))×L1(Ω× (0,T ))2, then the limit (h̄, ū) satisfies (1.30).

The proof of this theorem is the object of the following paragraphs; it relies on some
general consistency lemmas which generalize the results of Gallouët, Herbin, and
Latché 2019 to staggered meshes; these results are independent of the problem at hand
and are given in the Section 1.A above. The proof of the consistency of the schemes is
given in Section 1.4.1 for the forward Euler time discretization and in Section 1.4.2 for
the Heun time discretization.

Note that because the convergence and boundedness of the approximate solutions
are assumed, no CFL condition is required in Theorem 1.1. However, recall that a CFL
condition is for instance already needed to show the positivity of the water height, see
Lemma 1.1.

Finally, in Section 1.4.3, we give some conditions that imply the boundedness and
convergence of the sequence (ĥ(m), û(m))m∈N if the boundedness and convergence
of the sequence (h(m),u(m))m∈N is assumed. One of this condition is a rather strong
CFL-like condition.

1.4.1 Proof of consistency of the forward Euler MAC scheme
1.4.1.1 Consistency, mass equation

Under the assumptions of Theorem 1.1, the aim here is to prove that the limit (h̄, ū)
of the scheme (1.6) satisfies the weak form of the mass equation (1.30a). In order to
do so, we apply the consistency result of Lemma 1.8 in the section 1.A, with U = (h,u),

32



1 First and second order MAC schemes for the two−dimensional shallow water
equations – 1.4 Weak consistency of the schemes

β(U ) = h, f (U ) = hu, P (m) =M (m),F(m) = E (m), and

C (m)
MASS (U (m)) : Ω× (0,T ) →R,

(x , t ) 7→ ðt (h(m))n+1
K + divK ((h(m))nun) for x ∈ K and t ∈ (tn , tn+1)

(1.34)

We first note that the assumptions (1.32) and (1.33) imply that (1.77) holds. Further-
more, the assumption of Theorem 1.1 that (h(m),u(m))m∈N is a sequence of solutions
to the scheme (1.6) converging to (h̄, ū) in L1(Ω× (0,T ))×L1(Ω× (0,T ))2 implies that
(1.78) holds.

By the initialisation (1.6a) of the scheme, it is clear that

∑
K∈M (m)

∫
K
|(h(m))0

K −h0(x))|d x = 0,

so that the assumption (1.80) is satisfied.
Since for any n ∈ �0, Nm −1� and K ∈M , one has β(U (m)(x , t)) = hn

K for any (x , t) ∈
K × [tn tn+1) and (β(m))n

K = hn
K ,

Nm−1∑
n=0

∑
K∈M (m)

∫ tn+1

tn

∫
K
|(h(m))n

K −h(m)(x , t ))|d x d t = 0,

and therefore the assumption (1.81) is also clearly satisfied. Now (F (m))n
σ = hn

σun
σ and,

because the velocity components are piecewise constant on different grids,

f (U m(x , t )) = ( f1(U m(x , t )), f2(U m(x , t ))), with

fi (U m(x , t )) =
{

hn
K un

i ,σ if x ∈ DK ,σ

hn
K un

i ,σ′ if x ∈ DK ,σ′ ,
with K = [σσ′] and where σ and σ′ ⊥ e(i ).

For t ∈ [tn tn+1) and x ∈ K = [σσ′] with σ= K |L,∣∣∣((F (m))n
σ− f (U m(x , t )

)
·nK ,σ

∣∣∣= ∣∣∣(hn
σun

σ−hn
K un

σ+hn
K un

σ−hn
K u(x , t )

)
·nK ,σ

∣∣∣
≤C u

∣∣∣hK −hL

∣∣∣+C h
∣∣∣uσ−uσ′

∣∣∣.
Thanks to Lemma 1.12 (Gallouët, Herbin, and Latché 2019, Lemma 4.2, recalled in
Lemma 1.12 in the appendix below) we have

Nm−1∑
n=0

∑
K∈M (m)

∫ tn+1

tn

diam(K )

|K |
∫

K
|σ|

∣∣∣(hn
σun

σ−h(x , t )u(x , t )
)
·nK ,σ

∣∣∣d x d t → 0 as m →+∞.

so that the assumption (1.82) is also satisfied.
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Hence, by Lemma 1.8,

∀ϕ ∈C∞
c

(
Ω× [0,T )

)
,
∫ T

0

∫
Ω

C (m)
MASS (U (m))ϕ(x , t ) d x d t →−

∫
Ω

h0(x)ϕ(x ,0)dx

−
∫ T

0

∫
Ω

[
h̄(x , t )∂tϕ(x , t )+ h̄(x , t )ū(x , t ) ·∇ϕ(x , t )

]
d x d t as m →+∞. (1.35)

From (1.6b) and (1.35), we conclude that the limit (h̄, ū) of the approximate solutions
defined by the forward Euler scheme (1.6) satisfies (1.30a).

1.4.1.2 Consistency, momentum equation

Let ϕ= (ϕ1, · · · ,ϕd ) ∈ (C∞
c (Ω× [0,T )))d be a test function and let ϕn+1

i ,σ denote the

mean value of ϕi over σ× (tn , tn+1). Multiplying the equation (1.6d) by |Dσ|ϕn+1
i ,σ ,

summing the result over σ ∈ E (i ) and then summing over n ∈ �0, N −1� and i = 1,2
yields:

2∑
i=1

Q(m)
1,i +Q(m)

2,i +Q(m)
3,i +Q(m)

4,i = 0, (1.36)

with (dropping the exponents (m) in the summations for the sake of simplicity)

Q(m)
1,i =

Nm−1∑
n=0

δt (m)
∑

σ∈(E (m))(i )

|Dσ| ðt (h ui )n+1
σ , (1.37)

Q(m)
2,i =

Nm−1∑
n=0

δt (m)
∑

σ∈(E (m))(i )

|Dσ| divDσ(hnunun
i )ϕn+1

i ,σ , (1.38)

Q(m)
3,i =

Nm−1∑
n=0

δt (m)
∑

σ∈(E (m))(i )

|Dσ| (ði p)n+1
σ ϕn+1

i ,σ , (1.39)

Q(m)
4,i =

Nm−1∑
n=0

δt (m)
∑

σ∈(E (m))(i )

|Dσ|g hn+1
σ,c (ði z)σ ϕ

n+1
i ,σ . (1.40)

The nonlinear convection operator. In order to study the limit of the discrete non
linear convection operator defined by Q(m)

i =Q(m)
1,i +Q(m)

2,i , we apply Lemma 1.8 with

U = (h,u), β(U ) = hui , f (U ) = huui , with P (m) the set of dual cells associated with ui

(that is with the cells corresponding to the vertical edges for i = 1 and the horizontal
edges for i = 2), with F= (Ẽ (m))(i ) and with the dual fluxes (G)n

ε defined by (1.18). The
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discrete non linear convection operator thus reads

[C (m)
MOM (U (m))]i : Ω× (0,T ) →R,

(x , t ) 7→ ðt (hui )n+1
σ − divDσ (hnui un) for x ∈ Dσ and t ∈ (tn , tn+1)

(1.41)

(again dropping the exponents (m) for the sake of simplicity).
Again, by the initialisation of the scheme (1.6a) and by the definition of (hu)0

i ,σ (see
(1.16)), it is clear that ∑

σ∈(Ẽ (m))(i )

∫
Dσ

|(hu)0
i ,σ−h0(x)ui ,0(x))|d x = 0

and
Nm−1∑

n=0

∑
σ∈E (m)

∫ tn+1

tn

∫
Dσ

|(hu)n
i ,σ−h(x , t )ui (x , t )|d x d t = 0, i = 1,2.

so that the assumptions (1.80) and (1.81) are satisfied.
In order to show that the assumption (1.82) is satisfied, we need to show that

Nm−1∑
n=0

∑
σ∈E (m)

∫ tn+1

tn

diam(Dσ)

|Dσ|
∫

Dσ

|ε|
∣∣∣ ∑
ε∈(Ẽ (m))(i )

(
(G (m))n

ε −h(x , t )ui (x , t )u(x , t )
)
·nσ,ε

∣∣∣d x d t

→ 0 as m →+∞. (1.42)

Let us then estimate, for any ε ∈ (Ẽ (m))(i ), n ∈ �0, Nm −1� and x ∈ Dσ the quantity Y n
ε

defined by:

Y n
ε (x) =

∣∣∣((G (m))n
ε −h(x , t )ui (x , t )u(x , t )

)
·nσ,ε

∣∣∣.
Let L be the (primal) cell such that σ= K |L.

1. If ε = σ′|σ ⊂ K , then (G (m))n
ε is defined by (1.18a). By the triangular inequality

and thanks to the assumptions (1.9), (1.19),(1.32), and (1.33), we get that

Y n
ε (x) ≤ 1

2
(C u)2|hK −hL|+ 1

2
(C u)2|hK −h J |+C hC u |uσ,i −uσ′,i |, ∀x ∈ Dσ,

where J is the (primal) cell such that σ′ = J |K , see Figure 1.2, left.

2. If ε ⊂ K , then (G (m))n
ε is defined by (1.18b). Again by the triangular inequality

and thanks to the assumptions (1.9), (1.19),(1.32), and (1.33), we get that

Y n
ε (x) ≤ 1

2
(C u)2|hK −hM |+ 1

2
(C u)2|hK −hN |+C hC u |uσ,i −uσ′,i |, ∀x ∈ Dσ,

where M and N are the two (primal) cells such that τ = K |M and τ′ = L|N , as
depicted on Figure 1.2, right.

Now recall that the sequence of meshes is assumed to be regular in the sense that
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θ(m) ≤ θ with θ(m) defined by (1.5); therefore, since the sequences h(m) and u(m)

converge in L1 as m tends to +∞, we may again apply Lemma 1.12 below, to get that
(1.42) holds. Hence, owing to Lemma 1.8, we get that

Q(m)
i =Q(m)

1,i +Q(m)
2,i =

∫ T

0

∫
Ω

C (m)
MOM (U (m)) ϕ(x , t ) d x d t →∫ T

0

∫
Ω

[
h̄(x , t )ūi (x , t )∂tϕ(x , t )+ h̄(x , t )ūi (x , t )ū(x , t ) ·∇ϕ(x , t )

]
d x d t

+
∫
Ω

h0(x)ui ,0(x)ϕ(x ,0)dx as m →+∞. (1.43)

Pressure gradient and bathymetry Let us now study the terms Q(m)
3,i and Q(m)

4,i de-
fined by (1.39) and (1.40). By the definition (1.11) of ðσp and by conservativity, we
have (again dropping the exponents (m))

2∑
i=1

Q(m)
3,i =−

Nm−1∑
n=0

δt (m)
∑

K∈M (m)

∑
σ∈E (K )

pn+1
K

∫
σ
ϕn+1
σ ·nK ,σ

=−
∫ T

0

∫
Ω

p(m)(x , t ) divϕ(x , t )dx dt

Since the sequence (h(m))m ∈N is bounded in L∞(Ω× (0,T )) and converges to h̄
in L1(Ω× (0,T )), the sequence (p(m))m∈N converges to p̄ = 1

2 g h̄2 in L1(Ω× (0,T )) as
m →+∞. Hence we get

2∑
i=1

Q(m)
3,i →

∫ T

0

∫
Ω

p̄(x , t ) divϕ(x , t )dx dt as m →+∞. (1.44)

Let us now turn to the bathymetry term Q(m)
4,i , which may be written

Q(m)
4,i =

∫ T

0

∫
Ω

h̃(m)(x , t )ð(m)
i z(x)ϕ̃(m)

i (x , t )dx dt ,

where
— the function h̃(m) : Ω× (0,T ) → R is defined by h̃(x , t) = hn+1

σ,c = 1
2 (hn+1

K +hn+1
L )

for x ∈ Dσ and t ∈ (tn , tn+1); the sequence (h̃(m))m∈N is therefore bounded in
L∞(Ω× (0,T )) and converges to h̄ in L1(Ω× (0,T ));

— the function ϕ̃(m)
i :Ω× (0,T ) →R is defined by ϕ̃(m)

i (x , t) =ϕn+1
σ for x ∈ Dσ and

t ∈ (tn , tn+1); by the regularity of ϕ, the sequence (ϕ̃(m)
i )m∈N converges to ϕi

uniformly.
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— by (1.13), the function ð(m)
i z :Ω→R is defined by

ð(m)
i z = ∑

σ∈Eint
σ=K |L

|σ|
|Dσ|

(
z(xL)− z(xK )

)
11Dσ

. Since z is a regular function, the sequence of functions (ð(m)
i z)m∈N converges

uniformly to the derivative ∂i z of z with respect to the i -th variable as m →+∞.
Hence

Q(m)
4,i →

∫ T

0

∫
Ω

h̄(x , t )∂i z(x)ϕi (x , t )dx dt as m →∞. (1.45)

Limit of the momentum equation Passing to the limit in (1.36) as m →+∞, using
(1.43), (1.44) and (1.45), we get that the limit (h̄, ū) of the approximate solutions
defined by the forward Euler scheme (1.6) satisfies (1.30b), which concludes first part
of the proof of Theorem 1.1.

1.4.2 Proof of the weak consistency of the Heun scheme
1.4.2.1 Mass balance

Under the assumptions of Theorem 1.1, the aim here is to prove that the limit (h̄, ū)
of the scheme (1.22a)-(1.22f) satisfies the weak form of the mass equation (1.30a).
In order to do so, we consider the equivalent mass equation (1.24a). Because of the
structure of the scheme, we cannot use here Lemma 1.8 straightforwardly as in the
case of the forward Euler scheme. We apply Lemma 1.9 with U = (h,u), β(U ) = h,
f (U ) = hu, P (m) = M (m),F(m) = E (m) and then Lemma 1.10 twice: once with U =
(h,u), f (U ) = hu, P (m) = M (m),F(m) = E (m), and then with U = (ĥ, û), f (U ) = ĥû.
Thanks to the arguments developed in Section 1.4.1.1, it is easy to check that in each
case, the assumptions of the lemmas are satisfied, so that we can conclude that (h̄, ū)
satisfies (1.30a).

1.4.2.2 Momentum balance

Still under the assumptions of Theorem 1.1, we now prove that the limit (h̄, ū) of
the scheme (1.22a)-(1.22f) satisfies the weak form of the mass equation (1.30b). Again
we consider the equivalent momentum equation (1.24b). Multiplying the equation
(1.24b) by |Dσ|ϕn+1

i ,σ , summing the result over σ ∈ E (i ) and then summing over n ∈
�0, N −1� and i = 1,2 yields:

2∑
i=1

[
Q(m)

1,i + 1

2
(Q(m)

2,i +Q̂(m)
2,i +Q(m)

3,i +Q̂(m)
3,i )+Q(m)

4,i +Q̂(m)
4,i )

]
= 0, (1.46)
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where Q(m)
1,i , . . . ,Q(m)

4,i are defined by (1.37)-(1.40), and Q̂(m)
2,i ,Q̂(m)

3,i ,Q̂(m)
4,i are defined by

(1.38)-(1.40), replacing the unknowns h, p,u by ĥ, p̂, û.
Again, because of the structure of the scheme, we cannot use Lemma 1.8 directly:

we use Lemma 1.9 for the time derivative term Q(m)
1,i and Lemma 1.10 for the terms

Q(m)
2,i and Q̂(m)

2,i , with P (m) the set of dual cells associated with ui (that is with the

vertical edges for i = 1 and the horizontal edges for i = 2), with F = (Ẽ (m))(i ) and
with the dual fluxes (G)n

ε defined by (1.18). We first apply Lemma 1.9 with U = (h,u),
β(U ) = hui , f (U ) = huui , and then Lemma 1.10, once with U = (h,u), β(U ) = hui ,
f (U ) = huui and then with U = (ĥ, û), β(U ) = ĥûi , f (U ) = ĥûûi . Thanks to the
arguments developed in Section 1.4.1.2, it is easy to check that in each case, the
assumptions of the lemmas are satisfied, so that

lim
m→+∞

[
Q(m)

1,i + 1

2
(Q(m)

2,i +Q̂(m)
2,i )

]= ∫
Ω

h0(x)ui ,0(x)ϕ(x ,0)dx

+
∫ T

0

∫
Ω

[
h̄(x , t )ūi (x , t )∂tϕ(x , t )+ h̄(x , t )ūi (x , t )ū(x , t ) ·∇ϕ(x , t )

]
d x d t . (1.47)

The proof of convergence of the pressure gradient and bathymetry terms Q(m)
3,i , Q(m)

4,i ,

Q̂(m)
3,i and Q̂(m)

4,i follow the exact same lines as that of the terms Q(m)
3,i and Q4,i in Section

1.4.1.2. Hence

lim
m→+∞

2∑
i=1

1

2

(
Q(m)

3,i +Q̂(m)
3,i +Q(m)

4,i +Q̂(m)
4,i

)
=

∫ T

0

∫
Ω

(
p̄(x , t ) divϕ(x , t )+ h̄(x , t )∇z(x) ·ϕ(x , t )

)
dx dt . (1.48)

Therefore, owing to (1.47) and (1.48), we may pass to the limit in (1.46) and conclude
that (h̄, ū) satisfies (1.30b). This concludes the proof of Theorem 1.1.

1.4.3 A sufficient condition for the convergence of the
intermediate solutions

In Theorem 1.1, we assumed the boundedness and convergence of both sequences
(h(m),u(m)) and (ĥ(m), û(m)). In fact, under a restricted CFL condition, we may prove
that the convergence and boundedness of the sequence (h(m),u(m)) implies the con-
vergence and boundedness of the sequence (ĥ(m), û(m)).

Lemma 1.5 (Bound on the intermediate step, Heun scheme). Let n ∈ {0, · · · , Nt −1}, let
(hn

K )K∈M ⊂R∗+ and (un
σ)σ∈E ⊂Rd be given. Assume that there exists ζ ∈ (0,1) such that

the following restricted CFL-like condition holds (note that it is slightly more restrictive
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than (2.16)):

2 δt ≤ ζ |K |∑
σ∈E (K )

|σ| |un
σ ·nK ,σ|

for all K ∈M . (1.49)

Let Cδt
M

, C h
M

and C u
M

∈R∗+ be such that

δt ≤Cδt
M min

σ∈E
|σ|, (1.50a)

1

C h
M

≤ hn
K ≤C h

M ,∀n ∈ {0, · · · , Nt −1},∀K ∈M , (1.50b)

max
σ∈E

|un
σ| ≤C u

M ,∀n ∈ {0, · · · , Nt −1}. (1.50c)

Then the solutions (ĥn+1
K )K∈M (ûn

σ)σ∈E of the Heun steps (1.22a)-(1.22b) satisfy:

1−ζ
C h

M

≤ ĥn+1
K ≤ 2C h

M ∀K ∈M , (1.51a)

|ûn+1
σ | ≤C u

M +Cδt
M

(C h
M

)2

1−ζ
(
4(C u

M )2 + g (C h
M +||z||∞)

)
, ∀σ ∈ E . (1.51b)

Proof. From (1.22a) and by the definition (1.8) of the discrete divergence, we have

ĥn+1
K = hn

K − ∑
σ∈E (K )

(ωn
K ,σ)+hn

σ+
∑

σ∈E (K )
(ωn

K ,σ)−hn
σ with ωn

K ,σ = δt
|σ|
|K | un

σ ·nK ,σ.

Owing to (1.10), there existsαK
σ ∈ [0,1] and M K

σ ∈M such that hn
σ−hn

K =αK
σ (hn

K −hn
M K
σ

)

if ωn
K ,σ ≥ 0, and therefore

hn
σ = hn

K (1+αK
σ )−αK

σhn
M K
σ

.

Hence

ĥn+1
K =

(
1− ∑

σ∈E (K )
(ωn

K ,σ)+(1+αK
σ )

)
hn

K + ∑
σ∈E (K )

(ωn
K ,σ)−hn

σ+
∑

σ∈E (K )
αK
σ (ωn

K ,σ)+hn
M K
σ

.

Therefore, thanks to the condition (1.49), we get (1.51a).

Let us now prove (1.51b); from (1.22b) we have

ûn+1
i ,σ = 1

ĥn+1
Dσ

(
hn

Dσ
un

i ,σ−
δt

|Dσ|
∑

ε∈Ẽ (Dσ)

|ε|F n
ε ·nσ,εu

n
i ,ε

)
− δt |σ|

|Dσ|
g hn

σ,c

ĥn+1
Dσ

(
hn

L −hn
K + zL − zK

)
= 1

ĥn+1
Dσ

[(
hn

Dσ
− δt

|Dσ|
∑

ε∈Ẽ (Dσ)

|ε|F n
ε ·nσ,ε

)
un

i ,σ−
δt

|Dσ|
∑

ε∈Ẽ (Dσ)

|ε|F n
ε ·nσ,ε

(
un

i ,ε−un
i ,σ)

]

− δt |σ|
|Dσ|

g hn
σ,c

ĥn+1
Dσ

(
hn

L −hn
K + zL − zK

)
.
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Since the values ĥn+1
Dσ

and ĥn
Dσ

are computed by an equivalent formula to (1.17), they
satisfy a discrete dual mass balance of the type (1.21), and therefore:

ûn+1
i ,σ = un

i ,σ−
1

ĥn+1
Dσ

[
δt

|Dσ|
∑

ε∈Ẽ (Dσ)

|ε|F n
ε ·nσ,ε

(
un

i ,ε−un
i ,σ)

]
−δt |σ|

|Dσ|
g hn

σ,c

ĥn+1
Dσ

(
hn

L−hn
K +zL−zK

)
.

Thanks to the CFL condition (1.50a) and to the bounds on un
σ and ĥn+1

Dσ
for all σ (recall

that for σ= K |L, ĥn+1
Dσ

is a convex combination of ĥn+1
K and ĥn+1

L ),

1

ĥn+1
Dσ

∣∣∣∣ δt

|Dσ|
∑

ε∈Ẽ (Dσ)

|ε|F n
ε ·nσ,ε

(
un

i ,ε−un
i ,σ)

∣∣∣∣≤ 4Cδ
M

t (C u
M

)2(C h
M

)2

1−ζ .

Furthermore, since 2hn
σ,c = hn

K +hn
L and agina owing to (1.50a),

δt |σ|
|Dσ|

g hn
σ,c

ĥn+1
Dσ

(
hn

L −hn
K + zL − zK

) ≤ Cδt
M g

(C h
M

)2

1−ζ
(

max
K∈M

(hn
K )+max

K∈M
(zK )

)

≤ Cδt
M

(C h
M

)2g

1−ζ (C h
M +||z||∞).

Therefore,

|ûn+1
i ,σ | ≤C u

M + 4Cδ
M

t (C u
M

)2(C h
M

)2

1−ζ + Cδt
M

(C h
M

)2g

1−ζ (C h
M +||z||∞),

which concludes the proof that (1.51b) holds.

Lemma 1.6 (L1 convergence of the intermediate step, Heun scheme). Consider a
sequence of meshes (M (m),E (m))m∈N such that δt (m) and δM (m) → 0 as m → +∞ ;
assume that (M (m),E (m))m∈N is uniformly regular, in the sense that there exists θ > 0
such that θM (m) ≤ θ for any m ∈N (with θM (m) defined by (1.5)).

Let (h(m),u(m))m∈N be a sequence of solutions to the scheme (1.6) satisfying (1.32) and
(1.33) converging to (h̄, ū) in L1(Ω× (0,T ))×L1(Ω× (0,T ))2.

Assume that there exists ζ ∈ (0,1) such that the following restricted CFL-like condition
holds:

2 δt (m) ≤ ζ |K |∑
σ∈E (K )

|σ| |(u(m))n
σ ·nK ,σ|

, ∀K ∈M (m), ∀m ∈N, (1.52)

and assume that there exists Cδt ∈R∗+ not depending on m such that

δt (m) ≤Cδt min
σ∈E (m)

|σ|,∀m ∈N. (1.53)
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Then there exists Ĉ u ,Ĉ h ∈R∗+ such that

1

Ĉ h
< (ĥ(m))n

K ≤ Ĉ h , ∀K ∈M (m), (1.54a)

|(û(m))n
σ| ≤ Ĉ u , ∀σ ∈ E (m). (1.54b)

Furthermore, the sequence
(
ĥ(m), û(m)

)
m∈N converges to (h̄, ū) in L1(Ω×(0,T ))×L1(Ω×

(0,T ))2.

Proof. Under the above assumptions, the hypotheses (1.49) and (1.50) hold uniformly
with respect to m, so that the bounds (1.54) are a direct consequence of Lemma 1.5.

Now, from equation (1.22a), we get that

ĥn+1
K −hn

K =− δt

|K |
∑

σ∈E (K )
|σ|un

σ ·nK ,σ (hn
σ−hn

K )− δt

|K |
∑

σ∈E (K )
|σ|hn

K un
σ ·nK ,σ, ∀K ∈M (m).

For K ∈M (m), let us denote by σK ,i and σ′
K ,i the edges of K in the direction i ∈ {1,2},

so that K = [
−−−−−−→
σK ,iσ

′
K ,i ] for i ∈ {1,2}; noting that nK ,σK ,i =−nK ,σ′

K ,i
and that |σK ,i | = |σ′

K ,i |,
and owing to (1.32), we get that

∣∣∣ ∑
σ∈E (K )

|σ|hn
K un

σ ·nK ,σ

∣∣∣≤C h
d∑

i=1
|σK ,i ||un

i ,σK ,i
−un

i ,σ′
K ,i
|, ∀K ∈M (m).

Since hσ is a convex combination of hK and hL, with K and L such that σ= K |L, we
get:

|ĥn+1
K −hn

K | ≤
∑

σ∈E (K )
σ=K |L

δt (m)

|K | |σ| |un
σ ·nK ,σ| |hn

L −hn
K |+C h

2∑
i=1

δt
|σ|
|K | |u

n
i ,σK ,i

−un
i ,σ′

K ,i
|, ∀K ∈M (m).

Noting that (1.53) implies that
δt (m)

|K | |σ| ≤ 1 and thanks to the condition (1.33), we

thus get that there exists C ∈R+ depending on C h , C u , Cδt such that

|ĥn+1
K −hn

K | ≤C
[ ∑
σ∈E (K )
σ=K |L

|hn
L −hn

K |+
d∑

i=1
|un

i ,σK ,i
−un

i ,σ′
K ,i
|
]

, ∀K ∈M (m).

Multiplying this latter inequality by |K |δt (m) and summing over K ∈ M (m) and n ∈
�0, N�, using the uniform regularity of the mesh and owing again to the convergence
result on the space translates given in Lemma 1.12, we conclude that∫ T

0

∫
Ω
|ĥ(m) −h(m)|dx dt → 0 as m →+∞.

Let us now turn to the intermediate velocities. Owing to (1.22b), (1.23) and since
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û satisfies a dual mass balance of the form (1.21), we have for σ = K |L ∈ (E (i )
int)

(m),
i ∈ {1,2}:

ĥn+1
Dσ

(ûn+1
i ,σ −un

i ,σ) =−(ĥn+1
Dσ

−hn
Dσ

)un
i ,σ−

δt

|Dσ|
∑

ε∈Ẽ (Dσ)

|ε|F n
ε ·nσ,εu

n
i ,ε−δt g hn

σ,c

(
(ðσhn)+ (ðσz)

)

− ∑
ε∈Ẽ (Dσ)

δt |ε|
|Dσ|

F n
ε ·nσ,ε(un

i ,ε−un
i ,σ)+ δt |σ|

|Dσ|
g hn

σ,c

(
hn

L −hn
K + zL − zK

)
.

Hence, owing to (1.32), (1.33), (1.53) and to the fact that for ε=σ|σ′, un
i ,ε is a convex

combination of un
i ,σ and un

i ,σ′ , there exists C ∈R+ depending only on C h , C u , Cδt and
g such that

|ûn+1
i ,σ −un

i ,σ| ≤C
[ ∑
ε∈Ẽ (Dσ)
ε=σ|σ′

|un
i ,σ′ −un

i ,σ|+ |hn
L −hn

K |+ |zL − zK |
]

, for i = 1,2.

Multiplying this latter inequality by |Dσ|δt (m) and summing over σ ∈M (m) and n ∈
�0, N�, using the uniform regularity of the mesh and again thanks to Lemma 1.12 we
conclude that ∫ T

0

∫
Ω
|û(m)

i −u(m)
i |dx dt → 0 as m →+∞, for i = 1,2.

1.5 Weak entropy consistency of the forward Euler-
MAC scheme

The weak consistency to the entropy inequality is only proved under additional
assumptions as stated in the following theorem.

Theorem 1.2 (Weak entropy consistency of the forward Euler MAC scheme). Let
(M (m),E (m))m∈N be a sequence of meshes such that δt (m) and δM (m) → 0 as m →+∞ ;
assume that there exists θ > 0 such that θM (m) ≤ θ for any m ∈N (with θM (m) defined
by (1.5)). Let (h(m),u(m))m∈N be a sequence of solutions to the scheme (1.6) converging
to (h̄, ū) in L1(Ω× (0,T ))×L1(Ω× (0,T ))2, such that (1.32), (1.33) hold. Assume the
following CFL-like condition:

δt (m) ≤
|Dσ|hn+1

Dσ∑
ε∈E Dσ

F n
ε ·nσ,ε>0

|ε| F n
ε ·nσ,ε

. (1.55)
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Assume furthermore that

∃CBV t ∈R+ :
∑

K∈M (m)

|K ||(h(m))n+1
K − (h(m))n

K | ≤CBV t ∀m ∈N, (1.56a)

δt (m)

infK∈M (m) diam(K )
→ 0 as m →+∞., (1.56b)

and that the coefficients λK ,σ and µσ,ε in (1.9) and (1.19) satisfy:

λK ,σ ∈ [
1

2
,1] : if uσ ·nK ,σ ≥ 0, (1.57)

µσ,ε ∈ [
1

2
,1] : if F ε ·nσ,ε ≥ 0. (1.58)

Then (h̄, ū) satisfies the entropy inequality (1.31).

Note also that the condition (1.9) implies that

∀ K ∈M , ∀σ= K |L ∈ Eint(K ) with K such that uσ ·nK ,σ ≥ 0,

hσ = 1

2
(hK +hL)+ (λK ,σ− 1

2
)(hK −hL), with λK ,σ− 1

2
≥ 0. (1.59)

Also note that the condition (1.57) is rather restrictive. Indeed, it is satisfied by the
usual two slopes minmod limiter Godlewski and P.-A. Raviart 1996 only in the case of
a uniform Cartesian mesh Piar, Babik, Herbin, et al. 2013, and it is not satisfied by the
three slopes minmod limiter.

Proof. Let ϕ ∈ C∞
c (Ω× [0,T ),R+), and for a given discretization (M (m),E (m)) let ϕn

K
(resp. ϕn

σ) denote the mean value of ϕ on K × (tn , tn+1) (resp. Dσ× (tn , tn+1)), for any
K ∈ M (m) (resp. σ ∈ E (m)) and n ∈ �0, Nm −1�. Let us multiply the discrete kinetic
energy balance (1.27) by δtϕn+1

σ and sum over σ ∈ E (m) and i ∈ {1,2}; let us then
multiply the discrete potential energy balance (3.29) by δt |K |ϕn

K and sum over K ∈
M (m). Summing the two resulting equations and summing over n ∈ �0, Nm −1�, we
get, owing to lemmas 3.1 and 1.4,

∫ T

0

∫
Ω

C (m)
KIN (U (m))ϕ(x , t ) d x d t +

∫ T

0

∫
Ω

C (m)
POT (U (m))ϕ(x , t ) d x d t +P (m) +Z (m)

=−R(m)
k −R(m)

p , (1.60)
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with

C (m)
KIN (U (m))|Dσ

=
2∑

i=1

(
(ðt Ek,i )n+1

σ + ∑
ε∈Ẽ (Dσ)

|ε| 1

2
(un

i ,ε)
2F n

ε ·nσ,ε

)
with (Ek,i )n

σ = 1

2
hn

Dσ
(un

i ,σ)2,

C (m)
POT (U (m))|K = 1

2
g (ðt h2

K )n +divK (pnun),

P (m) =
Nm−1∑
n=0

δt (m)
[ 2∑

i=1

∑
σ∈(E (i ))(m)

|Dσ|un+1
i ,σ (ði pn+1)σϕ

n+1
σ + ∑

K∈M (m)

|K |pn
K divK unϕn+1

K

]
,

Z (m) =+
Nm−1∑
n=0

δt (m)
[ 2∑

i=1

∑
σ∈(E (i ))(m)

|Dσ|hn+1
σ,c un+1

i ,σ (ði z)σϕ
n+1
σ

+ ∑
K∈M (m)

g
(
zK (ðt hK )n + g zK divK (hnun)

)
ϕn+1

K

]
,

R(m)
k =

2∑
i=1

Nm−1∑
n=0

δt (m)
∑

σ∈E (i ,m)
int

[1

2

|Dσ|
δt (m)

hn+1
Dσ

(un+1
σ −un

σ)2

+ ∑
ε∈Ẽ (i )(Dσ)

|ε| F n
ε ·nσ,ε

(
− 1

2
(un

i ,ε−un
i ,σ)2 + (un

i ,ε−un
i ,σ)(un+1

i ,σ −un
i ,σ)

)]
ϕn+1
σ

R(m)
p ≥

Nm−1∑
n=0

δt (m)
∑

K∈M (m)

[
− 1

2
g

∑
σ∈E (K )

|σ| (hn
σ−hn

K )2 un
σ ·nK ,σ

+ ∑
σ∈E (K )

|σ|g (hn+1
K −hn

K ) hn
σ un

σ ·nK ,σ

]
ϕn+1

K .

Kinetic energy convection term
Let us check that the above defined convection operator C (m)

KIN satisfies the hypothe-
ses (1.80)–(1.82) of Lax-Wendroff type consistency Lemma 1.8 given in the appendix
which we apply here with d = 2, P (m) and F(m) the i -th dual mesh and its set of edges,
U = (h,u), β(U ) = Ek,i (U ) = 1

2 hu2
i , for i = 1,2.

Let us start with the assumption (1.80). For a given function ψ ∈ L1(Ω), and any
subset A of Ω we denote by 〈ψ〉A the mean value of ψ on A. By definition of the
kinetic energy, we have (Ek,i )0

σ = 1
2 h0

Dσ
|u0

i ,σ|2 = 1
2〈h0〉Dσ(|〈ui ,0〉Dσ |)2 and Ek,i (U0) =

Ek,i (h0,u0) = 1
2 h0u2

i ,0 . Therefore, owing to the assumptions (1.32)-(1.33) on the func-

tions h(m) and u(m) and to the fact that these sequences converge in L1

∑
P∈P (m)

∫
P
|(β(m))0

P −β(U0(x))|d x = ∑
σ∈E (m)

∫
Dσ

|(Ek,i )0
σ−Ek,i (h0,u0)|d x

= 1

2

∑
σ∈E (m)

|Dσ|
∣∣∣〈h0〉Dσ〈ui ,0〉2

Dσ
−〈h0u2

i ,0〉Dσ

∣∣∣
→ 0 as m →+∞.

44



1 First and second order MAC schemes for the two−dimensional shallow water
equations – 1.5 Weak entropy consistency of the forward Euler- MAC scheme

The assumption (1.80) is thus satisfied.

Let us then note that the assumption (1.81), which reads

Nm−1∑
n=0

∑
σ∈E (m)

∫ tn+1

tn

∫
Dσ

|(E (m)
k,i )n

σ−Ek,i (U (m)(x , t ))|d x d t → 0 as m →+∞,

is satisfied, again thanks to the assumptions (1.32)-(1.33) on the functions h(m) and
u(m) and to the fact that these sequences converge in L1.

Let us now turn to the assumption (1.82), which reads

Nm−1∑
n=0

∑
σ∈E (m)

∫ tn+1

tn

diam(Dσ)

|Dσ|
∫

Dσ

∣∣∣ ∑
ε∈Ẽ (m)

|ε|
(
(G (m))n

ε − f (U m(x , t ))
)
·nσ,ε

∣∣∣d x d t

→ 0 as m →+∞,

with (G (m))n
ε = 1

2 (un
i ,ε)

2F n
ε and f (U ) = 1

2 h|u|2ui . This assumption is indeed satisfied
since F n

ε is a convex combination of hσuσ and hσ′uσ′ for ε = σ|σ′, and thanks to
the boundedness and convergence assumptions on the sequences (h(m))m∈N and
(u(m))m∈N.

By Lemma 1.8, we thus get that

∫ T

0

∫
Ω

(ðt Ek,i )n+1
σ + ∑

ε∈Ẽ (Dσ)

|ε| 1

2
(un

i ,ε)
2F n

ε ·nσ,εϕ(x , t ) d x , d t →−
∫
Ω

Ek,i (U (0)ϕ(x,0)dx

−
∫ T

0

∫
Ω

Ek,i (Ū )∂tϕ+ 1

2
Ek,i (Ū )ūi∂iϕdx dt as m →+∞,

with Ek,i (Ū ) = 1
2 g h̄ū2

i . Summing over i = 1,2, we get that

∫ T

0

∫
Ω
C (m)

KIN (U (m))ϕ(x , t ) d x d t →−
∫
Ω

Ek (U (0))ϕ(x,0)dx

−
∫ T

0

∫
Ω

[
Ek (Ū )∂tϕ+ 1

2
Ek (Ū )u ·∇ϕ

]
dx dt as m →+∞, (1.61)

with Ek (Ū ) = 1
2 g |̄ū|2.

Potential energy convection terms
Let us now check that the above defined convection operator C (m)

POT satisfies the
hypotheses (1.80)–(1.82) of Lemma 1.8 which we now apply with d = 2, P (m) and F(m)

the primal mesh and its set of edges, U = (h,u), β(U ) = 1
2 g h2 and f (U ) = 1

2 g h2u.
Indeed, ∑

K∈M

∫
K

∣∣∣〈h(·,0)2〉K −h(x,0)2
∣∣∣dx → 0 as m →+∞,
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so that the hypothesis (1.80) is satisfied. Next,

Nm−1∑
n=0

∫ tn+1

tn

∑
K∈M

∫
K

∣∣∣(hn
K )2 −h2(x , t )

∣∣∣dx dt → 0 as m →+∞,

thanks to the boundedness and convergence assumptions on the sequence (h(m))m∈N.
so that the hypothesis (1.81) is satisfied. Finally, the left hand side of (1.82) reads

XF =
Nm−1∑
n=0

∫ tn+1

tn

∑
K∈M

diam(K )

|K |
∫

K

∣∣∣ ∑
σ∈E (K )

|σ|
(1

2
g (hn

σ)2un
σ−

1

2
g h2(x , t )u(x , t )

)
·nK ,σ

∣∣∣dx dt

=
Nm−1∑
n=0

∫ tn+1

tn

∑
K∈M

diam(K )

|K |
∣∣∣ ∑
σ∈E (K )

|σ|
∫

DK ,σ

(1

2
g (hn

σ)2 − 1

2
g (hn

K )2
)
un
σ ·nK ,σ

∣∣∣dx dt

→ 0 as m →+∞

thanks to the fact that hn
σ is a convex combination of hn

K and hn
L for σ = K |L, and

thanks to the boundedness and convergence assumptions on the sequences (h(m))m∈N
and (u(m))m∈N. Therefore, the assumption (1.82) is also satisfied.

Hence by Lemma 1.8,

∫ T

0

∫
Ω

C (m)
POT (U (m))ϕ(x , t ) d x d t →−1

2

∫
Ω

g h2(x ,0)ϕ(x ,0)dx

−
∫ T

0

∫
Ω

[1

2
g h̄2 ∂tϕ+ 1

2
g h̄2 ū ·∇ϕ

]
dx dt as m →+∞. (1.62)

Pressure terms
Let us rewrite P (m) as

P (m) =
Nm−1∑

n=0
δt (m)

( 2∑
i=1

An+1
i +B n+1

)
−δt (m)B 0,

with An
i = ∑

σ∈(E (i )
int)(m), σ=K |L

|Dσ|un
i ,σ(ði pn)σϕ

n
σ, and B n = ∑

K∈M (m)

|K |pn
K divK (un)ϕn

K .

By Lemma 1.7 below,

2∑
i=1

An+1
i +B n+1 = ∑

K∈M (m)

∑
σ∈E (K )

|DK ,σ|pn+1
K un+1

σ · |σ|(ϕ
n+1
K −ϕn+1

σ )

|DK ,σ|
nK ,σ

On each subcell DK ,σ the quantity
|σ|(ϕn+1

K −ϕn+1
σ )

|DK ,σ|
nK ,σ is, up to higher order terms,

a discrete differential quotient of ϕ between xK and xσ, in the direction i if σ ∈ E (i ),

46



1 First and second order MAC schemes for the two−dimensional shallow water
equations – 1.5 Weak entropy consistency of the forward Euler- MAC scheme

which uniformly converges to ∂iϕe i in the case of a rectangular grid, and therefore,

Nm−1∑
n=0

δt (m)(An+1 +B n+1) →−
∫ T

0

∫
Ω

p̄(x , t ) ū(x , t ) ·∇ϕ(x , t )d x d t as m →+∞.

Now, since we assume u0 ∈ L1(Ω),

δt (m)|B 0| = δt (m)
∣∣∣ ∑

K∈M (m)

|K |p0
K divK (u0)ϕ0

K

∣∣∣
≤ gδt (m)‖h0‖2

∞‖ϕ‖∞
∑

K∈M (m)

|K ||divK (u0)|

≤ 2g
δt (m)

infK∈M (m) diam(K )
‖h0‖2

∞‖ϕ‖∞
∑

σ∈E (K )
|σ|dσ‖u0‖∞,

so that, by the assumption (1.56b),
Nm−1∑

n=0
δt (m)B 0 → 0 as m →+∞; and therefore,

P (m) →−
∫ T

0

∫
Ω

p̄(x , t ) ū(x , t ) ·∇ϕ(x , t )d x d t as m →+∞. (1.63)

In the above bound, we used the assumption (1.56b); this could be avoided if we
assume u0 ∈W 1,1(Ω) or u0 ∈ L1(0,T ;BV (Ω)); indeed, in this case we have

|B 0| ≤ g‖h0‖2
∞‖ϕ‖∞‖u0‖W 1,1(Ω).

However, the assumption (1.56a) seems unavoidable to deal with the remainder term
appearing in the discrete potential energy, see below.

Bathymetry terms
Let us introduce the following piecewise constant functions:
— h̃(m) is the piecewise constant function equal to hn+1

σ,c = 1
2 (hn+1

K +hn+1
L ) on each

set Dσ× (tn , tn+1), for σ= K |L ∈ E (m)
int and n ∈ �0, Nm −1�;

— ∇(m)z(m) is the piecewise constant function equal to
|σ|
|Dσ|

(zL − zK ) on each set

Dσ, for σ= K |L ∈ E (m)
int ;

— ϕ̃(m) is the piecewise constant function equal to ϕσ on each set on each set
Dσ× (tn , tn+1), for σ= K |L ∈ E (m)

int and n ∈ �0, Nm −1�;
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With these notations, we get that

Nm−1∑
n=0

δt (m)
2∑

i=1

∑
σ∈(E (i ))(m)

|Dσ|hn+1
σ,c un+1

i ,σ (ði z)σ ϕ
n+1
σ

=
∫
Ω

h̃(m)(x , t )u(m)(x , t ) ·∇z(m)(x) ϕ̃(m)(x , t )dx dt

→
∫
Ω

h(x , t )u(x , t ) ·∇z(x) ϕ(x , t )dx dt as m →+∞, (1.64)

thanks to the convergence assumptions on h(m) and u(m) and owing to the strong
convergence of the discrete gradient ∇(m) (which would be only a weak convergence
in the case of a non rectangular mesh, see Gallouët, Herbin, and Latché 2019, Lemma
3.1).

Now let

T n
K = g ðt hn+1

K zK and Z n
K = 1

|K |g
∑

σ∈E (K )
|σ|hn

σ un
K ,σ ·nn

K ,σ zK .

Using a discrete summation by parts in time and thanks to the convergence assump-
tion on h(m), we get that

Nm−1∑
n=0

δt (m)
∑

K∈M (m)

|K |T n
K →−

∫
Ω

g z(x)h(x ,0)ϕ(x ,0)dx

−
∫ T

0

∫
Ω

g z(x)h(x , t )∂tϕ(x , t )dx dt as m →+∞. (1.65)

Using next a discrete summation by parts in space, we get∑
K∈M (m)

|K |Z n
K = ∑

K∈M (m)

g zKϕ
n+1
K

∑
σ∈E (K )

|σ|hn
σ un

K ,σ ·nn
K ,σ zK

= ∑
σ∈E (m)

int
σ=K |L

|σ|hn
σ un

K ,σ ·nn
K ,σ (zKϕ

n+1
K − zLϕ

n+1
L )

=− ∑
σ∈E (m)

int
σ=K |L

|Dσ|hn
σun

σ · (∇(m)(zϕ))n+1
σ ,

where ∇(m)(zϕ) is the piecewise constant discrete gradient defined by:

∀σ= K |L ∈ E (m)
int , ∀n ∈ �0, Nm −1�, ∀(x , t ) ∈ Dσ× [tn , tn+1),

∇(m)(zϕ)n+1(x , t ) = (∇(m)(zϕ))σ =n+1 |σ|
|Dσ|

(zKϕ
n+1
K − zLϕ

n+1
L )nK ,σ,

which converges to ∇(zϕ) uniformly in the case of a rectangular mesh, and weakly in
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the case of a general mesh, see Gallouët, Herbin, and Latché 2019, Lemma 3.1.
Therefore, thanks to the convergence assumptions on h and u,

Nm−1∑
n=0

δt (m)
∑

K∈M (m)

|K |Z n
K →−

∫ T

0

∫
Ω

g h̄(x , t )ū(x , t ) ·∇(zϕ)(x , t )dx dt as m →+∞.

(1.66)
Owing to (1.64), (1.65) and (1.66), we thus get that

Z (m) →−
∫
Ω

g z(x)h(x ,0)ϕ(x ,0)dx −
∫ T

0

∫
Ω

g z(x)h̄(x , t )∂tϕ(x , t )dx dt

−
∫ T

0

∫
Ω

g h̄(x , t )z(x)ū(x , t ) ·∇ϕ(x , t )dx dt as m →+∞. (1.67)

Remainder terms
The remainder term R(m)

k in (1.60) satisfies

R(m)
k =R(m)

k,1 +R(m)
k,2 +R(m)

k,3 (1.68)

with

R(m)
k,1 = 1

2

2∑
i=1

Nm−1∑
n=0

δt (m)
∑

σ∈E (i )
int

1

δt
|Dσ| hn+1

Dσ

(
un+1

i ,σ −un
i ,σ

)2
ϕn+1
σ ,

R(m)
k,2 =−1

2

2∑
i=1

Nm−1∑
n=0

δt (m)
∑

σ∈E (i )
int

∑
ε∈Ẽ (i )(Dσ)

|ε| F n
ε ·nσ,ε

(
un

i ,ε−un
i ,σ

)2
ϕn+1
σ

R(m)
k,3 =

2∑
i=1

Nm−1∑
n=0

δt (m)
∑

σ∈E (i )
int

∑
ε∈Ẽ (i )(Dσ)

|ε| F n
ε ·nσ,ε

(
un

i ,ε−un
i ,σ

)(
un+1

i ,σ −un
i ,σ

)
ϕn+1
σ .

The term R(m)
k,3 satisfies

R(m)
k,3 ≥R(m)

k,3,1 +R(m)
k,3,2 (1.69)

with

R(m)
k,3,1 =−1

2

2∑
i=1

Nm−1∑
n=0

δt (m)
∑

σ∈E (i )
int

∑
ε∈Ẽ (i )(Dσ)
F n
ε ·nσ,ε>0

|ε| F n
ε ·nσ,ε

(
un+1

i ,σ −un
i ,σ

)2
ϕn+1
σ ,

R(m)
k,3,2 =−1

2

2∑
i=1

Nm−1∑
n=0

δt (m)
∑

σ∈E (i )
int

∑
ε∈Ẽ (i )(Dσ)

|ε| F n
ε ·nσ,ε

(
un

i ,ε−un
i ,σ

)2
ϕn+1
σ .

Thanks to the CFL condition (1.55), we get that

R(m)
k,1 +R(m)

k,3,1 ≥ 0. (1.70)
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Let us now study the term

R̃(m)
k,2 =R(m)

k,3,2 +R(m)
k,2 =−

2∑
i=1

Nm−1∑
n=0

δt (m)
∑

σ∈E (i )
int

∑
ε∈Ẽ (i )(Dσ)

|ε| F n
ε ·nσ,ε

(
un

i ,ε−un
i ,σ

)2
ϕn+1
σ ,

which we decompose as: R̃(m)
k,2 ≥ R̃(m)

k,2,1 +R̃(m)
k,2,2, with

R̃(m)
k,2,1 =−

2∑
i=1

Nm−1∑
n=0

δt (m)
∑

σ∈E (i )
int

∑
ε∈Ẽ (i )(Dσ)
F n
ε ·nσ,ε>0

|ε| F n
ε ·nσ,ε

(
un

i ,ε−un
i ,σ

)2
ϕn+1
ε ,

R̃(m)
k,2,2 =−

2∑
i=1

Nm−1∑
n=0

δt (m)
∑

σ∈E (i )
int

∑
ε∈Ẽ (i )(Dσ)

|ε| F n
ε ·nσ,ε

(
un

i ,ε−un
i ,σ

)2(ϕn+1
ε −ϕn+1

σ ),

and, by conservativity,

R̃(m)
k,2,1 ≥

2∑
i=1

Nm−1∑
n=0

δt (m)
∑

ε=σ|σ′∈Ẽ (i )
i nt

F n
ε ·nσ,ε>0

|ε| F n
ε ·nσ,ε

[(
un

i ,ε−un
i ,σ

)2 − (
un

i ,ε−un
i ,σ′

)2
]
ϕn+1
ε

≥
2∑

i=1

Nm−1∑
n=0

δt (m)‖ui‖∞
∑

ε=σ|σ′∈Ẽ (i )
i nt

F n
ε ·nσ,ε>0

|Dε|(2ui ,ε−ui ,σ−ui ,σ′)(ui ,σ′ −ui ,σ′).

Therefore, thanks to (1.19) and (1.58),

R̃(m)
k,2,1 ≥

2∑
i=1

Nm−1∑
n=0

δt (m)
∑

ε=σ|σ′∈Ẽ (i )
i nt

F n
ε ·nσ,ε>0

|ε| F n
ε ·nσ,ε(2µσ,ε−1)

(
un

i ,σ−un
i ,σ′

)2
ϕn+1
ε ≥ 0. (1.71)

Let us then write that, thanks to the regularity of ϕ,

|R̃(m)
k,2,2| ≤Cϕ

2∑
i=1

Nm−1∑
n=0

δt (m)
∑

σ∈Ei nti

∑
ε∈Ẽ (i )(Dσ)

|Dε| |F n
ε ·nσ,ε|

(
un

i ,ε−un
i ,σ

)2

≤Cϕ‖h‖∞‖u‖∞
2∑

i=1

Nm−1∑
n=0

δt (m)
∑

σ∈E (i )
int

∑
ε∈Ẽ (i )(Dσ)

|Dε| un
i ,ε−un

i ,σ|

so that, thanks to the L1 convergence of u(m) and to the regularity of the mesh, we
may again apply Lemma 1.12 to obtain

|R̃(m)
k,2,2|→ 0 as m →+∞. (1.72)
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Therefore, owing to (1.68)-(1.72)

lim
m→+∞R(m)

k ≥ 0. (1.73)

Let us now turn to the remainder R(m)
p . We have R(m)

p ≥R(m)
p,1 +R(m)

p,2 , with

R(m)
p,1 =−

Nm−1∑
n=0

δt (m)

2

∑
K∈M (m)

g
∑

σ∈E (K )
|σ| (hn

σ−hn
K )2 un

σ ·nK ,σϕ
n
K ,

R(m)
p,2 =

Nm−1∑
n=0

δt (m)
∑

K∈M (m)

∑
σ∈E (K )

|σ|g (hn+1
K −hn

K ) hn
σ un

σ ·nK ,σϕ
n
K .

Note that if hn
σ is the upwind choice for any σ ∈ E (m), then R(m)

p,1 ≥ 0. In the general
case, we may write that

R(m)
p,1 =R(m)

p,1,1 +R(m)
p,1,2

with

R(m)
p,1,1 =−

Nm−1∑
n=0

δt (m)

2

∑
K∈M (m)

g
∑

σ∈E (K )
|σ| (hn

σ−hn
K )2 un

σ ·nK ,σϕ
n
σ

R(m)
p,1,2 =−

Nm−1∑
n=0

δt (m)

2

∑
K∈M (m)

g
∑

σ∈E (K )
|σ| (hn

σ−hn
K )2 un

σ ·nK ,σ(ϕn
K −ϕn

σ).

By conservativity,

R(m)
p,1,1 ≥−g

Nm−1∑
n=0

δt (m)

2

∑
σ=K |L∈E

un
σ·nK ,σ>0

|σ|
[

(hn
σ−hn

K )2 − (hn
σ−hn

L )2
]

un
σ ·nK ,σϕ

n
σ

=−g
Nm−1∑

n=0

δt (m)

2

∑
σ=K |L∈E

un
σ·nK ,σ>0

|σ| (hn
L −hn

K )(2hn
σ−hn

K −hn
L ) un

σ ·nK ,σϕ
n
σ.

Owing to the assumption (1.9), one has

(hn
L −hn

K )(2hn
σ−hn

K −hn
L ) =−2λK ,σ(hn

K −hn
L )

and since by (1.57), λK ,σ ≥ 1
2 if un

σ ·nK ,σ > 0,

R(m)
p,1,1 = 2g

Nm−1∑
n=0

δt (m)
∑

σ=K |L∈E
un
σ·nK ,σ>0

|σ|(λK ,σ− 1

2
) (hn

L −hn
K )2 un

σ ·nK ,σϕ
n
σ ≥ 0.
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Now

|R(m)
p,1,2| ≤

Nm−1∑
n=0

δt (m)

2

∑
K∈M (m)

g‖h‖∞‖u‖∞Cϕ

∑
σ∈E (K )

|DK ,σ| |hn
L −hn

K |→ 0 as m →+∞

so that
lim

m→+∞R(m)
p,1 ≥ 0.

Let us now turn to R(m)
p,2 . Since for all K ∈M and σ ∈ E (K ) we have

|σ| ≤ |K |
infK∈M diam(K )

,

we get

|R(m)
p,2 | ≤ g‖h‖∞‖u‖∞‖ϕ‖∞

Nm−1∑
n=0

δt (m)

infK∈M (m) diam(K )

Nm−1∑
n=0

∑
K∈M (m)

|K ||(h(m))n+1
K − (h(m))n

K |

→ 0 as m →+∞,

thanks to the assumption (1.56). Hence

lim
m→+∞R(m)

p ≥ 0. (1.74)

Conclusion of the proof
Owing to (1.73) and (1.74), passing to the limit in (1.60) as m →+∞ yields, together

with (1.61), (1.62), (1.63) and (1.67), that the limit (h̄, ū) satisfies the weak entropy
inequality (1.31).

The next lemma, used to pass to the limit in the pressure terms of the entropy is the
discrete equivalent, on a staggered grid, of the formal equality∫

Ω
(u ·∇p ϕ+p divu ϕ)dx =−

∫
Ω

p u ·∇ϕ d x .

Lemma 1.7 (Pressure terms). Let (M ,E ) be a MAC discretization of Ω in the sense
of Definition 1.1 ; Let (pK )K∈M ⊂ R and (uσ)σ∈E ⊂ Rd be some discrete unknowns
associated to M and E respectively. Let ϕ ∈ C∞

c (Ω), and let ϕK (resp. ϕσ) denote the
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mean value of ϕ on K (resp. Dσ), for any K ∈M (resp. σ ∈ E (m)). Then

2∑
i=1

∑
σ∈E (i )

int
σ=K |L

|Dσ| ui ,σ (ði p)σ ϕσ+
∑

K∈M

|K | pK divK u ϕK

= ∑
K∈M

∑
σ∈E (K )

|DK ,σ| pK uσ · |σ|(ϕK −ϕσ)

|DK ,σ|
nK ,σ.

Proof. Let us denote by A and B the first and second terms of the right hand side.
Then, with the notations of Definition 1.1,

A = ∑
K∈M (m)

2∑
i=1

∑
σ∈E (i )(K )

|DK ,σ|ui ,σ (ði p)σ ϕσ

= ∑
K∈M (m)

∑
σ∈E (K )
σ=K |L

|DK ,σ| uσ · pL −pK

|Dσ|
|σ| ϕσ nK ,σ

= ∑
K∈M (m)

∑
σ∈E (K )
σ=K |L

|DK ,σ| uσ · pσ−pK

|DK ,σ|
|σ| ϕσ nK ,σ,

where pσ is defined by
pσ−pK

|DK ,σ|
= pL −pK

|Dσ|
. By conservativity,

∑
K∈M (m)

∑
σ∈E (K )
σ=K |L

uσ ·pσ|σ|ϕσ nK ,σ = 0,

so that
A =− ∑

K∈M (m)

∑
σ∈E (K )
σ=K |L

|DK ,σ|uσ · pK

|DK ,σ|
|σ| ϕσ nK ,σ

Now

B = ∑
K∈M (m)

|K | pK divK u ϕK = ∑
K∈M (m)

∑
σ∈E (K )

|σ| pK |DK ,σ| uσ ·ϕK nK ,σ.

Adding the results for A and B concludes the proof.

1.6 Numerical results
This section is devoted to numerical tests: we first check the order of convergence of

the proposed scheme on a two-dimensional regular solution (Section 1.6.1); then we
turn to one-dimensional and two-dimensional shock solutions on a plane topography
(Sections 1.6.2 and 1.6.3); in Section 1.6.4, we address a two-dimensional dam-break
problem in a closed computational domain with a variable topography, which, in
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particular, shows tha ability of staggered scheme to "natively" cope with reflection
boundary conditions; finally, we compute the motion of a liquid slug over a partly dry
support (1.6.5).

In this section, we compare three schemes: the second-order scheme developed
here, the scheme referred to in Section 1.2.2 as the segregated forward Euler scheme
(combining a segregated forward Euler scheme in time and the proposed MUSCL-like
discretization of the convection fluxes) and a first order scheme which still features
the segregated forward Euler scheme in time but with first-order upwind convection
fluxes. These schemes are referred to in the following as the second-order, segregated
and first-order scheme respectively.

The schemes have been implemented within the CALIF3S open-source software
CALIF3S n.d. of the French Institut de Sûreté et de Radioprotection Nucléaire (IRSN);
this software is used for the following tests.

1.6.1 A smooth solution
We begin here by checking the accuracy of the scheme on a known regular solution

consisting in a travelling vortex. This solution is obtained through the following steps:
we first derive a compact-support H 2 solution consisting in a standing vortex which
becomes time-dependent by adding a constant velocity motion. The velocity field of
the standing vortex and the pressure are sought under the form:

û = f (ξ)

[−x2

x1

]
, p̂ =℘(ξ),

with ξ= x2
1 +x2

2 . A simple derivation of these expressions yields:

û ·∇û =− f (ξ)2
[

x1

x2

]
and

∇p̂ = 2℘′(ξ)

[
x1

x2

]
.

Using the relation p = 1
2 g h2, we thus obtain a stationary solution of the shallow water

equations (1.1) with a topography z = 0 if ℘ satisfies 8 g ℘= (F + c)2, where F is such
that F ′ = f 2, F (0) = 0 and c is a positive real number. For the present numerical study,
we choose f (ξ) = 10ξ2(1− ξ)2 if ξ ∈ (0,1), f = 0 otherwise, which indeed yields an
H 2(R2) velocity field (note that as a consequence, the pressure and the water height
are also regular), and c = 1. The problem is made unsteady by a time translation:
given a constant vector field a, the pressure p and the velocity u are deduced from
the steady state solution p̂ and û:

h(x , t ) = ĥ(x −at ), u(x , t ) = û(x −at )+a.
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The center of the vortex is initially located at x0 = (0,0)t , the translation velocity a is
set to a = (1,1)t , the computational domain is Ω= (−1.2, 2.)2 and the computation
is run on the time interval (0,0.8). Computations are performed with successively

mesh error(h) ord(h) error(u) ord(u)

32×32 3.6110−3 / 2.9310−1 /
64×64 1.1510−3 1.65 1.1410−1 1.36

128×128 2.5810−4 2.16 4.0610−2 1.49
256×256 5.8510−5 2.14 1.4910−2 1.45
512×512 1.5310−5 1.93 4.6710−3 1.68

Table 1.1 – Measured numerical errors for the travelling vortex – Discrete L1-norm of
the difference between the numerical and exact solution at t = 0.8, for the
height and the velocity, and corresponding order of convergence.

refined meshes with square cells, and the time step is δt = δM /8, and corresponds
to a Courant (or CFL) number with respect to the celerity of the fastest waves close
to 1/3. The discrete L1-norm of the difference between the exact solution and the
solution obtained by the second-order scheme is given in Table 1.1. The observed
order of convergence over the whole sequence is 2 for the water height and 1.5 for the
velocity. Results with the first-order scheme are given in Table 1.2; one observes that
the second-order scheme is much more accurate. Finally, the segregated scheme yields

mesh error(h) ord(h) error(u) ord(u)

32×32 8.0410−3 / 6.5510−1 /
64×64 5.5610−3 0.53 4.8410−1 0.44

128×128 3.5310−3 0.66 3.2210−1 0.59
256×256 2.0810−3 0.76 1.9610−1 0.72
512×512 1.1510−3 0.85 1.1610−1 0.76

Table 1.2 – Measured numerical errors for the travelling vortex with the first order
scheme - Discrete L1-norm of the difference between the numerical and
exact solution at t = 0.8, for the height and the velocity, and corresponding
order of convergence.

good results on coarse meshes (it is the most accurate scheme on the 32×32 mesh);
unfortunately, when refining the mesh, oscillations appear, and the convergence is lost.
This results confirms a behaviour already observed for the transport operator in Piar,
Babik, Herbin, et al. 2013: for multi-dimensional problems, the smoothing produced
by the Heun time-stepping seems to be necessary to compensate the oscillatory
character of the MUSCL scheme (which, for the transport operator, does not lead,
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of course, to violate the local maximum principle warranted by construction of the
limitation process).

mesh error(h) ord(h) error(u) ord(u)

32×32 2.0610−3 / 2.3310−1 /
64×64 1.3710−3 1.1810−1

128×128 1.2410−3 8.5010−2

256×256 1.2610−3 6.1610−2

512×512 1.5610−3 4.8510−2

Table 1.3 – Measured numerical errors for the travelling vortex with the segregated
scheme - Discrete L1-norm of the difference between the numerical and
exact solution at t = 0.8, for the height and the velocity.

1.6.2 A Riemann problem
We now turn to a one-dimensional shock solution, corresponding to a Riemann

problem posed over Ω= (0,1). The initial height is h = 1 if x < 0.5 and h = 0.2 other-
wise, and the topography z is set to zero over the computational domain; the fluid is
initially at rest. The solution consists in a 1-rarefaction wave and a 2-shock.

We plot on Figure 1.4 and Figure 1.5 the results obtained a t = 0.1 with the second-
order scheme, the segregated scheme and the first-order scheme. The space step is
δx = 1/200 and the time step is chosen as δt = δx/10, which corresponds to a CFL
number lower than 0.5 with respect to the waves celerity (the maximal speed of sound
is close to 3 and the maximal velocity is close to 2). As expected, the first order scheme

 0
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Figure 1.3 – Riemann problem: velocity.

is more diffusive than the other ones. As in the previous test, the segregated forward
Euler scheme (with MUSCL fluxes) exhibits some oscillations, which are damped by
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Figure 1.4 – Riemann problem: height

the Heun time discretization (see the Figure 1.5). In this test case, for both the second-
order and the segregated scheme, the shock is captured with only one intermediate
cell between the left and the right state.
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Figure 1.5 – Riemann problem. Details of the flow height.
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1.6.3 A circular dam break problem
The objective of this test-case is to check the capability of the scheme to capture a

multi-dimensional shock solution. The fluid is initially at rest and the height is given
by:

h = 2.5 if r < 2.5, h = 0.5 otherwise, with r 2 = x2
1 +x2

2 .

The computational domain isΩ= (−20,20)× (−20,20) and the final time is T = 4.7.

We plot on Figure 1.6 the results obtained with a 800×800 uniform mesh, with the
second-order scheme. The time-step is δt = hM /10 (with a maximal velocity in the
range of 3.5 and a maximal speed of sound in the range of 5). In addition, to cure some
oscillations (see Figure 1.8), we add a slight stabilization in the momentum balance
equation which consists in adding to the dicrete momentum equation associated to
an edge σ included in a cell K the following flux through a dual edge ε= Dσ|Dσ′ :

Fstab,σ,ε = ζ hK diam(K )d−1 (uσ−u′
σ),

where ζ is a user-defined parameter. Here, ζ= 0.1, which is significantly lower than
the diffusion generated by the use of an upwind scheme in the momentum balance
equation; indeed, the upwind scheme may be seen as the centered one complemented
by a diffusion taking the same expression as Fstab,σ,ε with ζ hK replaced by |Fσ,ε|/2.
The interest of this stabilization stems from the fact that the numerical diffusion
introduced in the present family of schemes depends on the material velocity (and
not on the waves celerity as, for instance, in colocated schemes based on Riemann
solvers), and is sometimes too low in the zones where the fluid is almost at rest
Herbin, Latché, and Nguyen 2018. Note that, as a counterpart, the scheme does not
become overdiffusive for low-Mach number flows. For the same computation, we
give on Figure 1.7 the height and the radial velocity along the axis x2 = 0 (i.e. the first
component of the velocity) at different times.

This computation is also used as "reference computation" on Figure 1.8, where
we compare the results obtained at t = 3T /5 with a 200×200 mesh with the second-
order scheme, the second-order scheme with stabilization and the first-order scheme.
This latter is significantly more diffusive, and we observe how the stabilization (even
if added to the momentum balance only and not on the mass balance) damps the
oscillations obtained with the second-order scheme for both the flow height and the
velocity.

1.6.4 A so-called partial dam-break problem
We now turn to a test consisting in a partial dam-break problem with reflection

phenomena, and with a non-flat bathymetry. In this test, the computational domain
is Ω= (0,200)× (0,200) \Ωw with Ωw = (95,105)× (0,95)∪ (95,105)× (170,200). The
fluid is supposed to be initially at rest, the initial water height is h = 10 for x1 ≤ 100
and h = 5− 0.04(x1 − 100) otherwise, and the bathymetry is z = 0 if x1 ≤ 100 and
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Figure 1.6 – Circular dam-break problem. Height obtained at t = 0.38, t = 0.705, t =
1.88, t = 3.76, t = 4.28 and t = T = 4.7 with the stabilized second-order
scheme and a 800×800 mesh. The color range corresponds to the (0.1,2.5)
interval for the first two plots, and to the (0.1,1) interval for the last four
ones.
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ferent times along the line x2 = 0 with the stabilized second-order scheme
and a 800×800 mesh.
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z = 0.04(x1−100) otherwise. A zero normal velocity is prescribed at all the boundaries
of the computational domain. The computation is performed with a mesh obtained
from a 1000×1000 regular grid by removing the cells included inΩw . The time step is
δt = δM /40 (the maximal speed of sound and the maximal velocity are both close to
10). A stabilization with ζ= 0.25 (so two orders of magnitude lower than the artificial
viscosity generated by the upwind scheme in high momentum zones) is added to
damp oscillations appearing in the zones at rest, where no numerical diffusion is
generated by our schemes. Results obtained at t = 20 with the first order in time and
space and the present scheme are compared on Figure 1.9. One can observe that
the second-order scheme is clearly less diffusive. In addition, these results illustrate
the capacity of the staggered scheme to deal with reflection conditions by simply
imposing the normal velocity to the boundary at zero.

1.6.5 Uniform circular motion in a paraboloid
We address in this section a classical test which admits a closed-form solution

and corresponds to the uniform rotation of a drop of liquid on a paraboloid-shaped
support. The solution is very regular (at a given time, the velocity field is constant
and h + z is affine outside the dry zones), and the essential interest of this test is to
check whether the scheme is able to cope with dry zones, i.e. zones where the height
is zero (in the continuous setting) or very close to zero, as we shall use numerically.
The computational domain isΩ= (0,L)× (0,L) and the topography is given by

z =−h0

a2

(
a2 − (x − L

2
)2 − (y − L

2
)2

)
,

with h0 and a parameters which are given below. The height is:

h = max(0, h̄) with h̄ = ηh0

a2

(
2(x − L

2
) cos(ωt )+2(y − L

2
) sin(ωt )−η

)
− z,

with η a parameter and ω (the angular rotation velocity of the drop) given by

ω= (2g h0)1/2

a
.

Finally, the velocity is

u = ηω
[−sin(ωt )

cos(ω)t

]
.

The computation is run up to T = 6π/ω, so the drop is supposed to perform 3 turns
and to lie at the final time at its initial position. The parameters are fixed here to L = 4,
h0 = 0.1, a = 1 and η= 0.5.

For numerical tests, we bound h from below by 10−8, i.e. we set h = max(10−8, h̄),
in particular to avoid divisions by zero in the averaging steps of the Heun scheme

61



1 First and second order MAC schemes for the two−dimensional shallow water
equations – 1.6 Numerical results

Figure 1.9 – Partial dam-break flow. Top: MUSCL scheme – Bottom: upwind scheme.
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(Equations (1.22e) and (1.22f)). The computation are performed with a uniform 100×
100 mesh, with δt = δM /16, without changing anything to the numerical fluxes to
cope with dry zones. This is clearly dangerous, since a non-upwind approximation of
the water height at a face separating two cells with a large ratio of water height may
lead to a huge outflow mass flux in view of the cell mass inventory (or, in other words,
a very large CFL number). This probably explains the rather small time step used here
(the CFL number with respect to the celerity of the fastest waves is in the range of 1/8);
the first-order scheme, which uses upwind fluxes, works with time steps four times
larger. This problem would be probably cured by a more careful limitation of the mass
fluxes outward an almost dry cell.

Results obtained with the first order, the segregated and the second order scheme at
t = 6π/ω are plotted on Figure 1.11. All schemes give good results, which, for the first-
order scheme, is probably due to the regularity of the solution. For the momentum,
one observes that the second-order scheme is less accurate than the other ones; this
seems to be due to the time-stepping procedure, which perhaps generates some
diffusion at the interface between dry and wet zones, especially in the last averaging
step, since the segregated scheme is the most accurate one (and superimposed to the
exact solution on Figure 1.11).
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Figure 1.10 – Circular motion of a drop over a paraboloid-shaped topography. Sum of
the height and the topography along the y = L/2 line at t = 6π.
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Appendix

1.A Consistency results of numerical non linear
convection fluxes on staggered meshes

We give here some general lemmas which generalise the Lax-Wendroff theorem to
multidimensional staggered meshes, and which we state for any space dimension
d = 1,2 or 3. The well-known Lax-Wendroff theorem Lax and Wendroff 1960 states
that, on uniform 1D grids, a flux-consistent and conservative cell-centered finite-
volume scheme for a system of conservation laws is weakly consistent, in the sense
that the limit of any a.e. convergent sequence of L∞-bounded numerical solutions,
obtained with a sequence of grids with mesh and time steps tending to zero, is a weak
solution of the conservation law; it is also stated in a different form Leveque 2002,
Section 12.10, with a BV bound assumption on the scheme It is generalised to non
uniform 1D or Cartesian meshes in Eymard, Gallouët, and Herbin 2000, Theorem 21.2.
In a recent work Ben-Artzi and J. Li 2019, the Lax-Wendroff theorem is extended to
obtain some error estimates for higher order schemes on uniform 1D meshes. The
case of general (and, in particular, unstructured) discretizations has been also been
tackled over the past decades: Kroner, Rokyta, and Wierse 1996, Godlewski and P.-A.
Raviart 1996, Section 4.2.2 Elling 2007, Gallouët, Herbin, and Latché 2019. In this
latter work, the quasi-uniformity assumption that is required in Elling 2007 is relaxed,
but while in Elling 2007 the flux is only required to be continuous, it is supposed
to be Lipschitz continuous or at least “lip-diag". In all these works, the scheme is
supposed to be colocated, in the sense that the discrete unknowns are associated to
the cells of the mesh; these results may not be used directly on staggered meshes, and
for instance, in Herbin, Latché, Minjeaud, et al. 2020, the consistency of an explicit
staggered scheme for the full compressible Euler equations is proven recovering the
kinetic energy inequality on the primal mesh.

The consistency result that we give here is valid for general polygonal or polyhedral
grids with a colocated or staggered arrangement of the unknowns. The main new
idea is that in the proof of consistency, rather than using a convergence result for
the discrete gradient, which is only weak and demands some regularity on the mesh,
we use the actual mean value of the gradient of the test function on each cell, which
converges strongly to the gradient, and does not require any regularity of the mesh.
As in Gallouët, Herbin, and Latché 2019, the proof also relies on the control of some
residual terms, involving the difference between the numerical solution and a space or
time translate of this latter, and we use the estimate on the translates given Gallouët,
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Herbin, and Latché 2019, Lemma 4.2 to this purpose, which we recall in the appendix
1.B for the sake of completeness.

Let us suppose that:

Ω⊂Rd , d = 1,2,3, T ∈ (0,+∞), (1.75a)

p ∈N∗, β ∈C 1(Rp ,R), f ∈C 1(Rp ,Rd ), U ∈ L∞(Ω× (0,T ),Rp ), (1.75b)

and consider the conservative convection operator defined (in the distributional
sense) by:

C (U ) : Ω× (0,T ) →R,

(x , t ) 7→ ∂t (β(U ))(x , t )+div( f (U ))(x , t ). (1.76)

Lemma 1.8 (Weak consistency for a multi-dimensional conservative convection oper-
ator). Under the assumptions (1.75), let (U (m))m∈N ⊂ L∞(Ω× (0,T ),Rp ) be a sequence
of functions such that:

∃ C u ∈R∗
+ : ‖U (m)‖∞ ≤C u ∀m ∈N, (1.77)

∃ Ū ∈ L∞(Ω× (0,T ),Rp ) : ‖U (m) −Ū‖L1(Ω×(0,T ),Rp ) → 0 as m →+∞. (1.78)

Let (Pm)m∈N be a sequence of polygonal or polyhedral conforming mesh of Ω such
that

δ(Pm) = max
P∈Pm

diam(P ) → 0 as m →+∞.

Let F(m) denote the set of faces (or edges) of the mesh, and for a given polyhedron
(or polygon) P ∈ P (m), let F(m)(P ) be the set of faces (or edges) of P. For m ∈N, let
t (m)

0 = 0 < t (m)
1 < . . . < t (m)

Nm
= T be a discretization of (0,T ) with δt (m) = t (m)

k+1 − t (m)
k → 0

as m →+∞, and consider the discrete convection operator

C (m)(U (m)) : Ω× (0,T ) →R,

(x , t ) 7→ ðt (β(m))n
P + 1

|P |
∑

ζ∈F(m)(P )

|ζ|(F (m))n
ζ ·nP,ζ for x ∈ P and t ∈ (tn , tn+1)

(1.79)

with ðt (β(m))n
P = 1

δt ((β(m))n+1
P − (β(m))n

P ) and where the families {(β(m))n
P ,P ∈P (m), n ∈

�0, Nm −1�} of real numbers and {(F (m))n
ζ

,ζ ∈ F(m), n ∈ �0, Nm −1�} of real vectors are
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such that∑
P∈P (m)

∫
P
|(β(m))0

P −β(U0(x))|d x → 0 as m →+∞, with U0 ∈ L∞(Ω,Rp ), (1.80)

Nm−1∑
n=0

∑
P∈P (m)

∫ tn+1

tn

∫
P
|(β(m))n

P −β(U (m)(x , t ))|d x d t → 0 as m →+∞, (1.81)

Nm−1∑
n=0

∑
P∈P (m)

∫ tn+1

tn

diam(P )

|P |
∫

P

∑
ζ∈F(m)

|ζ|
∣∣∣((F (m))n

ζ − f (U m(x , t ))
)
·nP,ζ

∣∣∣d x d t → 0 as m →+∞.

(1.82)

Let ϕ ∈C∞
c (Ω× [0, t )), then

∫ T

0

∫
Ω

C (m)(U (m))(x , t )ϕ(x , t ) d x d t →−
∫
Ω
β(U0(x))ϕ(x ,0) d x

−
∫ T

0

∫
Ω

(
β(Ū )(x , t )∂tϕ(x , t )+ f (Ū )(x , t ) ·∇ϕ(x , t )

)
d x d t as m →+∞. (1.83)

Proof. The result of this lemma is the consequence of the two following lemmas,
which prove respectively the convergence of the time derivative part and the space
derivative part. Indeed, let us decompose∫ T

0

∫
Ω

C (m)(U (m))(x , t )ϕ(x , t ) d x d t = X (m)
1 +X (m)

2 , with (1.84)

X (m)
1 =

Nm−1∑
n=0

δt
∑

P∈P (m)

|P |ðn
t β

(m)
P ϕn

P (1.85)

X (m)
2 =

Nm−1∑
n=0

δt
∑

P∈P (m)

∑
ζ∈F(m)(P )

|ζ|(F (m))n
ζ ·nP,ζϕ

n
P (1.86)

where ϕn
P denotes the mean value of ϕ on P × (tn , tn+1). Then, by Lemma 1.9 below,

X (m)
1 →−

∫
Ω
β(U0(x)) d x −

∫ T

0

∫
Ω
β(Ū )(x , t )∂tϕ(x , t )d x d t as m →+∞,

and by Lemma 1.10 below,

X (m)
2 →−

∫ T

0

∫
Ω

f (Ū )(x , t ) ·∇ϕ(x , t )d x d t as m →+∞,

which concludes the proof

Lemma 1.9 (Weak consistency, time derivative). Under the assumptions and notations
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of Lemma 1.8,

∫ T

0

∫
Ω
ðt (β(m))n

Pϕ(x , t ) d x d t →−
∫
Ω
β(U0(x))ϕ(x ,0) d x

−
∫ T

0

∫
Ω
β(Ū )(x , t )∂tϕ(x , t )d x d t as m →+∞.

Proof. By definition of ðn
t β

(m)
P (x , t ) and thanks to a discrete integration by parts,

X (m)
1 =

∫ T

0

∫
Ω
ðt (β(m))n

Pϕ(x , t ) d x d t

=− ∑
P∈P (m)

|P | (β(m))0
Pϕ

0
P −

Nm∑
n=1

δt
∑

P∈P (m)

|P |β(m)
P (x , t )

1

δt

(
ϕn

P −ϕn−1
P

)
.

Thanks to the assumptions (1.77), (1.78) (1.80) and (1.81), we get that

lim
m→+∞X (m)

1 =−
∫
Ω
β(U0)(x)ϕ(x ,0) d x −

∫ T

0

∫
Ω

(
β(Ū )(x , t )∂tϕ(x , t ) d t d x . (1.87)

Lemma 1.10 (Weak consistency, space derivative). Under the assumptions and nota-
tions of Lemma 1.8,

∫ T

0

∫
Ω

1

|P |
∑

ζ∈F(m)(P )

|ζ|(F (m))n
ζ ·nP,ζϕ(x , t ) d x d t

→−
∫ T

0

∫
Ω

f (Ū )(x , t ) ·∇ϕ(x , t )d x d t as m →+∞.

Proof. Let X (m)
2 denote the left-hand-side of the above assertion. Since for a face ζ

separating P and P ′, one has nP,ζ =−nP ′,ζ, we may rewrite X (m)
2 as

X (m)
2 =

∫ T

0

∫
Ω

1

|P |
∑

ζ∈F(m)(P )

|ζ|(F (m))n
ζ ·nP,ζϕ(x , t ) d x d t

=
Nm−1∑

n=0
δt (m)

∑
P∈P (m)

An
P with An

P = ∑
ζ∈F(m)(P )

|ζ|(F (m))n
ζ ·nP,ζ

(
ϕn

P −ϕn
ζ

)
,

whereϕn
P (resp. ϕn

ζ
) denotes the mean value ofϕ over P ×(tn , tn+1) (resp. ζ×(tn , tn+1)).
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Now for any x ∈ P , t ∈ [tn , tn+1), we can decompose An
P as

An
P = B n

P (x , t )+Rn
P (x , t ), with B n

P (x) = ∑
ζ∈F(m)(P )

|ζ| f (U (m)(x , t )) ·nP,ζ

(
ϕn

P −ϕn
ζ

)
, and

Rn
P (x , t ) = ∑

ζ∈F(m)(P )

|ζ|(F n
ζ − f (U (m)(x , t ))) ·nP,ζ

(
ϕn

P −ϕn
ζ

)
d x .

Since
∑
ζ∈F(m)(P ) |ζ|nP,ζ = 0, we have

B n
P (x , t ) =− ∑

ζ∈F(m)(P )

|ζ| f (U (m)(x , t ) ·nP,ζϕ
n
ζ =−|P | f (U (m)(x , t ) · (∇ϕ)n

P , (1.88)

with (∇ϕ)n
P = 1

|P |
∑

ζ∈F(m)(P )

|ζ|ϕn
ζnP,ζ =

1

|P |∇ϕ(x)dx .

Note that the piecewise function∇(m)ϕ :Ω×(0,T ) →Rd defined by∇(m)ϕ(x , t ) = (∇ϕ)n
P

for (x , t) ∈∈ P × (tn , tn+1) converges uniformly to ∇ϕ in L∞(Ω× (0,T ))d . Integrating
(1.88) over x ∈ P , ∫

P
B n

P (x , t )d x = |P |
∫

P
f (U (m)(x , t )) ·∇(m)ϕ(x , t ) d x ,

Since An
P = 1

δt (m)|P |
(∫ tn+1

tn

∫
P

B n
P (x , t )d xd t +

∫ tn+1

tn

∫
P

Rn
P (x , t )d xd t

)
, we get

X (m)
2 =

Nm−1∑
n=0

∑
P∈P (m)

(∫ tn+1

tn

∫
P

B n
P (x , t )d xd t +

∫ tn+1

tn

1

|P |
∫

P
Rn

P (x , t )d xd t
)

=−
∫ T

0

∫
Ω

f (U (m)(x , t ))∇(m)ϕ(x , t ) d xd t +
Nm−1∑

n=0

∑
P∈P (m)

∫ tn+1

tn

1

|P |
∫

P
Rn

P (x , t )d xd t .

Owing to the boundedness and convergence assumptions on U (m) and to the uniform
convergence of ∇(m)ϕ to ∇ϕ, the first term tends to

−
∫ T

0

∫
Ω

f (U (x , t ))∇ϕ(x , t ) d xd t as m →+∞.

Since |ϕn
ζ
−ϕn

P | ≤Cϕdiam(P ), with Cϕ depending only on ϕ, the second term tends to
0 thanks to the assumption (1.82). Therefore

lim
m→+∞X (m)

2 →−
∫ T

0

∫
Ω

f (U (x , t )) ·∇ϕ(x , t ) d xd t . (1.89)
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1.B Former lemmas

1.B.1 A result on a finite volume convection operator
We begin with a property of the convection operator C : ρ 7→ ∂t (ρ)+div(ρu); at

the continuous level, this property may be formally obtained as follows (see Herbin,
Latché, and Nguyen 2018 for the detailed derivation). Letψ be a regular function from
(0,+∞) to R; then:

ψ′(ρ) C (ρ) = ∂t
(
ψ(ρ)

)+div
(
ψ(ρ)u

)+ (
ρψ′(ρ)−ψ(ρ)

)
divu. (1.90)

This computation is of course completely formal and only valid for regular functions ρ
and u. The following lemma states a discrete analogue to (1.90), and its proof follows
the formal computation which we just described.

Lemma 1.11. [On the discrete convection operator, Herbin, Latché, and Nguyen 2013,
Lemma A1] Let P be a polygonal (resp. polyhedral) bounded set of R2 (resp. R3), and
let E (P ) be the set of its edges (resp. faces). Let ψ be a twice continuously differentiable
function defined over (0,+∞). Let ρ∗

P > 0, ρP > 0, δt > 0; consider three families
(ρ∗

η)η∈E (P ) ⊂R+ \ {0}, (V ∗
η )η∈E (P ) ⊂R and (F∗

η )η∈E (P ) ⊂R such that

∀η ∈ E (P ), F∗
η = ρ∗

η V ∗
η .

Let RP,δt be defined by:

RP,δt =
[ |P |
δt

(ρP −ρ∗
P )+ ∑

η∈E (P )
F∗
η

]
ψ′(ρP )

−
[ |P |
δt

[ψ(ρP )−ψ(ρ∗
P )]+ ∑

η∈E (P )
ψ(ρ∗

η)V ∗
η + [ρ∗

Pψ
′(ρ∗

P )−ψ(ρ∗
P )]

∑
η∈E (P )

V ∗
η

]
.

Then this quantity may be expressed as follows:

RP,δt =
1

2

|P |
δt

(ρP −ρ∗
P )2ψ′′(ρ(1)

P )− 1

2

∑
η∈E (P )

V ∗
η (ρ∗

P −ρ∗
η)2ψ′′(ρ∗

η)

+ ∑
η∈E (P )

V ∗
η ρ

∗
η (ρP −ρ∗

P )ψ′′(ρ(2)
P ),

where ρ(1)
P , ρ(2)

P ∈ �ρP ,ρ∗
P � and ∀η ∈ E (P ), ρ∗

η ∈ �ρ∗
P ,ρ∗

η�. We recall that, for a, b ∈R, we
denote by �a,b� the interval �a,b� = {θa + (1−θ)b, θ ∈ [0,1]}.
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1.B.2 A result on the space translates
Lemma 1.12 (Convergence of the space translates Gallouët, Herbin, and Latché 2019,
Lemma 4.2). For a given mesh M , let

θM = max
K∈M

max
σ∈EK

|Dσ|
|K | .

Let θ > 0 and (M (m))m∈N be a sequence of meshes such that θM (m) ≤ θ for all m ∈N and
limm→+∞ hM (m) = 0. We suppose that the number of faces of a cell K ∈M (m) is bounded
by NE , for any m ∈N. Let ψ ∈ L1(Ω), let 〈ψ〉K denote the mean value of ψ on a cell K .
Then,

lim
m→+∞

∑
σ∈Eint
σ=K |L

|Dσ| |〈ψ〉K −〈ψ〉L| = 0. (1.91)
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2 Stabilized staggered schemes for the 2D shallow water equations with Coriolis
source term on rectangular grid. –

Abstract. We propose herein a class of staggered schemes designed for the shallow
water equations with Coriolis source term based on a rectangular grid. A semi-implicit
time discretization MAC scheme is first presented using an upwind scheme for the
convection terms of the continuity and momentum equations. Then an extension of
this scheme to a staggered scheme working on the Rannacher-Turek finite elements
is thus proposed. This one enjoys some important numerical features, the positivity
of the water height is ensured and the (linear) geostrophic equilibrium state is pre-
served as well as the "lake at rest" steady state. To improve the accuracy and reduce
numerical diffusion produced by both upwind schemes, we follow a stabilization pro-
cedure consisting in introducing two consistent correction terms with the geostrophic
equilibrium state, one for the mass flux and the other one for the discrete pressure
gradient. This process is performed and analyzed for a staggered scheme based on
the Rannacher-Turek elements for which the numerical mass flux is approximated
by a sort of weighted average. The obtained stabilized non-linear and linear schemes
satisfy a dissipation of the semi-discrete mechanical energy associated to them. Fur-
thermore the corresponding fully discrete scheme for the non-linear equations is
positivity-preserving under a local CFL like restriction and the geostrophic equilib-
rium state is perfectly preserved. Numerical simulations are presented to assess the
stability and accuracy of the schemes when compared to a Godunov type scheme for
some benchmark tests.

Keywords Shallow water equations, MAC discretization, Rannacher-Turek finite
elements, Coriolis force, stabilization method.
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2.1 Introduction
In this chapter, we build some numerical schemes for the shallow water equations

with Coriolis (SWC) source term based principally on a staggered spatial discretization.
The main objective we focus herein is to construct semi-discrete staggered schemes
according to the space discretization that are stable with respect to a dissipation of
the semi-discrete mechanical energy. Furthermore the corresponding fully discrete
schemes for the non-linear SWC equations are expected to be robust with respect to
the positivity-preserving of the water height. Last but not least the linearized schemes
are expected also to be linearly well-balanced with respect to the preservation of
the geostrophic equilibrium steady state which is the well known steady state of the
linearized equations of SWC (see Audusse, Do, Omnes, et al. 2018).

Investigations of the SWC are realized on several times and recently advances are
available in the literature essentially in the finite volume methods, using either a
collocated (see Audusse, Klein, and Owinoh 2009, Audusse, Dellacherie, Do, et al.
2017, Audusse, Do, Omnes, et al. 2018, Beljadid, Mohammadian, and Qiblawey 2013,
Bouchut, Lesommer, and Zeitlin 2014, Mousseau, Knoll, and Reisner 2002) or a stag-
gered (see also Bonaventura and Ringler 2005, Ringler, Thuburn, Klemp, et al. 2010,
Thuburn, Ringler, Skamarock, et al. 2009) discretization of principally unknowns,
water height and the velocity field. Regarding the staggered discretization, the for-
mally MAC approach is not straightforward to adopt and supplementary techniques
are needed; for instance in the work of Gunawan 2015 a splitting-like technique is
proposed. The problem is lying on the Coriolis term since its involves an exchange
between the components of the velocity. To tackle this overcome a suitable reconstruc-
tion of the Coriolis force is performed which is consistent with the continuous source
term. However with this manner the dissipation of the semi-discrete mechanical
energy of the resulting scheme is probably lost whether for the non-linear or linear
cases. An other issue to handle the constraints underlined above consists to use the
Rannacher-Turek (RT) finite elements instead of the MAC discretization. Indeed for
the RT finite elements both components of the velocity fields are evaluated on the
same diamond cell of the mesh. Thus the main differences of both strategies are
observed in the discretization of the momentum equations since the components
of the velocity are computed in two different dual cells for the MAC grid. Numerical
analysis shows that the RT semi-discrete (non-linear and linear) schemes ensure a
dissipation of the semi-discrete mechanical energy. However the RT finite elements
lead to some complications since five discrete equations are implemented, one for
the discrete mass and four for the momentum, instead of three equations in the MAC
setting.

In addition, the time discretization of the Coriolis force should be taken carefully
in order to deal with the preservation of the geostrophic equilibrium state which is
important for physical reasons and consists of a building block of the methods we
are going to study in the sequel. Among the works of Audusse, Do, Omnes, et al. 2018
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and the thesis of Gunawan 2015, they propose a θ-scheme method to discretize the
Coriolis term since they established that an explicit time stepping is not stable. Here
we through the road suggested by Gunawan 2015 consisting in a reformulation of the
θ-scheme method. In fact, the interesting feature is the following: if a semi-discrete
scheme is well-balanced with respect to the preservation of the equilibrium state then
the θ-scheme we consider here allows to preserve this property at the fully discrete
level for all θ being in [0,1].

Omitting the source term, some numerical schemes resolving the SW equations
ensure the energy dissipation and preserve obviously the lake at rest steady state. We
refer to the recently work of Couderc, Duran, and Vila 2017, based on collocated un-
structured meshes extended also in a staggered setting in Duran and Vila 2019; Duran,
Vila, and Baraille 2017. We refer also to the paper of Parisot and Vila 2016 based on a
regularized model where the advection velocity is modified with a pressure gradient
in both mass and momentum equations. Recently in Berthon, Duran, Foucher, et al.
2019, an artificial numerical viscosity technique is mixed with the formally hydro-
static reconstruction method (see Audusse, Bouchut, Bristeau, et al. 2004) to get a
fully discrete mechanical energy inequality. In all these works, the authors follow a
stabilization procedure in order to deal with a dissipation of the discrete mechanical
energy. We adopt the technique developed in Couderc, Duran, and Vila 2017; Duran,
Vila, and Baraille 2017 using the correction terms introduced in Audusse, Do, Omnes,
et al. 2018 for the mass flux and the discrete pressure gradient. In fact the way in
which the mass flux correction is introduced allows to stabilize simultaneously the
momentum flux since this latter is expressed in terms of the mass flux and the Coriolis
force which is proportionally to the perpendicular of the mass flux. Such as corrections
are precisely consistent with the geostrophic equilibrium state such that they vanish
when we reach this equilibrium state in contrast to standard corrections expressed
in terms of the gradient of the water height. The resulting schemes are depending
only on two stabilization parameters which are chosen on the basis of existing results
and/or numerical experiments, either as numerically or theoretically way by means of
linear stability analysis. The linear stability study is left for future works for the sake
of simplicity. Furthermore, the positivity-preserving stability is not easily achieved
since the principal numerical mass flux is a sort of weighted average which yields
a centered flux for an uniform rectangular grid. We show that the aid of additional
regularization term in the mass flux allows to obtain a local CFL-like condition to
maintain the positivity.

We first address the shallow water equations with Coriolis force posed on an open
bounded domainΩ of R2 and for T > 0:

∂t h +div(hu) = 0 in Ω× (0,T ), (2.1a)

∂t (hu)+div(hu ⊗u)+ g h∇(h + z) =−w h u⊥ in Ω× (0,T ), (2.1b)

where t stands for the time, g is the standard gravity constant and z the topography, h
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the water height, u the horizontal velocity, for u = (u, v)T , the perpendicular velocity
is defined as u⊥ = (−v,u)T and w the (constant) angular speed. In what follows, we
consider a flat bottom ı.e. z = 0.
A main property of this system is that for any regular solution (h,u) of (2.1) where h is
non-negative, must satisfy the following balance of the mechanical energy:

∂t E +div((g h + 1

2
|u|2)h u) = 0, with E = 1

2
g h2 + 1

2
h|u|2. (2.2)

Furthermore, the shallow water equations (2.1) admit some steady states, solution of
the following equations:{

div(hu) = 0,

div(hu ⊗u)+ g h∇(h + z) =−ωh u⊥.
(2.3)

In fact the "lake at rest" state is a particular steady state characterized by u = 0 and
h = h0. There exists other stationary solutions of (2.3) for instance in Audusse, Do,
Omnes, et al. 2018; Mousseau, Knoll, and Reisner 2002 stationary vortex solutions are
proposed.
Linearizing the system (2.1) around the state h0 and u0 = 0, leads to the following
linear equations:

∂t h +h0div(u) = 0 in Ω× (0,T ), (2.4a)

∂t u + g∇h =−ωu⊥ in Ω× (0,T ). (2.4b)

The stationary solutions of these linear equations are characterized by:{
div(u) = 0

g∇h +ωu⊥ = 0.

Note that the condition g∇h +ωu⊥ = 0 implies automatically the divergence free
condition div(u) = 0, then the above relations boil down to the following geostrophic
equilibrium steady state:

g∇h +ωu⊥ = 0. (2.5)

The lake at rest state is a particular case of the geostrophic equilibrium state (2.5).
Furthermore the linear SWC equations satisfy the following mechanical energy bal-
ance equation:

∂t E +div(g h u) = 0, with E = 1

2

g

h0
h2 + 1

2
|u|2. (2.6)

The remainder of this chapter is composed of three parts as follows: In Section
2.2, we propose and analyze two upwind schemes for the non-linear SWC equations
based on a staggered spatial discretizations and thus deduce linear corresponding
schemes for linear SWC equations. Then in Section 2.3 stabilization analysis is taken
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for the non-linear schemes and thus the linear ones based on the RT finite elements.
Finally numerical experiments are presented in Section 5.5 to compare these different
schemes against classical Godunov type schemes.

2.2 Staggered schemes for the non-linear and linear
equations

Here we propose two segregated fully discrete schemes which involve only explicit
time stepping for the homogeneous system of (2.1) and work on a staggered discretiza-
tion. We present first a MAC scheme and exclusively for this latter a reconstruction of
the rotating velocity is performed to cope with the Coriolis force. A second staggered
scheme based on the Rannacher-Turek finite elements is then proposed.

2.2.1 Mesh and notations
In order to define the scheme, we have to discretize the space domainΩ and intro-

duce some notations. A discretization (M ,E ) ofΩwith a staggered rectangular grid
with respect to the MAC grid or the Rannacher-Turek (RT) finite elements is defined
as follows:

– A primal grid M which consists in a conforming structured partition of Ω in
rectangles. A generic cell of this grid is denoted by K of volume |K | and its mass
center is denoted by xK .

K L

M N

σ

τ
nK ,σ

e(1)

e(2)

Figure 2.1 – Notations for control volume of the primal mesh, (e(1),e(2)) is the canoni-
cal basis of R2, nK ,σ is the unit vector to σ outward K .

– The set of all edges of the mesh E , with E = Eint ∪Eext, where Eint (resp. Eext) are
the edges of E that lie in the interior (resp. on the boundary) of the domain. We
distinguish also by E (i ) the set of edges perpendicular to the unit vector e(i ). For
σ ∈ Eint, we write σ= K |L if σ= ∂K ∩∂L. A dual cell Dσ associated to an edge
σ ∈ E is defined as follows:

- MAC grid – If σ= K |L ∈ E (i )
int, i = 1,2, then Dσ is the union of the half-part

of K and L denoted by DK ,σ and DL,σ respectively adjacent to σ (see Fig-
ure 2.2 on the left) in such a way that |Dσ| = |DK ,σ|+ |DL,σ|, otherwise if
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σ ∈ Eext is adjacent to the cell K , then Dσ = DK ,σ. The set of the dual edge
ε of Dσ associated to σ ∈ E (i ) is denoted by Ẽ (i )(Dσ);

- RT finite elements – Ifσ= K |L ∈ Eint, then Dσ is the union of two diamond
cells denoted also by DK ,σ and DL,σ adjacent to σ (see Figure 2.2 on the
right) with |DK ,σ| = 1

4 |K | (resp |DL,σ| = 1
4 |L|) such that |Dσ| = |DK ,σ|+|DL,σ|.

Otherwise if σ ∈ Eext then Dσ = DK ,σ. The set of the dual edge ε of Dσ

associated to σ ∈ E is denoted by Ẽ (Dσ).

DσDK ,σ DL,σ
ε

nσ,ε
K L DσDK ,σ DL,σ

ε nσ,ε

K L

Figure 2.2 – Notations for control volumes of the dual mesh - left: MAC dual mesh,
right: RT dual mesh associated to a vertical internal edge, nσ,ε is the unit
vector to ε outward Dσ.

For both cases we shall denote by ε = σ|σ′ the dual edged ε separating two dual or
diamond cells Dσ and Dσ′ .

The water height h is associated to the mesh M and its discrete equivalent hK is
defined by:

∀ K ∈M , hK = 1

|K |
∫

K
h dx .

MAC grid – The components of the velocity (u1,u2) are evaluated separately on a
dual cell Dσ as follows:

∀ σ ∈ E (i )
int, ui ,σ = 1

|Dσ|
∫

Dσ

ui dx , i = 1,2.

RT finite elements – The velocity field is defined on a diamond cell by:

∀ σ ∈ Eint, uσ = (u1,σ,u2,σ) with ui ,σ = 1

|Dσ|
∫

Dσ

ui dx , i = 1,2.

We are now ready to define the schemes starting by the non-linear MAC scheme.

2.2.2 Semi-implicit MAC schemes

On the basis of the discussion mentioned in the Introduction regarding the approx-
imation of the Coriolis force, a carefully discretization is needed to cope with the
exchange of the velocity components. In this context, for the discrete momentum
equation that is built here-below, we perform a reconstruction of the Coriolis force
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which we only require to be consistent with the continuous term u⊥. Then we propose
a semi-implicit time discretization for the source term involving only a progressive
time stepping.

Nonlinear semi-implicit MAC scheme – The fully discrete scheme for the SWC
equations (2.1) reads:

1

δt
(hn+1

K −hn
K )+divK (hn un) = 0, ∀ K ∈M , (2.7a)

1

δt
(hn+1

Dσ
un+1

1,σ −hn
Dσ

un
1,σ)+divDσ(hnun un

1 )+ g hn+1
σ,c (ð1hn+1)σ

=ω hn+1
Dσ

(u∗
2,σ)n , ∀ σ ∈ E (1)

i nt , (2.7b)

1

δt
(hn+1

Dτ
un+1

2,τ −hn
Dτ

un
2,τ)+divDτ(hnun un

2 )+ g hn+1
τ,c (ð2hn+1)τ

=−ω hn+1
Dτ

(u∗
1,τ)n+1, ∀τ ∈ E (2)

i nt , (2.7c)

where δt is the constant time step and where the definitions of the discrete terms and
operators involving in this scheme are:

divK (hnun) = 1

|K |
∑

σ∈E (K )
|σ|F n

σ ·nK ,σ, with F n
σ = hn

σ un
i ,σe(i ), for σ ∈ E (i )

i nt ,

hn
Dσ

= 1

|Dσ|
(|DK ,σ| hn

K +|DL,σ| hn
L ), hn

σ,c =
hn

K +hn
L

2
, for σ= K |L ∈ E (i )

i nt ,

(ði hn)σ = |σ|
|Dσ|

(hn
L −hn

K )nK ,σ ·e(i ), for σ= K |L ∈ E (i )
i nt ,

divDσ(hnun un
i ) = 1

|Dσ|
∑

σ∈Ẽ (i )(Dσ)

|ε|un
i ,ε F n

ε ·nσ,ε, for σ ∈ E (i )
i nt .

The discrete terms hn
σ and un

i ,ε are approximated by the upwind scheme in terms of
the principal unknowns (hn

K )K∈M and (un
i ,σ)

σ∈E (i )
int

respectively. The dual fluxes F n
ε are

expressed in terms of the mass fluxes F n
σ as follows:

∀ ε=σ|σ′ : |ε|F n
ε =

{
1
2 |σ|F n

σ+ 1
2 |σ′|F n

σ′ , first case
1
2 |τ1|F n

τ1
+ 1

2 |τ2|F n
τ2

, second case

It remains to define the terms u∗
1,τ and u∗

2,σ appearing in the equations (2.7b) and
(2.7c). For the reasons outlined in the introduction these terms are defined in such a
way to be consistent with their continuous counterpart. For this purpose we perform
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Dσ

Dσ′ετ1 τ2

nσ,ε

Dσ Dσ′
ε

nσ,ε

Figure 2.3 – Definitions of the dual fluxes: on the left-first case and on the right- second
case

the following reconstruction:

∀i , j ∈ {1,2}, i 6= j : u∗
i ,σ = 1

2
(u∗

i ,K +u∗
i ,L), for σ= K |L ∈ E

( j )
int , (2.8)

with u∗
i ,K = 1

2

∑
τ∈E (i )(K )

ui ,τ, for K ∈M .

By construction this definition of u∗
i ,σ is consistent with ui as expected which closes

the definition of the MAC scheme (2.7).

Now, we recall briefly some discrete stability properties satisfied by this non-linear
MAC scheme. Among them we have the robustness behavior with respect to the
preservation of the water height positivity (see Proposition 2.1). More precisely we
have the following result: if hn

K > 0 for all K ∈ M then hn+1
K > 0 under the following

time step condition: ( ∑
σ∈E (K )

|σ| |un
σ ·nK ,σ|

)
δt ≤ |K |

Furthermore this scheme holds the preservation (we refer also to the Proposition 2.1
below) of the "lake at rest state" which is characterized as follows:

if

{
un

i ,σ = 0, ∀σ ∈ E (i ), i = 1,2

hn
K =C , ∀K ∈M , with C > 0

then

{
un+1

i ,σ = 0, ∀σ ∈ E (i ), i = 1,2

hn+1
K =C , ∀K ∈M

More important, a discrete mechanical energy may be derived from this nonlinear
MAC scheme, since following Herbin, Latché, Nasseri, et al. 2019 we obtain the follow-
ing discrete local energy balance:

|K |
δt

[
(Ek )n+1

K + (Ep )n+1
K − (Ek )n

K − (Ep )n
K

]+ ∑
σ∈E (K )

[
Gn

K ,σ+
1

2
|σ| g hn

σ F n
σ ·nK ,σ

]
+ ∑
σ∈E (K ), σ=K |L

1

2
|σ| ((Ep )n

K + (Ep )n
L ) un

σ ·nK ,σ =−(Re )n+1
K , (2.9)
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with

(Ep )n
K = 1

2
g (hn

K )2,

(Ek )n
K = 1

4 |K |
2∑

i=1

∑
σ∈E (i )(K )

|Dσ| hn
Dσ

(un
i ,σ)2,

Gn
K ,σ = 1

4

2∑
i=1

∑
σ∈E (i )(K )

∑
ε∈Ẽ (i )(Dσ)

|ε| (un
i ,ε)

2 F n
ε ·nσ,ε;

and where the main residual (Re )n+1
K is such that (Re )n+1

K ≥ (R1
e )n+1

K + (R2
e )n+1

K + (R3
e )n+1

K
with

(R1
e )n+1

K = g
∑

σ∈E (K )
|σ| (hn+1

K −hn
K ) hn

σ un
σ ·nK ,σ

(R2
e )n+1

K = ∑
σ∈E (K ), σ=K |L

1

2
|σ|

[
((Ep )n+1

K − (Ep )n+1
L ) un+1

σ − ((Ep )n
K − (Ep )n

L ) un
σ

]
·nK ,σ,

(R3
e )n+1

K = ω

2

[ ∑
σ∈E (1)(K )

|Dσ|hn+1
Dσ

(u∗
2,σ)nun+1

1,σ − ∑
τ∈E (2)(K )

|Dτ|hn+1
Dτ

(u∗
1,τ)nun+1

2,τ

]
.

Remark that the main residual of this inequality may be not positive and even less
does not disappear by global summation over K ∈M . However we emphasize that
owing a consistency analysis we can show that this present scheme satisfies a weak
energy inequality and we refer to the chapter 1 for more explanations.
Regarding the semi-discrete energy one has;

|K |((Ek )K + (Ep )K
)+ ∑

σ∈E (K )

[
GK ,σ+ 1

2
|σ| g hσ Fσ ·nK ,σ

]
+ ∑
σ∈E (K ), σ=K |L

1

2
|σ| ((Ep )K + (Ep )L) uσ ·nK ,σ =−(Re )K ,

with

(Re )K ≥ ω

2

[ ∑
σ∈E (1)(K )

|Dσ|hDσ u∗
2,σu1,σ−

∑
τ∈E (2)(K )

|Dτ|hDτ u∗
1,τu2,τ

]
.

Then summing the left and right hand sides of this inequality over K ∈ M , the flux
terms vanish and we get∑
K∈M

|K |((Ek )K+(Ep )K
)≤−ω

2

∑
K∈M

[ ∑
τ∈E (2)(K )

|Dτ|hDτ u∗
1,τu2,τ−

∑
σ∈E (1)(K )

|Dσ|hDσ u∗
2,σu1,σ

]
.

Here again, we can unfortunately make the same observation as above since the right
hand side of this inequality may be not signed positively. In fact this non-dissipation
of the semi-discrete energy is caused by the reconstructions u∗

2,σ and u∗
1,τ.
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Now we turn out to the linear equations (2.4) for which a linear semi-implicit
MAC scheme is obtained straightforwardly following a linearization of the non-linear
scheme (2.7) around the state (h0,u0) with u0 = 0.

Linear semi-implicit MAC scheme – The linear scheme reads:

1

δt
(hn+1

K −hn
K )+h0divK (un) = 0, ∀ K ∈M , (2.10a)

1

δt
(un+1

1,σ −un
1,σ)+ g (ð1hn+1)σ =ω (u∗

2,σ)n , for σ= K |L ∈ E (1)
i nt , (2.10b)

1

δt
(un+1

2,τ −un
2,τ)+ g (ð2hn+1)τ =−ω (u∗

1,τ)n+1, for τ= K |M ∈ E (2)
i nt , (2.10c)

with

divK (un) = 1

|K |
[ ∑
σ∈E (1)(K )

|σ|u1,σ e(1) ·nK ,σ+
∑

τ∈E (2)(K )

|τ|u2,τ e(2) ·nK ,τ

]
,

where the quantities (ð1hn+1)σ, (ð2hn+1)τ, (u∗
2,σ)n and (u∗

1,τ)n+1 are defined as previ-
ously.

In order to establish the well-balanced behavior of this linear scheme with respect
to the preservation of the geostrophic equilibrium state, we introduce the following
discrete counterpart of the continuous equilibrium state (2.5):

∀ 0 ≤ n ≤ N −1 :

∣∣∣∣∣∣∣∣∣
divK (un) = 0, for K ∈M ,

g (ð1hn)σ−ω (u∗
2,σ)n = 0, for σ= K |L ∈ E (1)

i nt ,

g (ð2hn)τ+ω (u∗
1,τ)n = 0, for τ= K |M ∈ E (2)

i nt

(2.11)

For now up, it is straightforward to see that all solution (hn ,un
1 ,un

2 ) of the linear scheme
(2.10) satisfying the discrete relations (2.11) yields the following steady solution:

∀ 0 ≤ n ≤ N −1 :

∣∣∣∣∣∣∣∣
hn+1

K = hn
K , ∀K ∈M ,

un+1
1,σ = un

1,σ, ∀σ ∈ E (1)
i nt ,

un+1
2,τ = un

2,τ, ∀τ ∈ E (2)
i nt

However the last two relations of (2.11) do not imply the first one of divergence free,
which is in total disagreement with the continuous setting. Indeed one can show that
if (hn ,un

1 ,un
2 ) satisfies both last equations of (2.10) then we have

divK (un)+divL(un)+divM (un)+divN (un) = 0,

which does not imply the divergence free condition and where N is a neighboring cell
of L and M (see Figure 2.1).
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In what follows, the attempt is to discretize the velocity equations on an associated
diamond cell of the RT elements instead of the MAC grid. In particular for the upwind
RT scheme we are designing follows, we no longer need a reconstruction for the
perpendicular velocity u⊥. This quantity is approximated by a θ-scheme type method
as suggested in Gunawan 2015.

2.2.3 Semi-implicit RT schemes
We begin by describing the non-linear scheme for the equations (2.1) and then the

corresponding linearized version.

Nonlinear semi-implicit RT scheme – The semi-implicit RT scheme is written in
vector form as follows:

1

δt
(hn+1

K −hn
K )+divK (hn un) = 0, ∀ K ∈M , (2.12a)

1

δt
(hn+1

Dσ
un+1
σ −hn

Dσ
un
σ)+divDσ(hnun un)+ g hn+1

σ,c (∇hn+1)σ

=−ω (hu⊥)n,θ
Dσ

, ∀ σ ∈ Ei nt , (2.12b)

where

divK (hu) = 1

|K |
∑

σ∈E (K )
|σ|F n

σ ·nK ,σ, with F n
σ = hn

σ un
σ,

(∇h)σ = |σ|
|Dσ|

(hL −hK )nK ,σ, for σ= K |L ∈ Eint,

divDσ(hu u) = 1

|Dσ|
∑

ε∈Ẽ (Dσ)

|ε|uε F ε ·nσ,ε, for σ ∈ Eint.

The terms hσ,c , hDσ , hσ and uε are approximated the same way as in the MAC scheme.
While the quantities F ε ·nσ,ε are defined as a linear combination of Fσ as follows:

nK ,σl nL,σr
K Dσ σσl σr

τ1

τ2 τ3

τ4

L

ε1

ε2

ε4

ε3 nσ,ε3

Figure 2.4 – Definition of the momentum flux F ε outward the dual cell Dσ.
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∀ε ∈ Ẽ (Dσ) such that ε⊂ K , we have

|ε| F ε ·nσ,ε =λσ |σ|Fσ ·nK ,σ+λσl |σl | Fσl ·nK ,σl +λτ1 |τ1| F τ1 ·nK ,τ1+λτ2 |τ2| F τ2 ·nK ,τ2 ,
(2.13)

where the coefficients λσ are now defined. Using the notations introducing in Figure
2.13, we have Ẽ (Dσ) = {ε1,ε2,ε3,ε4} and thus∑

ε∈Ẽ (Dσ)

|ε| F ε ·nσ,ε = |ε1| F ε1 ·nσ,ε1 +|ε2| F ε2 ·nσ,ε2 +|ε3| F ε3 ·nσ,ε3 +|ε4| F ε4 ·nσ,ε4 .

Following Ansanay-Alex, Babik, Latché, et al. 2011, the fluxes F ε are defined as a linear
combination of Fσ by:

|ε1| F ε1 ·nσ,ε1 =
1

8

(−3 |σ|Fσ ·nK ,σ+|σl | Fσl ·nK ,σl +3 |τ1| F τ1 ·nK ,τ1 −|τ2| F τ2 ·nK ,τ2

)
,

|ε2| F ε2 ·nσ,ε2 =
1

8

(−3 |σ|Fσ ·nK ,σ+|σl | Fσl ·nK ,σl −|τ1| F τ1 ·nK ,τ1 +3 |τ2| F τ2 ·nK ,τ2

)
,

|ε3| F ε3 ·nσ,ε3 =
1

8

(−3 |σ|Fσ ·nL,σ+|σr | Fσr ·nL,σr +3 |τ3| F τ3 ·nL,τ3 −|τ4| F τ4 ·nL,τ4

)
,

|ε4| F ε4 ·nσ,ε4 =
1

8

(−3 |σ|Fσ ·nL,σ+|σr | Fσr ·nL,σr −|τ3| F τ3 ·nL,τ3 +3 |τ4| F τ4 ·nL,τ4

)
.

Then the rotation term hu⊥ is approximated by (hu)n,θ
Dσ

which is computed by:

(hu)n,θ
Dσ

= (
hn

Dσ
un
σ+θ(hn+1

Dσ
un+1
σ −hn

Dσ
un
σ)

)⊥, ∀ σ ∈ Ei nt , (2.14)

where θ = (θ1,θ2) with θ1,θ2 ∈ [0,1] and

(
hn

Dσ
un
σ+θ(hn+1

Dσ
un+1
σ −hn

Dσ
un
σ)

)⊥ =

−hn
Dσ

un
2,σ−θ2(hn+1

Dσ
un+1

2,σ −hn
Dσ

un
2,σ)

hn
Dσ

un
1,σ+θ1(hn+1

Dσ
un+1

1,σ −hn
Dσ

un
1,σ)

 .

In fact, we note that the value θ = (0,0), corresponds to an explicit time integration of
the Coriolis term while θ = (1,1) involves a full implicit method. By a simple algebraic
computation, the components of the velocity un+1

1,σ and un+1
2,σ are explicitly solved by:

(1+δt 2ω2 θ1θ2)hn+1
Dσ

un+1
1,σ = (1−δt 2ω2(1−θ1)θ2)hn

Dσ
un

1,σ+δtω hn
Dσ

un
2,σ

−δt
(
divDσ(hnun un

1 )+δtωθ2 divDσ(hnun un
2 )

)
−δt g hn+1

σ,c

(
(ð1hn+1)σ+δtωθ2 (ð2hn+1)σ

)
;
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and

(1+δt 2ω2 θ1θ2)hn+1
Dσ

un+1
2,σ = (1−δt 2ω2(1−θ2)θ1)hn

Dσ
un

2,σ−δtω hn
Dσ

un
1,σ

−δt
(
divDσ(hnun un

2 )−δtωθ1 divDσ(hnun un
1 )

)
−δt g hn+1

σ,c

(
(ð2hn+1)σ−δtωθ1 (ð1hn+1)σ

)
.

Remark 2.1. Let us note here that when we consider an uniform rectangular grid,
the discrete terms hσ,c and hDσ are equal, indeed in this particular case |K | remains
constant for all K ∈M .
In addition, in this same configuration the i th component of the discrete pressure
gradient defined in the MAC and RT environments are in fact different since we have

MAC: (ði h)σ = |σ|
|K | (hL −hK )nK ,σ ·e(i ), for σ= K |L ∈ E (i )

int,

RT: (∇h)σ = (
(ð1 h)σ, (ð2 h)σ

)T with (ði h)σ = 2|σ|
|K | (hL −hK )nK ,σ ·e(i ).

Beyond this disagreement, both quantities are perfectly consistent with the pressure
gradient on their associated dual or diamond mesh and are defined in order to satisfy
the following div-grad relationship:

∑
K∈M

|K | divK (h u)+
2∑

i=1

∑
σ∈E (i )

int

|Dσ| ui ,σ (ði h)σ = 0. (2.15)

2.2.3.1 Stability of the RT scheme

We investigate the discrete properties satisfied by the semi-implicit RT scheme
(2.12). The first lemma ensures the preservation of the positivity of the water height
under a CFL like condition and the "lake at rest" steady state.

Proposition 2.1 (Preservation of the positivity and the lake at rest steady state). Let
n ∈ {0, · · · , Nt −1}, let (hn

K , un
σ)K∈M , σ∈E be given such that hn

K ≥ 0, for all K ∈M and let
hn+1

K computed by the scheme (2.12). Then hn+1
K > 0, for all K ∈M under the following

CFL condition,

δt ≤ |K |∑
σ∈E (K )

|σ| |un
σ ·nK ,σ|

. (2.16)

Furthermore if un = 0 and hn =C with C ∈R+, then un+1 = 0 and hn+1 =C .

Proof. By the definition of hn
σ, one has

hn
σun

σ ·nK ,σ = hn
K (un

σ ·nK ,σ)++hn
L (un

σ ·nK ,σ)−, for σ= K |L.
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Thus the discrete mass equation (2.12a) yields:

hn+1
K = hn

K − δt

|K |
∑

σ∈E (K )
|σ| (un

σ ·nK ,σ)+ hn
K + δt

|K |
∑

σ∈E (K )
|σ| (un

σ ·nK ,σ)− hn
L ,

Since |un
σ ·nK ,σ| ≥ (un

σ ·nK ,σ)+ we obtain that

hn+1
K ≥

[
1− δt

|K |
∑

σ∈E (K )
|σ| (un

σ ·nK ,σ)+
]

hn
K ≥

[
1− δt

|K |
∑

σ∈E (K )
|σ| |un

σ ·nK ,σ|
]

hn
K .

Since (by assumption) hn
K > 0, then hn+1

K > 0 provided that the time step δt satisfies
(2.16). Next if un = 0 and hn = C then we get immediately that hn+1 = hn = C and
un+1 = un = 0 which concludes the proof.

Before studying the well balance property, we define the discrete geostrophic equi-
librium state as follows:

∀ σ ∈ Eint, ∀ n ∈ {0, · · · , N −1} : g (∇hn)σ+ω (un
σ)⊥ = 0. (2.17)

Let us note that the relation (2.17) automatically implies the divergence free condition
divK (un) = 0 as in the continuous problem. Indeed it is straightforward to see that
(2.17) leads to:

ω un
σ ·nK ,σ = g (∇hn)⊥σ ·nK ,σ = |σ|

|Dσ|
(hL −hK )n⊥

K ,σ ·nK ,σ = 0, ∀ σ= K |L ∈ Eint.

In addition, in the case of an uniform rectangular grid, the scheme (2.12) holds the
preservation of the discrete geostrophic equilibrium state. This result is proven in the
same way as the Proposition 2.3.

Proposition 2.2 (Preservation of the geostrophic equilibrium state). Let n ∈ {0, · · · , Nt−
1}, let consider (hn+1

K , un+1
σ )K∈M , σ∈E computed from the scheme (2.12) such that hn

K > 0,
for all K ∈M and satisfying

g (∇hn)σ+w (un
σ)⊥ = 0, ∀ σ ∈ Eint.

Assume additionally that the meshing M is uniform that means the space step δM is
kept constant. Then hn+1

K = hn
K , for all K ∈M and un+1

σ = un
σ, for all σ ∈ Eint.

Next we focus on the discrete mechanical energy derived from the current scheme
that results of the sum of the discrete potential and kinetic energies.

Lemma 2.1 (Potential energy balance). Let n ∈ {0, · · · , N −1}. A discrete solution to the
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semi-implicit scheme (2.12) satisfies the following equation:

1

2

1

δt
g

(
(hn+1

K )2 − (hn
K )2)+ 1

|K |
∑

σ∈E (K )
|σ| g hn+1

σ,c F n
σ ·nK ,σ

− 1

|K |
∑

σ∈E (K )

1

2
|Dσ| g (∇hn+1)σ ·F n

σ =−1

2

1

δt
g (hn+1

K −hn
K )2. (2.18)

Sketch of proof. The result is obtained multiplying the discrete water height equa-
tion (2.12a) by g

h0
hn+1

K and using the following identities:

(hn+1
K −hn

K )hn+1
K = 1

2

(
(hn+1

K )2 − (hn
K )2)+ 1

2
(hn+1

K −hn
K )2

and

hn+1
K = hn+1

K +hn+1
L

2
− hn+1

L −hn+1
K

2
.

As a consequence of the careful discretization of the non-linear convection term,
the scheme (2.12) satisfies a discrete kinetic energy balance, as stated in the following
Lemma. The proof of this result is an easy adaptation of Herbin, Latché, and Nguyen
2018, Lemma 3.2.

Lemma 2.2 (Discrete kinetic balance). A solution to the scheme (2.12b) satisfies the
following equality, for σ ∈ Eint and 0 ≤ n ≤ N −1:

1

2δt
(hn+1

Dσ
|un+1

σ |2 −hn
Dσ

|un
σ|2)+ 1

2

∑
ε∈Ẽ (Dσ)

|ε| |un
ε |2 F n

ε ·nσ,ε

+|Dσ| g hn+1
σ,c (∇hn+1)σ ·un+1

σ +|Dσ| ωhn
Dσ

((1−θ)un
σ)⊥ ·un+1

σ =−Rn+1
σ , (2.19)

with

Rn+1
σ = 1

2δt
|Dσ| hn+1

Dσ
(un+1

σ −un
σ)2 + 1

2

∑
ε=σ|σ∈Ẽ

|ε| (F n
ε ·nσ,ε)

− (un
σ′ −un

σ)2

− ∑
ε=σ|σ∈Ẽ

|ε| (F n
ε ·nσ,ε)

− (un
σ′ −un

σ) · (un+1
σ −un

σ).

Furthermore the residual Rn+1
σ is non-negative under the following CFL like condition:

δt ≤
|Dσ| hn+1

Dσ∑
ε∈E (Dσ)

|ε| (F n
ε ·nσ,ε)

− .

Then let denote by E n the discrete mechanical energy, this quantity being globally
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defined by:

E n = ∑
K∈M

|K | 1

2
g (hn

K )2 + ∑
σ∈Eint

|Dσ|1
2

hn+1
Dσ

|un
σ|2. (2.20)

Then gathering the kinetic (2.19) and potential (2.18) energies, we get the following
discrete mechanical energy inequality:

1

δt
(E n+1 −E n) ≤ ∑

K∈M

∑
σ∈E (K )

|Dσ| g

2
(∇hn+1)σ ·F n

σ−
∑

σ∈Eint

|Dσ| g hn+1
σ,c (∇hn+1)σ ·un+1

σ

− ∑
σ∈Eint

|Dσ| ω hn
Dσ

((θ−1)un
σ)⊥ ·un+1

σ . (2.21)

However we are not able to show that the term of the right hand side of this inequality
(2.21) is negative, hence this discrete energy may not be dissipated. This instability is
not occurred when we consider the semi-discrete mechanical energy inequality with
respect to the space discretization, given by:

d

d t
E ≤ R with R = ∑

K∈M

∑
σ∈E (K )

1

2
|Dσ| g (∇h)σ ·Fσ−

∑
σ∈Eint

|Dσ| g hσ,c (∇h)σ ·uσ.

Thanks to the upwind approximation of hσ and the centered interpolation of hσ,c , the
residual R is negative. Indeed, we have that:

R =− ∑
σ=K |L∈Eint

1

2
|σ| g (hL −hK )2

[
(uσ ·nK ,σ)++ (uσ ·nK ,σ)−

]
≤ 0,

since both quantities (uσ ·nK ,σ)+ and (uσ ·nK ,σ)− are non-negative by definition. Thus
the semi-discrete mechanical energy E is decreasing.

Here-below we present the linearized semi-implicit scheme.

2.2.3.2 Linear semi-implicit RT scheme

Following a linearization procedure for the scheme (2.12) around the state (h0,u0 =
0), we get the corresponding linear scheme which reads:

1

δt
(hn+1

K −hn
K )+h0

1

|K |
∑

σ∈E (K )
|σ|un

σ ·nK ,σ = 0, ∀ K ∈M , (2.22a)

1

δt
(un+1

σ −un
σ)+ g (∇hn+1)σ =−ω (un

σ+θ(un+1
σ −un

σ))⊥, ∀ σ ∈ Ei nt (2.22b)

where (
un
σ+θ(un+1

σ −un
σ)

)⊥ =
[−(un

2,σ+θ2(un+1
2,σ −un

2,σ))
un

1,σ+θ1(un+1
1,σ −un

1,σ)

]
(2.23)
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As in the non-linear scheme (2.12), the discrete velocity equation (2.22b) is explicitly
solved as follows:

un+1
1,σ =

(
1−δt 2ω2 (1−θ1)θ2

)
un

1,σ−δt g
(
(ð1hn+1)σ+δtωθ2 (ð2hn+1)σ

)+δtω un
2,σ

1+δt 2ω2 θ1θ2
,

un+1
2,σ =

(
1−δt 2ω2 (1−θ2)θ1

)
un

2,σ−δt g
(
(ð2hn+1)σ−δtωθ1 (ð1hn+1)σ

)−δtω un
1,σ

1+δt 2ω2 θ1θ2
.

where the discrete divergence and gradient operators involved in the scheme (2.22)
are defined in the previous section.

This linear scheme inherits some discrete properties from the non-linear one (2.12)
that are enumerated below.

Preservation of the geostrophic equilibrium state – The discrete solution (hn ,un)
computed from the linear scheme (2.22) preserves the discrete geostrophic equilib-
rium state.

Proposition 2.3 (Preservation of the geostrophic equilibrium state, linear scheme).
Let n ∈ {0, · · · , Nt −1} and let (hn

K , un
σ)K∈M , σ∈E the discrete solution of (2.22) such that

g (∇hn)σ+w (un
σ)⊥ = 0, ∀σ ∈ Eint. Then hn+1

K = hn
K , for all K ∈M and un+1

σ = un
σ, for

all σ ∈ Eint.

Proof. Since the discrete equilibrium state g (∇hn)σ+w (un
σ)⊥ = 0 implies that un

σ ·
nK ,σ = 0, then divK (un) = 0 and thus hn+1

K = hn
K for all K ∈ M . Hence the discrete

velocity equations boils down to:

un+1
1,σ −un

1,σ

δt
=−

δtω θ2(g (ð2hn)σ+ω un
1,σ)

1+δt 2ω2 θ1θ2
−

g (ð1hn)σ−ω un
2,σ

1+δt 2ω2 θ1θ2
,

un+1
2,σ −un

2,σ

δt
=
δtω θ1(g (ð1hn)σ−ω un

2,σ)

1+δt 2ω2 θ1θ2
−

g (ð2hn)σ+ω un
1,σ

1+δt 2ω2 θ1θ2
.

Then the relation g (∇hn)σ+w (un
σ)⊥ = 0 leads to:

un+1
1,σ −un

1,σ

δt
= 0 and

un+1
2,σ −un

2,σ

δt
= 0, ∀ σ ∈ Eint;

which concludes the proof.

Discrete mechanical energy – A discrete mechanical energy inequality may derived
from the linear scheme (2.22)resulting of the addition of the potential and kinetic
energies. This latter one is quickly obtained by taking the scalar product of the discrete
velocity (2.22b) with 1

2 (un+1
σ +un

σ):

1

2

1

δt

(|un+1
σ |2 −|un

σ|2
)+ g

1

2
(∇hn+1)σ · (un+1

σ +un
σ) = ω

2
((2θ−1)un

σ)⊥ ·un+1
σ .
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The discrete potential satisfies:

1

2

1

δt

g

h0

(
(hn+1

K )2 − (hn
K )2)+ 1

|K |
∑

σ∈E (K )
|σ| g hn+1

σ,c un
σ ·nK ,σ

− 1

|K |
∑

σ∈E (K )

1

2
|Dσ| g (∇hn+1)σ ·un

σ =−1

2

1

δt

g

h0
(hn+1

K −hn
K )2.

Then multiplying the potential equation by |K | (resp the kinetic by |Dσ|) and summing
the obtained result over K ∈M (resp σ ∈ Eint), we get

1

δt
(E n+1−E n) ≤ ∑

K∈M

∑
σ∈E (K )

|Dσ| g

2
(∇hn+1)σ·un

σ−
∑

σ∈Eint

1

2
|Dσ| g (∇hn+1)σ·(un+1

σ +un
σ)

− ∑
σ∈Eint

|Dσ| ω
2

((2θ−1)un+1
σ )⊥ ·un

σ,

with

E n = ∑
K∈M

|K | 1

2

g

h0
(hn

K )2 + ∑
σ∈Eint

|Dσ| 1

2
|un

σ|2.

It is legitimate to emphasize that a linear RT scheme based on the Crank-Nicholson
time integration method consists in a good alternative to the linear semi-implicit
scheme 2.22. As shown in the Appendix 2.B, the linear Crank-Nicholson time dis-
cretization scheme holds the preservation of the geostrophic equilibrium as well as
the conservation of the fully discrete mechanical energy. Despite its good properties,
the extension to the non-linear case is much more complex to solve in the sense that
its leads to a non-linear resolution system and even less one probably loses control of
the mechanical energy. For the sake of simplicity, this track is purely discarded and we
will proceed to a stabilization technique to design non-linear and linear schemes in
the following section.

The semi-implicit MAC and RT schemes are known to be more diffusive since the
first order upwind method is used for both the mass and momentum fluxes. In order
to reduce the numerical diffusion produced by the upwind MAC and RT schemes,
we follow a stabilization procedure mimicking the technique developed in Couderc,
Duran, and Vila 2017 and Audusse, Do, Omnes, et al. 2018. The content of the next
section is part of a project of the CEMRACS 19 event around the topic numerical ap-
proximation of the shallow water equations with Coriolis source term. A first paper
of this project is submitted Audusse, Dubos, Duran, et al. 2020 and an other under-
taken work will appear in the future. This work was carried out in conjunction with E.
Auddusse, V. Dubos, A. Duran, N. Gaveau and Y. Penel. For the sake of compactness
only staggered schemes working on the RT finite elements are studied in the sequel
while regarding collocated schemes an analogue technique are under review.
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2.3 Stabilization methods for non-linear and linear
schemes

In this section, we address to a modified version of the original problem (2.1) where
two corrections are introduced following the technique developed in Audusse, Do,
Omnes, et al. 2018; Couderc, Duran, and Vila 2017, as follows:

∂t h +div(h u −Λ) = 0, (2.24a)

∂t (hu)+div((hu −Λ)⊗u)+ g h∇h −∇π=−w (h u −Λ)⊥. (2.24b)

The quantities Λ and π are two artificial corrections of the mass flow and the pressure
gradient respectively that are motivated by the following arguments. Firstly both
quantities are expected to vanish when we reach the geostrophic equilibrium state
where the relation g∇h + w u⊥ = 0 holds. Second point, Λ and π are defined to
dissipate the mechanical energy of the modified equations (2.24).
Multiplying the equations (2.24a) and (2.24b) respectively by g h and u, we get after
some algebraic computations:

∂t E +div
(
(g h + 1

2
|u|2) (hu −Λ)

)+div(h u π) =−
(
Λ · (g ∇h +ωu⊥)+πdiv(u)

)
,

with E = 1
2

g
h0

h2 + 1
2 |u|2. Thus is straightforward to see that if Λ ≈ g∇h +wu⊥ and

π≈ div(u), then

∂t E +div
(
(g h + 1

2
|u|2) (hu −Λ)

)+div(h u π) ≤ 0.

Then the modified linear equations are obtained following a linearization of the system
(2.24) around the state (h0,u0 = 0):

∂t h +h0 div(u −Λ) = 0, (2.25a)

∂t (u)+∇(
g h −π)=−w (u −Λ)⊥, (2.25b)

whereΛ≈ g∇h+w u⊥ andπ≈ div(u). As a consequence of these definitions, the linear
and modified linear equations hold the same steady state solution and furthermore
these quantities yield the following mechanical energy inequality:

∂t (
1

h0
g h2 + 1

2
|u|2)+div(g h(u −Λ))+div(u π) ≤ 0.

The novelty of this approach is observed in the source term where the mass flux
correction is introduced which is crucial to guarantee a dissipation of the semi-discrete
mechanical energy.

In this current section we wish to design semi-discrete schemes with respect to the
space variable for the non-linear system (2.24) which ensure a dissipation of the semi-
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discrete mechanical energy and which preserve the geostrophic equilibrium state.
In this purpose, we propose and analyze semi-discrete and fully discrete schemes,
starting by the semi-discrete schemes and closing the numerical resolution following
a segregated time integration mimicking the semi-implicit RT scheme (2.12).

2.3.1 Semi-discrete staggered schemes and stability analysis
The semi-discrete scheme according to a staggered spatial discretization for the

non-linear equations (2.24) reads:

d

d t
hK + 1

|K |
∑

σ∈E (K )
|σ|Fσ ·nK ,σ = 0, with Fσ = hDσuσ−Λσ, ∀ K ∈M , (2.26a)

d

d t
(hDσuσ)+ 1

|Dσ|
∑

ε∈E (Dσ)
|ε|uε F ε ·nσ,ε+ g hDσ(∇h)σ− (∇π)σ

=−ω(hDσuσ−Λσ)⊥, ∀ σ ∈ Ei nt , (2.26b)

where the quantity Λσ is a numerical diffusion defined on the dual mesh by:

Λσ = γ δt hDσ(g (∇h)σ+ω u⊥
σ ), γ≥ 0;

and hDσ is given by

hDσ =
|DK ,σ|
|Dσ|

hK + |DL,σ|
|Dσ|

hL , ∀ σ= K |L ∈ Eint.

We recall that the semi-discrete gradient ∇(·)σ applied to π (resp. h) is defined by:

(∇π)σ = |σ|
|Dσ|

(πL −πK )nK ,σ, for σ= K |L ∈ Eint,

where πK is also a correction term defined in the primal mesh as:

πK = ν δt g hK
1

|K |
∑

σ∈E (K )
|σ| uσ ·nK ,σ, ν≥ 0.

Finally the discrete velocity uε is upwinding with respect to the flow F ε ·nσ,ε given by:

|ε|F ε ·nσ,ε =
∑

σ∈E (K )
|σ|λσ Fσ ·nK ,σ,

where the coefficients λσ are given in the Table 2.1. The above definitions of hDσ and
F ε ·nσ,ε satisfy the following balance:

d

d t
hDσ +

1

|Dσ|
∑

ε∈E (Dσ)
|ε| F ε ·nσ,ε = 0. (2.27)
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Let notice here that the main part of the mass flux Fσ that means hDσuσ is not usual
but is necessary in order to deal with a dissipation of the semi-discrete mechanical
energy as we are going to tackle below. This kind of approximation is proposed by
Duran and Vila 2019 and yields to a centered mass flux in the case of an uniform
rectangular grid.

Semi-discrete energy balance – The semi-discrete scheme described herebefore
satisfies a semi-discrete energy balance equation which is collected from the semi-
discrete potential and kinetic energies that we handle in Lemmas 2.3, 2.4 below.

A semi-discrete potential energy is derived from the scheme (2.26) as stated in the
following lemma.

Lemma 2.3 (Semi-discrete potential energy balance). A semi-discrete solution of the
scheme (2.26) satisfies the following equation:

d

d t

(1

2
g h2

K

)+ 1

|K |
∑

σ∈E (K )
|σ|g hσ,c hDσuσ ·nK ,σ− 1

|K |
∑

σ∈E (K )
|σ|g hσ,c Λσ ·nK ,σ

− 1

|K |
∑

σ∈E (K )
|Dσ| 1

2
g (∇h)σ ·hDσuσ+ 1

|K |
∑

σ∈E (K )
|Dσ| 1

2
g (∇h)σ ·Λσ = 0. (2.28)

Proof. Multiplying equation (2.26a) by g hk , we get

( d

d t
hK + 1

|K |
∑

σ∈E (K )
|σ|Fσ ·nK ,σ

)
g hK

= d

d t
(

1

2
g h2

K )+ 1

|K |
∑

σ∈E (K )
|σ|g hK hDσuσ ·nK ,σ− 1

|K |
∑

σ∈E (K )
|σ|g hK Λσ ·nK ,σ.

Then using the identity hK = 1
2 (hK +hL)− 1

2 (hL−hK ), we get the result, which concludes
the proof.

Next we derive a semi-discrete kinetic energy balance as follows.

Lemma 2.4 (Semi-discrete kinetic inequality). A solution of the scheme (2.26) satisfies
the following equality, for σ ∈ Eint:

d

d t

(1

2
hDσ |uσ|2

)+ 1

|Dσ|
1

2

∑
ε∈Ẽ (Dσ)

|ε| |uε|2 F ε ·nσ,ε

+ g (∇h)σ · hDσuσ+ω u⊥
σ ·Λσ− ∇(π)σ ·uσ ≤ 0. (2.29)

Proof. Taking the scalar product of the velocity equation (2.26b) with uσ, ∀ σ ∈ Ei nt ,
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we have

d

d t
(hDσuσ) ·uσ+ 1

|Dσ|
∑

ε∈E (Dσ)
|ε|uε ·uσ F ε ·nσ,ε+

(
g hDσ(∇h)σ−(∇π)σ−ωΛ⊥

σ

)
·uσ = 0.

(2.30)

Then on one hand we get d
d t (hDσuσ) ·uσ = d

d t

(1
2 hDσ |uσ|2

)+ 1
2 |uσ|2 d

d t
hDσ . On other

hand, using the identity uε ·uσ = 1
2 |uε|2 + 1

2 |uσ|2 − 1
2 (uσ−uσ)2 we obtain

1

|Dσ|
∑

ε∈E (Dσ)
|ε|uε·uσ F ε·nσ,ε = 1

2

1

|Dσ|
∑

ε∈E (Dσ)
|ε| |uε|2 F ε·nσ,ε+1

2

1

|Dσ|
∑

ε∈E (Dσ)
|ε| |uσ|2 F ε·nσ,ε

− 1

2

1

|Dσ|
∑

ε∈E (Dσ)
|ε| (uε−uσ)2 F ε ·nσ,ε

Next thanks to the semi-discrete balance (2.27), we get

d

d t
(hDσuσ) ·uσ+ 1

|Dσ|
∑

ε∈E (Dσ)
|ε|uε ·uσ F ε ·nσ,ε

= d

d t

(1

2
hDσ |uσ|2

)+ 1

2

1

|Dσ|
∑

ε∈E (Dσ)
|ε| |uε|2 F ε ·nσ,ε

− 1

2

1

|Dσ|
∑

ε∈E (Dσ)
|ε| (uε−uσ)2 F ε ·nσ,ε.

Finally by the upwind approximation of the velocity uσ, the equation (2.30) yields

d

d t

(1

2
hDσ |uσ|2

)+1

2

1

|Dσ|
∑

ε∈E (Dσ)
|ε| |uε|2 F ε·nσ,ε+g hDσuσ·(∇h)σ−(∇π)σ·uσ+ωΛσ·u⊥

σ

=−1

2

1

|Dσ|
∑

ε∈E (Dσ), ε=σ|σ′
|ε| (uσ′ −uσ)2 (F ε ·nσ,ε)

− ≤ 0,

since (F ε ·nσ,ε)− is positive, which finishes the proof.

For now up, we can write the semi-discrete mechanical energy balance which is the
sum of the global potential and kinetic energies.

Lemma 2.5 (Semi-discrete mechanical energy inequality). A solution of (2.26) satisfies
the following inequality:

d

d t
E ≤ 0, with E = ∑

K∈M

|K | 1

2
g h2

K + ∑
σ∈Eint

|Dσ| 1

2
hDσ |uσ|2.

Proof. The semi-discrete energy E holds:

d

d t
E ≤ R1 +R2,
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where the residual terms are:

R1 = − ∑
K∈M

∑
σ∈E (K )

|Dσ| 1

2
g (∇h)σ ·Λσ−

∑
σ∈Eint

|Dσ| ω u⊥
σ ·Λσ

R2 = ∑
σ∈Eint

|Dσ| (∇π)σ · uσ.

Then it remains to show that these residuals are negative. Following Duran and Vila
2019, Lemma 5, one has∑

K∈M

∑
σ∈E (K )

|Dσ| 1

2
g (∇h)σ ·Λσ = ∑

σ∈Eint

|Dσ| g (∇h)σ ·Λσ

Thanks to the definition ofΛσ, the first term R1 rewrites:

R1 =− ∑
σ∈Eint

|Dσ|
[
g (∇h)σ+ω u⊥

σ

] ·Λσ ≤ 0.

The last term R2 gives:

R2 = 1

2

∑
σ=K |L, σ∈Eint

|σ| (∇π)σ ·uσ =−1

2

∑
K∈M

|K | πK divK (u)

= −1

2

∑
K∈M

|K | πK

( 1

|K |
∑

σ∈E (K )
|σ|uσ ·nK ,σ

)
≤ 0,

thanks to the definition of πK and the div-grad duality relationship which concludes
the proof.

Let us focus on the geostrophic equilibrium state that the linear version of the semi-
discrete scheme (2.26) is expected to preserve.

Semi-discrete linear scheme – The linearized semi-discrete scheme of (2.26) reads:

d

d t
hK + 1

|K |
∑

σ∈E (K )
|σ|h0uσ ·nK ,σ− 1

|K |
∑

σ∈E (K )
|σ|Λσ ·nK ,σ = 0, ∀ K ∈M ,

d

d t
uσ+ g (∇h)σ+ω u⊥

σ = (∇π)σ−ωΛ⊥
σ , ∀ σ ∈ Ei nt ,

where the numerical diffusionsΛ and π are given by:

∀ σ ∈ Eint, Λσ = γ δt (g (∇h)σ+ω u⊥
σ ), γ≥ 0,

∀ K ∈M , πK = ν δt g
1

|K |
∑

σ∈E (K )
|σ| uσ ·nK ,σ, ν≥ 0.

This linear scheme preserves exactly the geostrophic equilibrium state as expected
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since when we reach the equilibrium state (where the semi-discrete relationship
g (∇h)σ+ω u⊥

σ = 0, holds) the numerical mass flux and pressure gradient corrections
Λσ and πK vanish as well as the normal velocity uσ ·nK ,σ for all σ ∈ Eint and K ∈M .
Hence we get

d

d t
hK = 0, ∀ K ∈M ,

d

d t
uσ = 0, ∀ σ ∈ Ei nt .

In fact we can show that a semi-discrete mechanical energy derived from this semi-
discrete linear scheme is decreasing following the same manipulations used in the
non-linear case.

Below we complete the numerical resolution of the modified systems (2.24) and
(2.25) by performing a time discretization of the semi-discrete unknowns hK and uσ.

2.3.2 Stabilized staggered schemes
Owing a segregated time integration of the semi-discrete scheme (2.26), we get a

fully discrete scheme for the non-linear equations (2.24) which reads:

1

δt
(hn+1

K −hn
K )+ 1

|K |
∑

σ∈E (K )
|σ|F n

σ ·nK ,σ = 0, ∀ K ∈M , (2.33a)

1

δt
(hn+1

Dσ
un+1
σ −hn

Dσ
un
σ)+ 1

|Dσ|
∑

ε∈E (Dσ)
|ε|un

ε F n
ε ·nσ,ε+ g hn+1

Dσ
(∇hn+1)σ− (∇πn)σ

=−ω (hu⊥)n,θ
Dσ

+ω (Λ⊥)n
σ, ∀ σ ∈ Ei nt , (2.33b)

where the various discrete terms and operators according to the space discretization
are defined in the semi-discrete scheme above and the Coriolis term (hu⊥)n,θ

Dσ
is given

by (2.14).

Let us now assess the robustness and other preservation properties of this scheme.

2.3.2.1 Stability of the scheme

The positivity of the water height hn is guaranteed by means of a suitable CFL
control as stated in the following.

Proposition 2.4 (Preservation of the positivity). Let (hn+1
K , un+1

σ )K∈M , σ∈E a discrete
solution of the scheme (2.33) such that hn

K > 0, for n ∈ {0, · · · , Nt −1} and for all K ∈M .
Then hn+1

K > 0, for all K ∈M under the following CFL condition,

δt

δM

(
|un

σ|+
p
γ

√
ω |un

σ ·nK ,σ|+ g |(∇hn)σ ·nK ,σ|
)
≤ ξ

1+ξ
maxK∈M (hK )

minK∈M (hn
K )

. (2.34)
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where ξ ∈ (0,1].

Following the same arguments developed in the previous section regarding the
semi-implicit RT scheme (2.33), the current scheme preserves the (linear) geostrophic
equilibrium state irrespectively of the meshing at hand whether uniform or not.

Proposition 2.5 (Preservation of the geostrophic equilibrium, non-linear scheme).
Let (hn+1

K , un+1
σ )K∈M , σ∈E , for n ∈ {0, · · · , Nt −1} given by the scheme (2.33) such that

g (∇hn)σ+ω(un
σ)⊥ = 0. Then un+1 = un and hn+1 = hn .

2.3.2.2 Linear stabilized RT scheme

Linearizing the current non-linear stabilized scheme around the state (h0,u0 = 0)
we get the following linear scheme for the equations (2.24):

1

δt
(hn+1

K −hn
K )+ 1

|K |
∑

σ∈E (K )
|σ|h0 un

σ ·nK ,σ− 1

|K |
∑

σ∈E (K )
|σ|h0 Λ

n
σ ·nK ,σ = 0,

1

δt
(un+1

σ −un
σ)+ g (∇hn+1)σ− (∇πn)σ =−ω (

un
σ+θ (un+1

σ −un
σ)

)⊥+ω (Λn
σ)⊥,

with

∀ K ∈M , πn
K = ν δt g

1

|K |
∑

σ∈E (K )
|σ| un

σ ·nK ,σ, ν≥ 0,

∀ σ ∈ Eint, Λn
σ = γ δt

(
g (∇hn)σ+ω (un

σ)⊥
)
, γ≥ 0,

where the quantity
(
un
σ+θ (un+1

σ −un
σ)

)⊥ is given by (2.23).

As in the semi-discrete linear scheme presented above, the geostrophic equilibrium
state is preserved by the present scheme. Indeed if g (∇hn)σ+ω (un

σ)⊥ = 0, ∀σ ∈ Eint,
then

g (∇hn+1)σ+ω (un+1
σ )⊥ = 0, ∀ σ ∈ Eint, ∀ n ∈ {0, · · · , Nt −1}.

Noting also that omitting the correction terms ı.e. ν= γ= 0, the above linear scheme
degenerates to the semi-implicit linear RT scheme (2.22).

However a linear stability analysis should be performed in order to control the stabi-
lization parameters which remains yet to be define. This step is very important and
needs a thorough study that is in fact more complex to tackle. The main difficulty lying
on the staggered arrangement of the unknowns involving five discrete equations. To
get an idea of this, we refer to the papers Couderc, Duran, and Vila 2017; Audusse, Do,
Omnes, et al. 2018 where this type of analysis is made in the framework of collocated
schemes. For the sake of simplicity, the diffusion coefficients γ and ν are chosen on
the basis of numerical experiments for the following numerical investigations.
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2.4 Numerical simulations
Here we present some experiments to validate the numerical theory presented in

the previous sections, starting by highlighting the efficiency of the linear schemes.
Attention is particularly paid on the staggered discretization techniques to show the
good features of the MAC schemes compared to the RT schemes in both linear and
non-linear cases.

2.4.1 Numerical results for the linear schemes
For the sake of clarity, the linear schemes we compare here-below are rewritten in

the standard Cartesian notation (i j ) as follows:

j − 1
2

j + 1
2

j + 1
2

i − 1
2 i + 1

2 i + 3
2

j

j +1

i i +1

F

F

F

F

�

�

�

�

�

�

�

�

�

�

�

�

δx

δy

MAC

∣∣∣∣∣∣∣∣∣∣∣

F: hi , j

�: ui+ 1
2 , j

�: vi , j+ 1
2

RT

∣∣∣∣∣∣∣∣∣∣∣

F: hi , j

�: ui+ 1
2 , j , vi+ 1

2 , j

�: ui , j+ 1
2

, vi , j+ 1
2

Figure 2.5 – Uniform Cartesian grid.

Linear semi-implicit MAC scheme:

1

δt
(hn+1

i , j −hn
i , j )+ h0

δx
(un

i+ 1
2 , j

−un
i− 1

2 , j
)+ h0

δy
(vn

i , j+ 1
2
− vn

i , j− 1
2

) = 0,

1

δt
(un+1

i+ 1
2 , j

−un
i+ 1

2 , j
)+ g

1

δx
(hn+1

i+1, j −hn+1
i , j ) =ω 1

4

(
vn

i , j+ 1
2
+ vn

i+1, j+ 1
2
+ vn

i , j− 1
2
+ vn

i+1, j− 1
2

)
,

1

δt
(vn+1

i , j+ 1
2
− vn

i , j+ 1
2

)+ g
1

δy
(hn+1

i , j+1 −hn+1
i , j ) =−ω 1

4

(
un+1

i+ 1
2 , j

+un+1
i+ 1

2 , j+1
+un+1

i− 1
2 , j

+un+1
i− 1

2 , j+1

)
.

98



2 Stabilized staggered schemes for the 2D shallow water equations with Coriolis
source term on rectangular grid. – 2.4 Numerical simulations

Linear semi-implicit RT scheme (LRS):

1

δt
(hn+1

i , j −hn
i , j )+ h0

δx
(un

i+ 1
2 , j

−un
i− 1

2 , j
)+ h0

δy
(vn

i , j+ 1
2
− vn

i , j− 1
2

) = 0,

1

δt
(un+1

i+ 1
2 , j

−un
i+ 1

2 , j
)+ g

2

δx
(hn+1

i+1, j −hn+1
i , j ) =ω vn

i+ 1
2 , j

+ωθ2(vn+1
i+ 1

2 , j
− vn

i+ 1
2 , j

),

1

δt
(vn+1

i+ 1
2 , j

− vn
i+ 1

2 , j
) =−ω un

i+ 1
2 , j

−ωθ1(un+1
i+ 1

2 , j
−un

i+ 1
2 , j

),

1

δt
(un+1

i , j+ 1
2
−un

i , j+ 1
2

) =ω vn
i , j+ 1

2
+ωθ4(vn+1

i , j+ 1
2
− vn

i , j+ 1
2

),

1

δt
(vn+1

i , j+ 1
2
− vn

i , j+ 1
2

)+ g
2

δy
(hn+1

i , j+1 −hn+1
i , j ) =−ω un

i , j+ 1
2
−ωθ3(un+1

i , j+ 1
2
−un

i , j+ 1
2

).

Linear stabilized semi-implicit scheme (LSS):

1

δt
(hn+1

i , j −hn
i , j )+ h0

δx
(F n

i+ 1
2 , j

−F n
i− 1

2 , j
)+ h0

δy
(F n

i , j+ 1
2
−F n

i , j− 1
2

) = 0,

1

δt
(un+1

i+ 1
2 , j

−un
i− 1

2 , j
)+ g ð(hn+1)i+ 1

2 , j −ð(πn)i+ 1
2 , j =ω vn

i+ 1
2 , j

+ωθ2(vn+1
i+ 1

2 , j
− vn

i+ 1
2 , j

)−ω2 γδt un
i+ 1

2 , j
,

1

δt
(vn+1

i+ 1
2 , j

− vn
i− 1

2 , j
) =−ω un

i+ 1
2 , j

−ωθ1(un+1
i+ 1

2 , j
−un

i+ 1
2 , j

)+ω γδt (g ð(hn)i+ 1
2 , j −ωvn

i+ 1
2 , j

),

1

δt
(un+1

i , j+ 1
2
−un

i , j− 1
2

) =ω vn
i , j+ 1

2
+ωθ4(vn+1

i , j+ 1
2
− vn

i , j+ 1
2

)−ω γδt (g ð(hn)i , j+ 1
2
+ωun

i , j+ 1
2

),

1

δt
(vn+1

i , j+ 1
2
− vn

i , j− 1
2

)+ g ð(hn+1)i , j+ 1
2
−ð(πn)i , j+ 1

2
=−ω un

i , j+ 1
2

−ωθ3(un+1
i , j+ 1

2
−un

i , j+ 1
2

)−ω2γδt vn+1
i , j+ 1

2
,

with

F n
i+ 1

2 , j
= un

i+ 1
2 , j

−γδt (g ð(hn)i+ 1
2 , j −ω vn

i+ 1
2 , j

), ð(hn)i+ 1
2 , j =

2

δx
(hn

i+1, j −hn
i , j ),

F n
i , j+ 1

2
= vn

i , j+ 1
2
−γδt (g ð(hn)i , j+ 1

2
+ω un

i , j+ 1
2

), ð(hn)i , j+ 1
2
= 2

δy
(hn

i , j+1 −hn
i , j ),

πn
i , j = νδt g

( 2

δx
(un

i+ 1
2 , j

−un
i− 1

2 , j
)+ 2

δy
(vn

i+ 1
2 , j

− vn
i− 1

2 , j
)
)
. (2.36)

Omitting the correction terms involved in the LSS scheme, this latter matches the
LRS scheme; hence we unify the denomination LSS for these schemes. For the sake of
simplicity we take θ1 = θ3 = 1 and θ2 = θ4 = 0 for all numerical results presented in the
sequel.

We are going to compare these linear staggered schemes against a Godunov type
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scheme considered by Audusse, Do, Omnes, et al. 2018 which reads:

Linear Godunov type scheme:

1

δt
(hn+1

i , j −hn
i , j )+ h0

δx
(F n

i+ 1
2 , j

−F n
i− 1

2 , j
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2
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i , j− 1
2

) = 0
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i , j −un
i , j )+ g
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i+1, j −hn
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2δx
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ζu

2

un
i+1, j −2un

i−1, j +un
i−1, j

δx
=ω vn

i , j ,

1

δt
(vn+1
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i , j−1

2δy
− g

ζv
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i+1, j −2un

i−1, j +un
i−1, j

δx
=−ω un+1

i , j ,

with

F n
i+ 1

2 , j
= 1

2
(un

i+1, j +un
i , j )−ζh

1

2
(hn

i+1, j −hn
i , j ),

F n
i , j+ 1

2
= 1

2
(vn

i , j+1 + vn
i , j )−ζh

1

2
(hn

i , j+1 −hn
i , j ).

In the sequel the parameter ζh is fixed to 1 while ζu and ζv are set to zero.

2.4.1.1 Gravity wave test case

In this first test, we compare the above linear schemes with an exact solution of
equations (2.4) without Coriolis force effects i.e. ω= 0. The exact solution considered
here consists in a gravity wave defined by:

h(x , t ) = h0 +H sin(k ·x −ω0t ),

u1(x , t ) = U sin(k · x −ω0t )

u2(x , t ) = V sin(k · x −ω0t )

where k · x = k1x + k2 y with k1 = 2π
Lx

, k2 = 2π
Ly

, ω0 =
√

g h0(k2
1 +k2

2), U = g H k1
ω0

, V =
g H k2

ω0
, H = 0.01, h0 = 1, g = 9.81. We consider the domain (−Lx ,Lx)× (−Ly ,Ly ) with

Lx = Ly = 25 and the computations are running for 200×200 cells. Then only periodic
boundary conditions are used in the following test cases. The Figure 2.6 shows a
horizontal cut off the initial water height.
Then the goal is to highlight the inaccuracy of the linear staggered schemes based on
the RT elements for the linear shallow water equations without source term. For this
purpose we assess the behavior of the numerical waves computed from the LSS, MAC
and Godunov type schemes during one period of time Tp = 2π

ω
which is precisely the

period of the analytic solution. The results are plotted in Figure 3.4 for varying time.
One should observe that the MAC and Godunov numerical wave’s are travelling

in the same speed with the analytic wave with a smaller amplitude for the Godunov
wave’s. While the numerical wave produced by the LSS scheme is moving faster
than the one from the MAC scheme. This latter has its own mode of propagation
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Figure 2.6 – Gravity wave: profile of the water height at time T = 0
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(a) T = Tp /4
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(b) T = Tp /2

20 10 0 10 20
x

0.9900

0.9925

0.9950

0.9975

1.0000

1.0025

1.0050

1.0075

1.0100

MAC
LSS
Godunov
exact

(c) T = 3Tp /4
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(d) T = Tp

Figure 2.7 – Gravity wave – Inaccuracy of the linear RT scheme: horizontal cut off of
the water height during one period of time.

different from other schemes with a short period of time which is approximately close
to 5.65T p/8 as shown in the Figure 2.8 where we compare the numerical solution
at T = 5.65T p/8 with the initial condition.This behavior is linked to the fact that the
discrete pressure gradient defined by the LSS scheme is twice compared to the MAC
scheme’s. This latter gives satisfactory results compared to the Godunov type scheme
while the LSS one remains inaccuracy for this present test case. This allows to say that
the MAC scheme is a better approximation for the linear shallow water equation than
the RT scheme.
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Figure 2.8 – Gravity wave: Horizontal cut off the water height computed from the LSS
scheme at time T = 5.65T p/8

2.4.1.2 Well balance test case

The aim of this test is to investigate the preservation of the geostrophic equilibrium
state g∇h +ωu⊥ in the discrete setting. The computational domain is the squared
[−L,L]2 with L = 0.5. This benchmark is available in Audusse, Do, Omnes, et al. 2018
and consists in a stationary vortex solution of the linear shallow water equations (2.4).
The initial water height is defined as a Gaussian function by

h0(x, y) = 1−exp
(− (

3

L
)2(x2 + y2)

)
Then the initialization of the components of the velocity u0 and v0 are deduced from
the continuous geostrophic equilibrium state and are given by:{

u0(x, y) =− g
ω

( 3
L )2 2y exp

(− ( 3
L )2(x2 + y2)

)
,

v0(x, y) = g
ω

( 3
L )2 2x exp

(− ( 3
L )2(x2 + y2)

)
.

(2.37)

Since the unknowns are assessed in staggered way, the initialization of the velocity
components are defined by (2.37) respectively on the primal and dual meshes. The
time step is fixed to δt = δx/5 and the computations use 50× 50 cells. Below we
present the obtained results at time T = 0.015 and T = 5.
Obviously the MAC scheme gives good results compared to the other schemes and its
numerical solution is in good agreement with the initial solution. This better behavior
encourages the reconstruction technique undertaken in the linear MAC scheme to
approximate the rotation velocity u⊥. However from these illustrations we can see that
the LSS scheme is no longer able to maintain the equilibrium geostrophic steady state
which contradicts the numerical theory presented in the previous sections. We think
that the problem is lying in the initialization step of the components of the velocity
for the RT scheme. Indeed by means of a suitable initialization of the velocity field
this scheme holds the preservation of this equilibrium state. To do that, the terms u0

and v0 are initialized such a way to mimic the continuous equilibrium equation, more
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Figure 2.9 – Well balance test – Horizontal cut off the watert height obtained by the
differents schemes at time T = 0.015 on the left and T = 5 on the right.

precisely both quantities are computed from the discrete gradient of h0 as follows:u0
i+ 1

2 , j
= 0,

v0
i+ 1

2 , j
=− g

ω
2
δx (h0

i+1, j −h0
i , j ),

and

u0
i , j+ 1

2

=− g
ω

2
δy (h0

i , j+1 −h0
i , j ),

vn
i , j+ 1

2

= 0;
(2.38)

where we recall here:

h0
i , j =

1

δx δy

∫ x
i+ 1

2

x
i− 1

2

∫ y
j+ 1

2

y
j− 1

2

h0(x, y) d y d x.

This reconstruction way of the velocity ensures the preservation of the linear equi-
librium at hand at the initialization level which was not be the case in the previous
computations. Then implementing (2.38) in the RT scheme yields the following results
obtained at time T = 5 and T = 50:
Figure 2.10 shows that after a computational time T = 50 the numerical solution of
the MAC scheme remains close to the initial state unlike to the Godunov type scheme.
This latter is less accuracy and completely loses the well-balanced behavior since its
numerical solution rapidly moves away from the initial state as shown in Figure 2.10
on the right. We note here the good agreement of the LSS scheme that is none other
than the RT scheme since no stabilization effects are added. The fact that LSS scheme
matches perfectly the analytic solution is strongly depending on the way the velocity
field is initialized (2.38). In other words, in order to deal with the preservation of the
linear geostrophic equilibrium state a carefully initialization of the velocity is required
for the LSS scheme.
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Figure 2.10 – Well balance test – Preservation of the geostrophic equilibrium state:
horizontal cut off the water height at time T = 5 on the left and T = 50
on the right

2.4.1.3 Circular dam break test case

The present test case is also proposed by Audusse, Do, Omnes, et al. 2018 to highlight
the performance of the schemes against discontinuity data. The problem is posed on
the squared [−5,5]2 and the initial water height is given by:

h0(x, y) =
{

2, if x2 + y2 ≤ 1,

1, otherwise ,

while the velocity field is initialized to zero. After a short time of simulation T = 0.25
strong instabilities occur for both MAC and non stabilized LSS schemes, see Figure
2.11. Then adding a correction term in the discrete velocity equation consisting in πi , j

given by (2.36) with a slight stabilization coefficient ν equals to 2, allows to stabilize
the LSS and MAC schemes as shown in Figure 2.11 on the right.
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Figure 2.11 – Circular dam break: Horizontal cut off the water height at time T = 0.25:
left whihout correction, right with correction.
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This manner of stabilization improves considerably the stability of the linear LSS
and MAC schemes. Through the Figures 2.12c, 2.12d, 2.12e, 2.12f we observe that
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(d) T = 50
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(e) T = 100
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Figure 2.12 – Circular dam break test: Long time behavior of the schemes for varying
simulation time

the corrected MAC scheme seems to reach a specific steady state for a large time of
simulation T ≥ 100. Finally, it should be noted that the difference in altitude between
the solutions of the MAC and RT schemes is mainly due to the discretization of the
pressure gradient as mentioned in Remark 2.1. Indeed the discrete pressure gradient
for the RT scheme is a vector for which one of its components is zero while for the
MAC scheme this quantity yields a single component defined on a dual cell following
the normal or tangential directions.

105



2 Stabilized staggered schemes for the 2D shallow water equations with Coriolis
source term on rectangular grid. – 2.4 Numerical simulations

2.4.2 Numerical results for the non-linear schemes
Here we turn to the non-linear staggered schemes that are the semi-implicit upwind

MAC and RT schemes on one hand and the stabilized staggered (NSS) schemes on
the other hand presented in Sections 2.2 and 2.3 respectively. As far as the following
computations are posed only on squared domains, the NSS scheme consists in a
centered stabilized numerical mass flux and an upwind scheme for the momentum
flux. Before presenting the numerical results, we start by describing these schemes in
the formally Cartesian basis (i , j ).
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Figure 2.13 – Uniform Cartesian grid.
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Nonlinear semi-implicit MAC scheme:
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and the dual fluxes are given by:
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where we recall that the notations ()+ and ()− stand for the positive and negative parts
respectively defined by (a)+ = max(a,0) and (a)− =−min(a,0) for any a ∈R.
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Nonlinear semi-implicit RT scheme:
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2
and the

scalars λ for the different fluxes are summarized in the Table 2.1:
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3/8 −1/8 −3/8 1/8
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−1/8 3/8 1/8 −3/8

Table 2.1 – Definition of the coefficients λ···

Non-linear staggered stabilized (NSS) scheme:
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2 , j

)+ 2

δx

(
(vF )n

i+ 3
4 , j− 1

4
+ (vF )n

i+ 1
4 , j+ 1

4
− (vF )n

i+ 3
4 , j+ 3

4
− (vF )n

i+ 1
4 , j− 1

4

)
=−ω(hu)n+1

i+ 1
2 , j

+ω γδt hn
i+ 1

2 , j
(g ð(hn)i+ 1

2 , j −ωvn
i+ 1

2 , j
),

1

δt

(
(hu)n+1

i , j+ 1
2
− (hu)n

i , j− 1
2

)+ 2

δy

(− (uF )n
i− 1

4 , j+ 3
4
− (uF )n

i+ 1
4 , j+ 1

4
+ (uF )n

i+ 1
4 , j+ 3

4
+ (uF )n

i− 1
4 , j+ 1

4

)
=ω (hv)n

i , j+ 1
2
−ω γδt hn

i , j+ 1
2

(g ð(hn+1)i , j+ 1
2
+ωun

i , j+ 1
2

),

1

δt

(
(hv)n+1

i , j+ 1
2
− (hv)n

i , j− 1
2

)+ 2

δy

(− (vF )n
i− 1

4 , j+ 3
4
− (vF )n

i+ 1
4 , j+ 1

4
+ (vF )n

i+ 1
4 , j+ 3

4
+ (vF )n

i− 1
4 , j+ 1

4

)
+ g hn+1

i , j+ 1
2
ð(hn+1)i , j+ 1

2
−ð(πn)i , j+ 1

2
=−ω(hu)n+1

i , j+ 1
2
−ω2γδt (hv)n

i , j+ 1
2

,

with

F n
i+ 1

2 , j
= (hu)n

i+ 1
2 , j

−γδt hn
i+ 1

2 , j
(g ð(hn)i+ 1

2 , j −ω vn
i+ 1

2 , j
),

F n
i , j+ 1

2
= (hv)n

i , j+ 1
2
−γδt hn

i , j+ 1
2

(g ð(hn)i , j+ 1
2
+ω un

i , j+ 1
2

),

ð(hn)i , j+ 1
2

= 2

δy
(hn

i , j+1 −hn
i , j ), ð(hn)i+ 1

2 , j =
2

δx
(hn

i+1, j −hn
i , j ),

πn
i , j = νδt g hn

i , j

( 1

δx
(un

i+ 1
2 , j

−un
i− 1

2 , j
)+ 1

δy
(vn

i , j+ 1
2
− vn

i , j− 1
2

)
)
.

These non-linear schemes are in turn compared to a Godunov type scheme equipped
with a HLLC solver for the non-linear shallow water equations which a short descrip-
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tion is given in Appendix 2.A.

As we saw previously in the linear circular dam break test a correction is needed
to stabilize the upwind MAC and RT schemes. Doing so, the following stabilization
quantities depending on πn

i , j (defined above) are judiciously injected in the discrete
velocity equations for the circular dam break test case (second test below):

1

δx
(πn

i+1, j −πn
i , j ) and

1

δy
(πn

i , j+1 −πn
i , j ).

2.4.2.1 Geostrophic adjustment test case

Here again we consider a stationary vortex (h0,u0) of the problem (2.1) for which
the water height and the tangential velocity are initialized as follows:{

h0(x, y) = h̄(r )

u0(x, y) = ū(r ) eθ

with

r = x2 + y2, θ = arctan
( y

x

)
and eθ =

(−sin(θ)
cos(θ)

)
Substituting (h0,u0) in the equations (2.1) we get after some basic algebraic computa-
tion:

g ∇h0 +ωu⊥
0 =− ū2

r 2
e⊥
θ .

We remark that if ū2 is close to zero, then the stationary solution (h0,u0) satisfies the
geostrophic equilibrium state: g ∇h0 +ωu⊥

0 = 0, more precisely this state is a solution
of the linear equations (2.4). In order to highlight this point of view, the setup we
consider here is proposed in Audusse, Do, Omnes, et al. 2018 where the function ū is
given by

ū(r ) = ε
(
5r 11(0, 1

5 )(r )+ (2−5r )11( 1
5 , 2

5 )(r )
)

and max
r

ū(r ) = ε, with ε≥ 0.

Then h̄ is the solution of the following ODE:{
g h̄′(r ) =ω ū(r )+ ū2

r

h̄(0) = 1.

The computational domain is the square [−0.5,0.5]2 using N x = N y = 50 cells and the
time step is fixed to d t = d x/5.
Let first illustrate that the upwind RT and the NSS schemes behave quite similarly
when we nullify the stabilization terms. The following results justify more this point of
view: It can be seen in Figure 2.14 that the corrections added in the NSS scheme do
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Figure 2.14 – Geostrophic adjustment test: Horizontal cut off the water height com-
puted from the RT and NSS schemes at time T = 5 (left) and T = 50
(center) without correction terms and T = 50 (right) with correction.

not have a considerable effect with regard to the upwind RT scheme. We think that the
problem remains potentially at the initialization of the velocity components for the
RT upwind and NSS schemes as mentioned previously in the linear well balance test.
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Figure 2.15 – Geostrophic adjustment: Horizontal cut off the water height resulting at
time T = 5 on the top line and T = 50 on the bottom

Next we consider only the NSS scheme and the Figure 2.15 plots the results for several
values of ε. Through these various figures we can see that the staggered MAC and NSS
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schemes are very close to the initial condition for some values of ε sufficiently small
which correspond to the low Froude regime unlike the HLLC scheme. One should
also observe the good behavior in long time of the MAC and HLLC schemes for highly
unstable areas where the NSS scheme becomes constant in spite of its good discrete
properties. However only the MAC scheme has the capacity to remain very close to the
initial state for a very large simulation time, contrary to the RT scheme which moves
away from it more and more quickly.

The Figure 2.16 below shows the following relative error type in L2 norm of the HLLC,
MAC and NSS schemes in term of ε at time T = 5:

||h(T, ·)−h0||L2(Ω)

||h0 −h||L2(Ω)
, with h = max

x∈Ω
(h0(x))

Here we see that the relative error increases in term of ε that means that the numerical

10 3 10 2 10 1 100

epsilon

10 2

10 1

Er
ro

r

HLLC
MAC
NSS

Figure 2.16 – Geostrophic adjustment: Relative error in L2 norm in term of ε between
the initial and numerical solution at time T = 5

solutions move away from the geostrophic equilibrium (g ∇h +ωu⊥ = 0), for higher
epsilon values. Basically this feature is rightful since the geostrophic equilibrium
state is only satisfied for the linear SWC equations (2.4). However for ε≤ 10−3 which
correspond to the low Froude regime, the non-linear SWC equations degenerate to
the linear equations and thus the numerical solution of the MAC and NSS schemes
remain very close to the initial state. This explains why the relative errors of the MAC
and NSS schemes are of order 10−2 and 10−3 respectively for ε= 10−3. This accuracy
justifies the well behavior of the corresponding linear MAC and NSS schemes with
respect to the preservation of the geostrophic equilibrium state as shown in Figure
2.15.
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2.4.2.2 Circular dam break test case

In this last test we consider the same circular dam break test presented in the linear
case where the computational domain is the square [−5,5]2 and the initial water height
is given by:

h0(x, y) =
{

2, if x2 + y2 ≤ 1,

1, otherwise ,

while the components of the velocity are initialized to zero. Here both upwind MAC
and RT schemes are corrected by a discrete gradient of π with a stabilization coeffi-
cient ν= 2. Regarding the NSS scheme a correction of order 2 is only operated on the
numerical mass flux.

Below we plot in Figures 2.17 and 2.18 the obtained results at different final times.
Firstly for a short time of simulation T = 1 the schemes behave identically with a
notable difference in altitude as shown in Figure 2.12c. Then we observe a huge dif-
ference between the water height computed by the MAC scheme compared to the
others schemes including HLLC scheme as was the case for the linear circular dam
break test (see Figure 2.12). This difference can be explained by the fact that the size
of a dual (MAC) cell (or primal cell) is twice the size of a diamond (RT) cell which
implies a scaling of the velocity components by a factor 1

2 . Hence the discrete height is
thus impacted by the intermediate of the mass flux expressed in term of the discrete
normal velocity.
All these results enhance on one hand the robustness of the upwind MAC scheme
corrected by a controlled numerical diffusion added in the discrete momentum equa-
tion. On the other hand this test case evidences once again the non efficiency of
the staggered schemes based on the RT finite elements whether corrected upwind or
centered stabilized non-linear schemes.
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Figure 2.17 – Circular dam break – Long time behavior: horizontal cut off the water
height for the different schemes
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Figure 2.18 – Circular dam break: 3D plot of the water height resulting of the MAC
scheme at time T = 1, T = 5, T = 50 and T = 100 respectively
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Appendix

2.A HLLC scheme for the non-linear shallow water
equations with Coriolis force

We begin by rewriting the shallow water equations (2.1) in a conservative form as
follows

∂tU +∂xF (U )+∂yG(U ) = S(U ), (2.42)

where the conservative variable U and the vector functions F , G and S are given by

U =
 h

hu
hv

 , F (U ) =
 hu

hu2 + 1
2 g h2

huv

 , G(U ) =
 hv

huv
hv2 + 1

2 g h2

 , S(U ) =
 0
ωhv
−ωhu

 .

Then the scheme for the non-homogeneous system (2.42) reads:

U n+1
i , j −U n

i , j

δt
+

F n
i+ 1

2 , j
−F n

i− 1
2 , j

δx
+

Gn
i , j+ 1

2

−Gn
i , j− 1

2

δy
= Sn,n+1

i , j , (2.43)

with

U n
i , j =


hn

i , j

(hu)n
i , j

(hv)n
i , j

 , Sn,n+1
i , j =


0

ω(hv)n
i , j

−ω(hu)n+1
i , j

 .

It remains to define the numerical fluxes Fi+ 1
2 , j and Gi , j+ 1

2
in order to close the algo-

rithm. Both quantities are approximately defined by the so-called HLLC (see in Toro
1997) solver that can be reformulated as follows:

Fi+ 1
2 , j =

∣∣∣∣∣∣∣∣∣∣∣

Fi , j if 0 ≤λi , j

F∗
i , j if λi , j ≤ 0 ≤λ∗

i+ 1
2 , j

F∗
i+1, j if λ∗

i+ 1
2 , j

≤ 0 ≤λi+1, j

Fi+1, j if 0 ≥λi+1, j ,
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with F∗
i , j = Fi , j +λi , j (U∗

i , j −Ui , j ) where the intermediate variable U∗
i , j is computed by:

U∗
i , j =


h∗

i , j

h∗
i , j λ

∗
i+ 1

2 , j

h∗
i , j vi , j

 with h∗
i , j =

λi , j −ui , j

λi , j −λ∗
i+ 1

2 , j

hi , j .

Finally the wave speeds λi , j , λ∗
i+ 1

2 , j
and λi+1, j are given by:

λi , j = min
(
ui , j −

√
g hi , j , ui+1, j −

√
g hi+1, j

)
λi+1, j = max

(
ui , j +

√
g hi , j , ui+1, j +

√
g hi+1, j

)
λ∗

i+ 1
2 , j

=
[λ(hu)]i+ 1

2 , j − [hu2 + 1
2 g h2]i+ 1

2 , j

[λh]i+ 1
2 , j − [hu]i+ 1

2 , j

,

where the notation [•]i+ 1
2 , j stands to the following jump

[•]i+ 1
2 , j = [•]i+1, j − [•]i , j .

The definition of the flux Gi , j+ 1
2

mimics the one of Fi , j+ 1
2

by simply changing the role

of the indexes which closes the description of the HLLC scheme.

2.B Crank-Nicholson scheme for the linear shallow
water equations with Coriolis force based on the
Rannacher-Turek elements

The Crank-Nicholson scheme is well known to be unconditionally stable and second
order in time. The linear staggered scheme described below is performed with the
Crank-Nicholson method respect to the time integration instead of the segregated
discretization presented in the above sections and works on the RT finite elements for
the space discretization. The scheme reads:

1

δt
(hn+1

K −hn
K )+h0

1

2

(
divK (un)+divK (un+1)

)= 0, ∀ K ∈M , (2.44a)

1

δt
(un+1

σ −un
σ)+ g

1

2

(
(∇hn)σ+ (∇hn+1)σ

)=−ω 1

2

(
un
σ+un+1

σ

)⊥, ∀ σ ∈ Ei nt ,

(2.44b)

where the discrete operators appearing here are previously defined in Section 2.2.3.
The scheme (2.44) involves a linear system which can be written in vector form as

117



2 Stabilized staggered schemes for the 2D shallow water equations with Coriolis
source term on rectangular grid. – 2.B Crank-Nicholson scheme for the linear shallow

water equations with Coriolis force based on the Rannacher-Turek elements

follows:
A U n+1 = B U n , with U n =U (hn ,un), (2.45)

where A and B are two matrices given by:

A U n =
[

hn
K +δt h0

1
2 divK (un)

un
σ+ g 1

2 (∇hn)σ+ω 1
2 (un

σ)⊥

]
and U n =

[
hn

K −δt h0
1
2 divK (un)

un
σ− g 1

2 (∇hn)σ−ω 1
2 (un

σ)⊥

]
.

The well-posedness of the linear system (2.45) and other stability properties are
treated in the following proposition.

Proposition 2.6 ("Well posedness and well balance" for the Crank-Nicholson scheme).
Let n ∈ {0, · · · , N −1} and let given a pair of discrete functions (hn ,un). Then the scheme
(2.44) admits one and only one discrete solution (hn+1,un+1). Furthermore if (hn ,un)
verifies (2.17), then (hn+1,un+1) satisfies (2.17) too.

Proof. Firstly we prove that the linear system (2.45) admits a unique solution that
means the matrix A is invertible. So let us suppose that A U n = 0, then we have{

hn
K +δt h0

1
2 divK (un) = 0

un
σ+δt g 1

2 (∇hn)σ+ω 1
2 (un

σ)⊥ = 0.

Then multiplying the first equation by |K | g
h0

hn
K and the second by |Dσ| un

σ and sum-
ming the result over K ∈M and σ ∈ Eint respectively, we get:

∑
K∈M

|K | g

h0
(hn

K )2+ ∑
σ∈Eint

|Dσ| |un
σ|2 =−g

1

2

( ∑
K∈M

|K |hn
K divK (un)+ ∑

σ∈Eint

|Dσ| (∇hn)σ·un
σ

)
.

Thanks to the div-grad relationschip, the right hand side term vanishes and we obtain
hn

K = 0 for all K ∈M and un
σ = 0 for all σ ∈ Eint. Hence U n = 0 and thus A is invertible.

Then for the well balance property, it is straightforward to see that if (hn ,un) verifies
(2.17), then the discrete steady state hn+1 = hn and un+1 = un is the only solution of
the scheme (2.44), which concludes the proof.

Unlike the linear RT and LSS schemes presented in the previous sections, the Crank-
Nicholson scheme conserves exactly the discrete energy as stated in the following.

Proposition 2.7 (Discrete mechanic energy balance). Let n ∈ {0, · · · , N−1}. The discrete
solution of the Crank-Nicholson scheme (2.44) ensures the following discrete energy
conservation:

E n+1 = E n , ∀ n ∈ {0, · · · , N −1}. (2.46)

Proof. Let us derive first the potential energy balance of the scheme which is obtained
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by multiplying (2.44a) by g
h0

1
2 (hn+1

K +hn
K ) to get:

1

2

1

δt

g

h0

(
(hn+1

K )2 − (hn
K )2)+ 1

|K |
∑

σ∈E (K )
|σ|g (hn

K +hn
L

2
+ hn+1

K +hn+1
L

2

) un
σ+un+1

σ

2
·nK ,σ

− 1

|K |
∑

σ∈E (K )
|Dσ| g

(∇hn)σ+ (∇hn+1)σ
2

· un
σ+un+1

σ

2
= 0.

In the same way multiplying the velocity equation (2.44b) by
un
σ+un+1

σ

2 we get the fol-
lowing discrete kinetic balance:

1

2

1

δt

(|un+1
σ |2 −|un

σ|2
)+ g

(∇hn)σ+ (∇hn+1)σ
2

· un
σ+un+1

σ

2
= 0.

Finally, doing the following computations yield the result:

∑
K∈M

|K | 1

2

1

δt

g

h0

(
(hn+1

K )2 − (hn
K )2)+ ∑

σ∈Eint

|Dσ| 1

2

1

δt

(|un+1
σ |2 −|un

σ|2
)= 0,

which concludes the proof.
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3 A staggered scheme for the one-dimensional shallow water flow and sediment
transport with a stabilized friction term –

Abstract. In this chapter, we extend a staggered scheme designed for the numerical
simulation of the shallow water flow to the coupled shallow water-Exner equations.
The scheme is based on the first order upwind method for the convection mass and
momentum parts and centered discrete gradient applied to the water height and
the sediment depth. The numerical scheme yields a completely algebraic algorithm
following a decoupled time stepping thanks to an easy adaptive explicit-implicit time
integration for the momentum and Exner equations. For the coupling of the water
flow and sediment transport model, we investigate the influence of the shear stress
source term and the sediment transport flux. Compared to some standard shear stress
formulae, a source term accounts for the bed elevation and the bedload sediment
transport is implemented in the momentum equation. This algebraic term allows a
dissipation of the associated energy and preserves the hyperbolicity of the original
system. Then regarding the sediment transport flux, two kinds of bedload formulae are
considered, the classical formulae like Meyer-Peter & Müller formula and a corrected
formula. This latter results of an asymptotic analysis from the incompressible Navier-
Stokes equations which depends on the depth of the movable sediment layer. Finally,
the efficiency of the decoupled scheme is numerically investigated as well as the
influence of the sediment transport flux.

Keywords shallow water equations, Exner equation, sediment transport, staggered
scheme.
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3 A staggered scheme for the one-dimensional shallow water flow and sediment
transport with a stabilized friction term – 3.1 Introduction

3.1 Introduction
LetΩ be a bounded domain of Rwith and let T > 0 . We consider the shallow water

equations with time dependent topography given by:

∂t h +∂x(hu) = 0 in Ω× (0,T ), (3.1a)

∂t (hu)+∂x(hu2 +p)+ g h∂x z =−τ/ρw in Ω× (0,T ), (3.1b)

p = 1

2
g h2 in Ω× (0,T ). (3.1c)

where t stands for the time, g is the gravity constant, z the sediment depth, ρw is the
density of the water, h the water height and u the velocity of the flow. The source term
τ appearing in the right hand-side of (3.1b) is the shear stress given by τ= ρw g hS f

where S f is a friction term which depends only on h and u. The system (3.1) is coupled
with the Exner equation which describes the evolution of the sediment layer in the
following way:

∂t z + 1

1−φ∂x qb = 0, (3.2)

where φ ∈ [0,1) is a constant porosity and qb is the sediment discharge or the bedload
transport flux depending also on h and u and sometimes on S f . This coupled system is

z(x, t )

h(x, t )u(x, t )

Figure 3.1 – Configuration of the water flow and sediment transport: z(t , x) the sedi-
ment depth and h(t , x)+ z(t , x) the free surface.

used to model the interaction between the shallow water flow and sediment transport
process. An other formulation of the Exner equation is also presented in several works,
based on a decomposition of the sediment layer in two sub-layers as depicted in
Figure 3.2 below: an erodible movable layer of dimension zm , in direct exchange with
the water column and a fixed layer known as the bedrock, of depth zb constant with
respect to the time variable as that ∂t z(x, t ) = ∂t zm(x, t ).

There exist several formulae of the sediment transport flux qb , for instance the Grass
1981, Meyer-Peter and Muller 1948 bedload transport discharges and other related
formula (see Ashida and Michiue 1972; Nielson 1992; Van Rijn 1984; Fernandez Luque
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zm(x, t )

zb(x)

h(x, t )u(x, t )

Figure 3.2 – Splitting of the sediment layer.

and Van Beek 1976; Einstein 1942). The two most used definitions of S f , defined in
an empirically way, are the Darcy-Weisbach friction law and the Manning friction law.
For some classical models the quantities S f and qb are related and the hyperbolicity of
the system depends on the friction law. In fact it is well known that the Grass bedload
formula makes the system (3.1-3.2) strictly hyperbolic while for other bedload formula
like Meyer-Peter & Müller (and other related formula) the system (3.1-3.2) is hyperbolic
for S f given by the Darcy-Weisbach friction law and conditionally hyperbolic for the
Manning friction law (see Audusse 2018, Castro Dìaz, Fernàndez-Nieto, and Ferreiro
2008, Fernàndez-Nieto, Lucas, Morales De Luna, et al. 2014).

The system (3.1-3.2) suffers from two major disadvantages: firstly for most friction
laws, these equations do not have an energy balance or dissipation which constitutes
a crucial point for a hyperbolic system. Secondly the sediment flux qb does not take
into account the evolution of the sediment depth and hence the Exner equation may
fail. Indeed the sediment transport process is preceded by a sediment deposition
and followed by the entertainment; thus an equilibrium regime is observed when the
deposition rate is equal to the entertainment rate. Then the sediment flux qb may
account for the quantity of deposited material, which is not the case for all classical
formulae. In the sequel we introduce a regularized friction law which is shown to
ensure energy dissipation, this answers the first above mentioned disadvantage. As to
the second one, we introduce a corrected sediment flux qb , mainly we focus on recent
advances for shallow water-Exner models proposed in Boittin 2019, Fernàndez-Nieto,
Morales De Luna, Narbona-Reina, et al. 2017. Both works ensure a dissipation of
the associated energy and treat simultaneously the deposition and entertainment
of the sediment. In the sequel we adopt the model developed in Fernàndez-Nieto,
Morales De Luna, Narbona-Reina, et al. 2017, in which the authors propose a linear
and quadratic bedload formulae of qb resulting in a quasi-uniform regime where the
erosion rate equals to the deposit one.

For the numerical setting, we use a decoupled approach which computes first the
water flow and then solves the Exner equation. This strategy yields a simple algorithm
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which is very easy to implement using a decoupled time discretization and a stag-
gered arrangement of the discrete unknowns. Furthermore, this scheme is shown in
Gunawan, Eymard, and Pudjaprasetya 2015 to be more accurate; the efficiency of the
decoupled approach is proven by the numerical results which are in good agreement
with experimental data. This scheme is based on the standard upwind scheme both
for the mass and momentum numerical fluxes. The preservation of the positivity of
the water height is ensured by means of a classical restriction on the time step.
The objective here is to extend this scheme to the new Saint-Venant-Exner coupling
model of Fernàndez-Nieto, Morales De Luna, Narbona-Reina, et al. 2017 which in-
volves a correction of the sediment transport flux which takes into account the depth
of the movable layer (see also Boittin 2019). To this purpose a decoupled time inte-
gration scheme is built in the spirit of the technique presented in Gunawan, Eymard,
and Pudjaprasetya 2015; Gunawan 2015 for the computation of the fluid flow. Thus
for the computation of the Exner equation, we perform an adaptive explicit-implicit
time discretization. This scheme involves only explicit time stepping with respect to
the sediment depth in the computation of the bedload transport flux and full implicit
time step for the water height and the velocity.

The remainder of this chapter has the following structure: in Section 3.2, we study a
coupled shallow water flow and sediment transport system using a stabilization source
term which does not require the precise the definition of qb . Physical limitations of
the classical bedload formulae are treated in Section 3.3 and a formally definition of
the sediment flux is thus considered. In Section 3.4, we investigate the numerical
approximation of the coupled system. Finally we present some numerical tests and
comparison with the literature in Section 3.5.

3.2 A stabilized friction term
Since the source term τ/ρw = g hS f is defined empirically by a friction law for

S f , we investigate here a stabilized shear stress formula for τ fulfilling the following
requirements:

- the preservation of the lake at rest steady state, which implies that τ is expected
to vanish when u = 0 for the resulting system.

- the dissipation of the energy of the equations (3.1-3.2).
- the preservation of the hyperbolicity of the original system (3.1-3.2) in other

words the regularized friction we are seeking here must maintain the hyperbolic-
ity of the equations (3.1-3.2) for a standard friction law.

We do not need here to specify the expression of the bedload transport qb and we
take φ= 0 for the sake of simplicity. Let us consider a regular solution (h,u, z) of the
system (3.1-3.2) and let us introduce a regular function ψ which depends only on h i.e.
ψ=ψ(h). We denote by r the ratio of the density of the water ρw with respect to that
of the sediment ρs i.e. r = ρw /ρs .
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Multiplying the mass equation (3.1a) by rψ(h), we obtain after some algebraic manip-
ulations, the following balance equation

∂t (r hψ(h))+∂x(r hψ(h)u)+ r h2ψ′(h)∂xu = 0. (3.3)

Then, multiplying the Exner equation by g (r h + z), we find

∂t (
1

2
g z2)+ r g h∂t z + g (r h + z)∂x qb = 0.

Thanks to the mass equation (3.1a), one has r g h∂t z = ∂t (g r hz)+ r g z∂x(hu). Thus
the following equation holds

∂t (
1

2
g z2 + r g hz)+ g (r h + z)∂x qb + r g z∂x(hu) = 0.

Thus adding this equation with (3.3) we get the following equality:

∂t (r hψ(h)+1

2
g z2+r g hz)+∂x(r hψ(h)u)+r h2ψ′(h)∂xu+g (r h+z)∂x qb+r g z∂x(hu) = 0.

(3.4)
Next, taking the scalar product of the momentum equation (3.1b) by r u, using twice
the mass equation (3.1a), we obtain the kinetic energy balance

∂t (Ek )+∂x(Ek u)+ r u∂x p + r g hu∂x z =−r g hS f u, (3.5)

with Ek = 1
2 r hu2.

Summing up (3.4) and (3.5), we get

∂t (r hψ(h)+1

2
g z2+r g hz+Ek )+∂x

(
(r hψ(h)+1

2
r h|u|2+g r hz+r p)u

)+∂x(g (r h+z)qb)

=−r g hS f u + g qb∂x(r h + z)− r (h2ψ′(h)−p)∂xu. (3.6)

Let us define ψ(h) so as to satisfy the relation: h2ψ′(h)−p = 0, i.e. ψ′(h) = p/h2 = 1
2 g

and ψ(h) = 1
2 g h.

In this case, the equation (3.6) boils bown to

∂t (Ep +Ek )+∂x
(
(g h2 + 1

2
h|u|2 + g hz)r u

)+∂x(g (r h + z)qb)

=−(
r g huS f − g qb∂x(r h + z)

)
, (3.7)

with Ep = 1
2 r g h2 + 1

2 g z2 + r g hz.
In order to get an energy balance equation (or inequality), it is important that the
right-hand side of (3.7) be negative, that means:

r g huS f − g qb∂x(r h + z) ≥ 0. (3.8)
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Note that the condition (3.8) cannot hold for a classical friction law of the form
f (h)|u|u with f (h) a non-negative function depending on h. In order for (3.8) to
hold, we choose

S f =
∂x(r h + z)

qb

r hu
, if u 6= 0

0, otherwise
(3.9)

Then it is straightforward to observe that the definition (3.9) fulfills (3.8) whatever the
law chosen for qb , since qb always vanishes when u = 0 for classical bedload formulae
(see for instance (3.16), (3.17), (3.21)). Hence the energy dissipation is ensured. More-
over the first above mentioned requirement holds since S f vanishes when the fluid is
at rest i.e. u = 0.

The shallow water Exner system thus reads:

∂t h +∂x(hu) = 0 in Ω× (0,T ), (3.10a)

∂t (hu)+∂x(hu2 + 1

2
g h2)+ g h∂x z =−g hS f in Ω× (0,T ), (3.10b)

∂t z +∂x(qb) = 0 in Ω× (0,T ), (3.10c)

where the friction term is defined by (3.9) and the sediment transport discharge qb is
specified in the sequel.

Let us now turn to the hyperbolicity of the modified shallow water-Exner system
(3.10).
In the case u 6= 0, the system (3.10) can be written in vector form as follows:

∂tU +∂x(F (U ))+B(U )∂xU = 0, (3.11)

where

U =
h

q
z

 , F (U ) =

 q
q2

h + 1
2 g h2

qb

 , B(U ) =

 0 0 0
g h qb

q 0 g h(1+ qb
r q )

0 0 0


with q = hu. The equation (3.11) is equivalent to:

∂tU + A(U )∂xU = 0, with A(U ) =

 0 1 0

g h qb
q + g h − q2

h2 2 q
h g h(1+ qb

r q )

∂h qb ∂q qb 0

 (3.12)

In order to compute the eigenvalues of this matrix, it is better to adopt the variable
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V = (u,2c, z)t with c2 = g h instead of U . Thus the system (3.12) becomes:

∂t V +M(V )∂xV = 0, with M(V ) =

 u c qb
q + g h

c g (1+ qb
r q )

c u 0
c2

g ∂q qb
c
g (∂h qb +u∂q qb) 0


(3.13)

It is well known that the matrices M(V ) and A(U ) have the same eigenvalues, so the
hyperbolicity of the system (3.13) implies that of the system (3.12).
For the sake of simplicity, we restrict the study for bedload formulae which satisfy the
following conditions:

∂q qb > 0,
qb

q
> 0 (3.14a)

∂h qb +u∂q qb = 0. (3.14b)

Then under the compatibility conditions (3.14), we establish in the Proposition 3.1
the nature of the eigenvalues of M(V ). Notice that, the conditions (3.14) are the as-
sumptions kind considered in Fernàndez-Nieto, Lucas, Morales De Luna, et al. 2014
in order to deal with the hyperbolicity of the shallow water Exner system under some
classical bedload formulae.

The following result states the hyperbolicity of the system (3.10) for some bedload
formulae.

Proposition 3.1. Let (h, q, z) be a solution of the equations (3.11) and consider a bed-
load formula of qb depending only on h and u and such that the compatibility condi-
tions (3.14) hold. Then if u 6= 0, the matrix M(V ) admits three distinct real eigenvalues.

Proof. The characteristic polynomial of the matrix M(V ) is given by:

PM (λ) =λ
(
(u−λ)2− (c2 qb

q
+g h)

)
+c2(1+ qb

r q
)
(
(u−λ)∂q qb − (∂h qb +u∂q qb)

)
. (3.15)

Owing to the conditions (3.14), two cases are possible:

- First case: If u > 0 then we have

PM (0) = c2u(1+ qb
r q )∂q qb > 0, PM (u) =−u(c2 qb

q
+ g h) < 0,

lim
λ→−∞

PM (λ) =−∞ and lim
λ→+∞

PM (λ) =+∞.
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- Second case: If u < 0 then we get

PM (0) = c2u(1+ qb
r q )∂q qb < 0, PM (u) =−u(c2 qb

q
+ g h) > 0,

lim
λ→−∞

PM (λ) =−∞ and lim
λ→+∞

PM (λ) =+∞.

In each case, PM admits three distinct real roots λ1,λ2,λ3 satisfying:

λ1 ≤ 0 <λ2 < u <λ3 or λ1 < u <λ2 ≤ 0 <λ3,

which concludes the proof.

An important property is that if qb = 0 and thus ∂t z = 0, then the characteristic
polynomial PM (λ) is reduced to:

PM (λ) =λ(u −λ− c)(u −λ+ c);

then we recover the eigenvalues of the classical shallow water system that are 0, u − c
and u + c.

Now we examine the compatibility conditions (3.14) with respect to the hyperbolic-
ity of the system (3.10), for some classical bedload formulae.

Grass bedload formula The Grass formula proposed in Grass 1981 for the sediment
transport discharge qb is given by:

qb = Ag u|u|m−1, for 1 ≤ m ≤ 4 and 0 < Ag ≤ 1, (3.16)

From this definition, one can quickly check that the compatibility conditions (3.14)
are satisfied, since we have

∂h qb +u∂q qb =−m
qb

h
+mu

qb

q
= 0, ∂q qb = m

qb

hu
> 0, and

qb

q
> 0.

Meyer-Peter & Müller bedload formula In this case qb is defined as in Meyer-
Peter and Muller 1948 by:

qb = 8Γ sg n(τ) (θ−θc )
3
2+, (3.17)

with

θ = |τ|
ρw (1/r −1)g ds

and Γ=
√

(1/r −1)g d 3
s ,

where ds is the main diameter of the grain sediment, θ is a non-dimensional shear
stress called also Shields parameter and θc is a non-dimensional critical shear stress.
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Thus, it depends on the shear stress τ given by:

τ= ρw g hS f , (3.18)

where the friction term S f is explicitly defined by one of the following laws:

Darcy-Weisbach friction law: S f =
f |u|u

8g
, (3.19)

where f the Darcy-Weisbach coefficient or

Manning friction law: S f =
n2

m |u|u
h4/3

, (3.20)

where nm is the Manning coefficient.
Attention is made first to justify that the definition (3.17) fulfills the compatibility
conditions (3.14). Let us start by considering the Darcy-Weisbach friction law, then we
have

∂h qb =−8Γ
sg n(τ)

h

(
2(θ−θc )

3
2 +3θ(θ−θc )

1
2
)

and

∂q qb = 8Γ
sg n(τ)

q

(
2(θ−θc )

3
2 +3θ(θ−θc )

1
2
)
.

Thus we get

∂q qb > 0 < qb

q
and ∂h qb +u∂q qb = 0.

Then the system (3.11) associated to (3.19) and (3.17) remains strictly hyperbolic.
Unfortunately the conditions (3.14) may fail if we use the Manning friction law and
thus the hyperbolicity of the system (3.11) associated to the Meyer-Peter & Müller bed-
load formula (3.17) using the Manning friction law (3.20) and needs a supplementary
condition.

Ashida & Michue bedload formula The Ashida and Michiue 1972 bedload formula
Ashida and Michiue 1972 reads:

qb = 17Γ sg n(τ) (θ−θc )+ (
p
θ−

√
θc ), (3.21)

where the various parameters appearing here are defined as in the Meyer-Peter&Müller
formula. Similarly, under the Darcy-Weisbach friction law (3.19), we can prove that
the compatibility conditions (3.14) are fulfilled.
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3.3 Limitation of the classical bedload transport
As mentioned in the introduction, even though the classical formulae are easy

to implement, they do not guarantee the sediment conservation. Indeed since the
sediment flux qb depends only on the water height and the velocity flow, then qb may
be different from zero even though there is no sediment deposition i.e. z = 0.
To circumvent this problem, a class of shallow water flow and sediment transport
models involving a correction of the bedload transport formula which takes into
account the bed elevation, has recently been developed Fowler, Kopteva, and Oakley
2007; Fernàndez-Nieto, Morales De Luna, Narbona-Reina, et al. 2017; Boittin 2019.
Following the work of Fernàndez-Nieto, Morales De Luna, Narbona-Reina, et al. 2017,
the standard shear stress (3.18) is replaced by the following effective shear stress:

τe f f =
τ

ρw
− g dsν

r
∂x(r h + z) with

τ

ρw
= g hS f , (3.22)

where the physical parameter ν is defined by:

ν= θc

t an(δ)
,

where δ is a friction angle, chosen empirically. The corrected bedload formula pro-
posed by Fernàndez-Nieto, Morales De Luna, Narbona-Reina, et al. 2017 which we
refer in the sequel as the FMNZ formula, reads:

qb = kΓ sg n(τe f f ) (θe f f −θc )3/2
+ , (3.23)

where k is a positive real number and θe f f the effective Shields parameter given by:

θe f f =
|τe f f |

(1/r −1)ds g
. (3.24)

This formula can be seen as a generalization of the Meyer-Peter & Müler one defined by
(3.17) and both formulae of qb will coincide if k = 8 and if we neglect all gravitational
effects. Indeed if ν= 0, then the effective shear stress is reduced to: τe f f = g hS f .
Note also that the angle δ plays a relevant role in the sediment transport process and
constitutes a supplementary criterion for the solid transport. In order to emphasize
the particularity of the FMNZ formula, we consider a specific regime where the water
flow is at rest, so u = 0 and h = z+C with C ∈R+. Then after some basic manipulations,
the sediment flux boils down to

qb =−kΓθ3/2
c sg n(∂x z)

( |∂x z|
tan(δ)

−1
)3/2
+ .

In this case, it is obvious to see that the transport of the material may occur according
to the profile of z and the friction angle δ. Indeed if the repose angle of the sediment
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is smaller than the friction angle the material moves; otherwise the sediment is not
transported, see Fernàndez-Nieto, Morales De Luna, Narbona-Reina, et al. 2017 for
more details. We evidence numerically this behavior in test 3.5.2 below.

3.4 Numerical approximation
The shallow water-Exner equations are frequently discretized in space by collo-

cated finite volumes, using principally a Riemann solver type see e.g. Castro Dìaz,
Fernàndez-Nieto, and Ferreiro 2008, Fernàndez-Nieto, Lucas, Morales De Luna, et al.
2014, Gunawan and Lhébrard 2015, Berthon, Boutin, and Turpault 2015, Audusse 2018.
Here we consider the decoupled staggered scheme proposed in Gunawan, Eymard,
and Pudjaprasetya 2015. The novelty here is that we implement the stabilized friction
given by (3.9) and the corrected FMNZ formula (3.23).

3.4.1 A decoupled staggered scheme
In order to design a numerical scheme for the equations (3.1-3.2), we discretize the

time and space intervals and then we introduce the discrete unknowns.

Uniform discretization of the time interval (0,T ): Let us consider a partition
0 = t0 < t1 < ·· · < tNt = T of the time interval (0,T ), which we suppose to be uniform
for the sake of simplicity, and let δt = tn+1 − tn for n = 0,1, · · · , Nt −1 be the (constant)
time step.

Uniform discretization of the space interval (0,L): Let 0 = x 1
2
< x 1

2
< ·· · < xNx+ 1

2
=

L, such that

xi+ 1
2
= xi− 1

2
+δx, i = 1, · · · , Nx −1 and xi =

xi+ 1
2
+xi− 1

2

2
, i = 1, · · · , Nx .

The discrete unknowns corresponding to the velocity u, the water height h and the
sediment depth z are denoted by un+1

i+ 1
2

, hn+1
i and zn+1

i respectively.

The numerical scheme for the equations (3.10) reads:
Initialization level:

h0
i =

1

δx

∫ x
i+ 1

2

x
i− 1

2

h0(x)d x,

u0
i+ 1

2
= 1

δx

∫ xi+1

xi

u0(x)d x,

z0
i =

1

δx

∫ x
i+ 1

2

x
i− 1

2

z0(x)d x.
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Current level: Compute hn+1, un+1 and zn+1:

hn+1
i = hn

i − δt

δx

(
(hu)n

i+ 1
2
− (hu)n

i− 1
2

)
, ∀ i = 1, · · · , Nx , (3.25a)

hn+1
i+ 1

2
un+1

i+ 1
2
= hn

i+ 1
2

un
i+ 1

2
− δt

δx

(
(hu u)n

i+1 − (hu u)n
i + g hn+1

i+ 1
2

(hn+1
i+1 −hn+1

i + zn
i+1 − zn

i )
)

−δt g hn+1
i+ 1

2
Sn,n+1

f ,i+ 1
2

, ∀ i = 1, · · · , Nx −1, (3.25b)

zn+1
i = zn

i − 1

1−φ
δt

δx
(qn+1

b,i+ 1
2
−qn+1

b,i− 1
2

), ∀ i = 1, · · · , Nx , (3.25c)

where the various discrete terms and operators are defined below.

Discrete water flow quantities – the numerical fluxes are approximated by the
upwind technique as follows:

− Mass flux:

(hu)i+ 1
2
=

{
ui+ 1

2
hi , if ui+ 1

2
≥ 0,

ui+ 1
2

hi+1, otherwise ,

− Momentum flux:

(hu u)i+1 =
{

ui+ 1
2

(hu)i+1 if (hu)i+1 ≥ 0,

ui+ 3
2

(hu)i+1 otherwise ,

where the term (hu)i+1 is interpolated as in Gunawan, Eymard, and Pudjaprasetya
2015; Herbin, Latché, and Nguyen 2018 by:

(hu)i+1 = 1

2

[
hi+ 1

2
ui+ 1

2
+hi+ 3

2
ui+ 3

2

]
, with hi+ 1

2
= 1

2
(hi +hi+1).

Note that a discrete dual mass balance holds, which reads:

hn+1
i+ 1

2
= hn

i− 1
2
− δt

δx

(
(hu)n

i+1 − (hu)n
i

)
, ∀ i = 1, · · · , Nx . (3.26)

Discrete friction law – We implement here the Manning and stabilized friction laws
:

− Manning friction:

Sn,n+1
f ,i+ 1

2

= n2
m

|un
i+ 1

2

|un+1
i+ 1

2

(hn+1
i+ 1

2

)4/3
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− Stabilized friction:

Sn,n+1
f ,i+ 1

2

=


r (hn+1

i+1 −hn+1
i )+ zn

i+1 − zn
i

δx

qn,n+1
b,i+ 1

2

r hn+1
i+ 1

2

un
i+ 1

2

, if un
i+ 1

2

6= 0

0, otherwise

where qn,n+1
b,i+ 1

2

= qb(hn+1
i ,un

i+ 1
2

)

Discrete sediment flux– Three different formulae are are tested for the sediment
flux:

− Grass formula:
qn+1

b,i+ 1
2
= Ag un+1

i+ 1
2
|un+1

i+ 1
2
|m−1.

− Meyer-Peter & Müller formula:

qn+1
b,i+ 1

2
= 8 Γ sg n(un+1

i+ 1
2

)
(
θn+1

i+ 1
2
−θc

)3/2
+

with

θn+1
i+ 1

2
= n2

m

( 1
r −1)ds

|un+1
i+ 1

2

|2

(hn+1
i+ 1

2

)2/3
.

− FMNZ formula:

qn,n+1
b,i+ 1

2

= k Γ sg n(τn,n+1
e f f , i+ 1

2

)
(
θn,n+1

e f f , i+ 1
2

−θc
)3/2
+

with

θn,n+1
e f f , i+ 1

2

=
∣∣τn,n+1

e f f , i+ 1
2

∣∣
(1/r −1)g ds

and

τn,n+1
e f f , i+ 1

2

= g n2
m

|un+1
i+ 1

2

|un+1
i+ 1

2

(hn+1
i+ 1

2

)1/3
− g dsν

r

r (hn+1
i+1 −hn+1

i )+ zn
i+1 − zn

i

δx
.

3.4.2 Stability of the numerical scheme
The decoupled scheme (3.25) is known to maintain the positivity of the water height

under the following CFL type condition:

(Nx−1∑
i=1

|un
i+ 1

2
|
)
δt ≤ δx.
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Furthermore the well-balanced behavior with respect to the preservation of the lake
at rest steady state holds. Indeed,

if

un
i+ 1

2

= 0,

hn
i + zn

i =C , with C ∈R+,
then


un+1

i+ 1
2

= un
i+ 1

2

,

hn+1
i = hn

i ,

zn+1
i = zn

i .

The purpose hereafter is to show that discrete potential and kinetic energies hold for
this proposed scheme. The following result states that the scheme satisfies a discrete
counterpart of the kinetic energy.

Lemma 3.1 (Discrete kinetic energy). A solution to the scheme (3.25) satisfies the
following equality, for n ∈ {0, · · · , Nt −1} and i ∈ {1, · · · , Nx −1}:

1

δt

1

2
r
(
hn+1

i+ 1
2

(un+1
i+ 1

2
)2 −hn

i+ 1
2

(un
i+ 1

2
)2)+ 1

δx
r

1

2
((hu u2)n

i+1 − (hu u2)n
i )

+ g r hn+1
i+ 1

2
un+1

i+ 1
2

1

δx
(hn+1

i+1 + zn
i+1 −hn+1

i − zn
i )

=−r g hn+1
i+ 1

2
Sn,n+1

i+ 1
2

un+1
i+ 1

2
−Rn+1

i+ 1
2

, (3.27)

where (hu u2)n
i = (hu)n

i (un
i− 1

2

)2 if (hu)n
i ≥ 0 or (hu u2)n

i = (hu)n
i (un

i+ 1
2

)2 otherwise and

Rn+1
i+ 1

2

≥ 0 under the CFL like restriction:

∀ 1 ≤ i ≤ Nx −1, δt ≤
δx hn+1

i+ 1
2

((hu)n
i+1)−+ ((hu)n

i )−
. (3.28)

Sketch of proof. The computations mimic the technique used in the continuous
problem see (3.5); they consist in multiplying the discrete momentum equation by
r un+1

i+ 1
2

and using the discrete mass balance on the dual cells (3.26). The remainder of

the proof is an easy adaptation of Herbin, Latché, and Nguyen 2018, Lemma 3.2.

A discrete potential energy is also satisfied by the scheme.

Lemma 3.2 (Discrete potential energy). A solution to the scheme (3.25) satisfies the
following inequality, for i ∈ {1, · · · , Nx} and n ∈ {0, · · · , Nt −1}:

1

δt

(
(Ep )n+1

i − (Ep )n
i

)+ 1

δx

[1

2
r g ((h2u)n

i+ 1
2
− (h2u)n

i− 1
2

)+ 1

2
r g (hn

i )2(un
i+ 1

2
−un

i− 1
2

)
]

+ g

1−φ
1

δx
((qb)n,n+1

i+ 1
2

− (qb)n,n+1
i+ 1

2

)(r hn+1
i + zn+1

i )

+ r g zn
i

1

δx
((hu)n

i+ 1
2
− (hu)n

i− 1
2

) ≤−r g
1
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((hu)n
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2
− (hu)n

i− 1
2

)(hn+1
i −hn

i ), (3.29)
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with (Ep )i = 1
2 r g h2

i + 1
2 g z2

i + r g hi zi and (h2u)n
i+ 1

2

= h2
i un

i+ 1
2

if un
i+ 1

2

≥ 0 or (h2u)n
i+ 1

2

=
h2

i+1un
i+ 1

2

otherwise.

Proof. Multiplying the discrete mass equation (3.25a) by r g hn+1
i and following the

proof of Lemma 1.4 yields

1

δt

1

2
g r

(
(hn+1

i )2− (hn
i )2)+ 1

δx

1

2
r g ((h2u)n

i+ 1
2
− (h2u)n

i− 1
2

)+ 1

2
r g (hn

i )2 1

δx
(un
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2
−un
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2

)

=−(Rh)n+1
i ,

with

(Rh)n+1
i = 1

δt

1

2
r g (hn+1

i −hn
i )2+ r g
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[
(hn

i+1−hn
i )2((hu)n
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2

))−+(hn
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i )2((hu)n
i− 1

2
))−

]
+ r g

δx
((hu)n

i+ 1
2
− (hu)n

i− 1
2

)(hn+1
i −hn

i )

Since ((hu)n
i− 1

2

))− ≥ 0, we get

(Rh)n+1
i ≥ r g

1

δx
((hu)n

i+ 1
2
− (hu)n

i− 1
2

)(hn+1
i −hn

i ).

Then, multiplying the discrete Exner equation (3.25c) by g (r hn+1
i + zn+1

i ) we get:

1

δt

1

2
g
(
(zn+1

i )2 − (zn
i )2)+ 1

δt
(zn+1

i − zn
i )r g hn+1

i

+ 1

1−φg (r hn+1
i + zn+1
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1

δx
((qb)n,n+1

i+ 1
2

− (qb)n,n+1
i+ 1

2

) =− 1

δt

1

2
g (zn+1

i − zn
i )2,

where we use the identity 2ab = a2 +b2 − (a −b)2.
Then the second term of the left hand-side can be written as follows:

1

δt
(zn+1

i − zn
i )r g hn+1

i = 1

δt
r g

(
zn+1

i hn+1
i − zn

i hn
i

)− 1

δt
(hn+1

i −hn
i )r g zn

i .

Thus thanks to the discrete mass equation, we find

− 1

δt
(hn+1

i −hn
i )r g zn

i = r g zn
i

1

δx
((hu)n

i+ 1
2
− (hu)n

i− 1
2

).

Finally reordering all the terms we get the desired result which concludes the proof.

At this stage, following the technique introduced in Herbin, Latché, Nasseri, et al.
2019, a discrete local energy defined on a primal cell i is obtained from a discrete
potential and a discrete local kinetic energy on the cell i . We denote by (Ek )i the local
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kinetic energy on the cell ]xi− 1
2

, xi+ 1
2

[ defined by:

(Ek )i = 1

2
r
(1

2
hi+ 1

2
(u2)i+ 1

2
+ 1

2
hi− 1

2
(u2)i− 1

2

)
.

Thanks to (3.27) and under the condition (3.28), (Ek )i satisfies the following discrete
inequality:

1
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Then gathering this inequality with the equation (3.29), we obtain the following dis-
crete energy inequality:
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,

and where the identity 2ai = (ai+ j + ai )− (ai+ j − ai ) is used several times for any
discrete scalar unknown (ai )1,··· ,Nx .
Unfortunately the current definition of the discrete stabilized friction Sn,n+1

i+ j
2

does not

satisfy the following inequality:

δx r hn+1
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≥ 0;
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because of the segregated time discretization taken on the term S f .

3.5 Numerical experiments
Numerical experiments are now performed to test the performance of the decoupled

scheme (3.25) and verify the behavior of the algebraic model. We evidence numerically
the limitations of the classical formulae with respect to the FMNZ formula.

3.5.1 Test 1: transcritical steady state
We consider in this first test a steady state solution of the shallow water equation

posed on the domain [0,10]. The initial data are defined as in Fernàndez-Nieto, Lucas,
Morales De Luna, et al. 2014, by:

(hu)(x,0) = 0.6

z(x,0) = 0.1+0.1 e−(x−5)2
,

h(x,0)+ z(x,0) = 0.4

We set (hu)(x = 0,0) = 0.6 for the left boundary conditions and h(x = 10,0) = 0.4 on
the right, the other boundaries are free.

Firstly we let the water flow at this steady state without friction effect, and with no
evolution of the sediment layer taken into account. Hence only the shallow water
equations are solved. After a simulation time T ≥ 15 the numerical solution reaches
an equilibrium regime known as the transcritical steady state where the wave speed is
equal to the flow velocity. The result is plotted in Figure 3.3 below: After this regime we
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Figure 3.3 – Transcritical steady state: Free surface at time T = 15 with δt = δx/5 using
200 cells.

activate the evolution of the sediment bed solving the Exner equation with the Grass
and Meyer-Peter & Müller formulae to compute sediment bedload qb . The physical
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parameters are chosen r = 0.34, ds = 0.001, θc = 0.047, nm = 0.01, Ag = 0.005 and
m = 3. The purpose is to compare the numerical solution obtained using the stabilized
friction term S f against the one computed by the Manning friction law. Figures 3.4
and 3.5 illustrate respectively the evolution of the free surface and sediment depth
after the equilibrium state taking into account the kind of sediment transport flux at
time T = 20 and T = 30.
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(d) T = 30 using algebraic friction

Figure 3.4 – Classical models: Free surface after the steady state regime with friction
effect.

The figures 3.4 and 3.5 show very similar results obtained with the Manning friction
term compared to the results computed from the stabilized friction. This good agree-
ment encourages the use of a regularized friction term. One can also observe that the
erosion rate caused by the Grass formula is more important and grows significantly
with respect to the time compared to the Meyer-Peter & Müller formula since for the
Grass formula the sediment transport process begins at the same time as the water
flow.

3.5.2 Test 2: inaccuracy of the classical bedload formulae
The attempt of this test is to confirm that the FMNZ formula is relevant and more

efficient than the classical formulae to simulate a sediment transport motion even
with a different discretization scheme than that of Fernàndez-Nieto, Morales De Luna,
Narbona-Reina, et al. 2017. To further understand the limitation of the usual bedload
transport, we keep the water flow at rest that means we set u = 0 and h0(x) = 0.2−z0(x)

138



3 A staggered scheme for the one-dimensional shallow water flow and sediment
transport with a stabilized friction term – 3.5 Numerical experiments

 0.09

 0.1

 0.11

 0.12

 0.13

 0.14

 0.15

 0.16

 0.17

 0.18

 0.19

 0.2

 0  2  4  6  8  10

z

x

MPM
Grass

equilibrium

(a) T = 20 using Manning friction

 0.08

 0.1

 0.12

 0.14

 0.16

 0.18

 0.2

 0  2  4  6  8  10

z

x

MPM
Grass

equilibrium

(b) T = 20 using algebraic friction

 0.08

 0.1

 0.12

 0.14

 0.16

 0.18

 0.2

 0  2  4  6  8  10

z

x

MPM
Grass

equilibrium

(c) T = 30 using Manning friction

 0.08

 0.1

 0.12

 0.14

 0.16

 0.18

 0.2

 0  2  4  6  8  10

z

x

MPM
Grass

equilibrium

(d) T = 30 using algebraic friction

Figure 3.5 – Classical models: Evolution of the sediment depth after the steady state
regime with friction effect.

where the profile of z0(x) is defined on the domain [0,1] by:

z0(x) =


x − 1

3 if 1
3 ≤ x ≤ 1

2 ,
2
3 −x if 1

2 ≤ x ≤ 2
3 ,

0 otherwise

The computation uses the physical parameters ds = 0.001, r = 0.34, θc = 0.047,
nm = 0.01 and k = 10 and the Meyer-Peter & Müller (MPM) and FMNZ formulae
for varying friction angles δ. Figure 3.6 shows the evolution of the sediment depth
when the water flow is at rest computed from the MPM and FMNZ formulae for the
angles δ= 50 and δ= 30. As one should observe in Figure 3.6, the MPM formula refers
to the initial legend, leads to a fixed bed when the water flow is at rest unlike the
FMNZ formula. For this latter, it appears that for a friction angle smaller than 45 which
corresponds to the repose angle of the initial profile, the sediment is transported while
for a value of δ larger than 45 the sediment bed does not move.

3.5.3 Test 3: adapted boundary conditions test case
The objective of the present test is to highlight the influence of the boundary condi-

tions used in the computation of the water flow. We consider the initial data used by
Fernàndez-Nieto, Morales De Luna, Narbona-Reina, et al. 2017 where the sediment

139



3 A staggered scheme for the one-dimensional shallow water flow and sediment
transport with a stabilized friction term – 3.5 Numerical experiments

-0.02

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 0.14

 0.16

 0.18

 0  0.2  0.4  0.6  0.8  1

z

x

initial

delta = 50

delta = 30

-0.02

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 0.14

 0.16

 0.18

 0  0.2  0.4  0.6  0.8  1

z

x

initial

delta = 50

delta = 30

Figure 3.6 – Water flow at rest: Evolution of the sediment depth at time T = 5 on the
top and T = 50 on the bottom using 200 cells and with δt = δx/5

depth is given by:

z0(x) =
{

0.1+0.1
(
1+cos

( x−0.4
0.2 π

))
if x ∈ [0.2,0.6]

0.1 otherwse

The others initial conditions are h0(x) = 1.1− z0(x) and (hu)(x,0) = 1.4 for x ∈ [0,1].
The right boundary conditions are kept at h(1, t ) = 1, u(1, t ) = 1.4/h(1, t ) and for the left
boundary (hu)(0, t ) = 1.4. The friction angle is set to δ= 45 while the others physical
parameters remain unchanged. According to the friction term the obtained results
at time T = 200 are shown in Figures 3.7 and 3.8 above. Both figures illustrate more
the influence of the boundary conditions for the computation of the water height and
sediment depth. These results show also that both Manning and stabilized frictions
produce similar features by means of a suitable boundary conditions for a regular
sediment bed. This observation leads us to think that the kind of friction source term
does not play a relevant role in the sediment transport process.

140



3 A staggered scheme for the one-dimensional shallow water flow and sediment
transport with a stabilized friction term – 3.5 Numerical experiments

 1.05

 1.055

 1.06

 1.065

 1.07

 1.075

 1.08

 1.085

 1.09

 1.095

 1.1

 1.105

 0  0.2  0.4  0.6  0.8  1

h
+

z

x

initial
algebraic
Manning

 0.08

 0.1

 0.12

 0.14

 0.16

 0.18

 0.2

 0.22

 0.24

 0.26

 0.28

 0.3

 0  0.2  0.4  0.6  0.8  1

z

x

initial
algebraic
Manning

Figure 3.7 – Free boundary conditions: on the top the free surface and sediment depth
on the bottom using 800 cells and with δt = δx/5.
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Figure 3.8 – Adapted boundary conditions: on the top the free surface and sediment
depth on the bottom using 800 cells and with δt = δx/5.
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3.5.4 Test 4: discontinuity movable bed
Now we consider also the test case proposed in Fernàndez-Nieto, Morales De Luna,

Narbona-Reina, et al. 2017 which consists in a discontinuity movable bed where the
sediment depth and the height are initialized on the domain [0,10] as follows:

(hu)(x,0) = 1.5

h(x,0) = 1− z(x,0)

z(x,0) =
{

0.2 if 4 ≤ x ≤ 6

0.1 otherwise

The computation uses 800 cells with a constant time set δt = δx/5 and with the same
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Figure 3.9 – Profile of the free surface and sediment depth at time T = 0

physical parameters given above. The boundary conditions are (hu)(0, t) = 1.5 for
the left and h(10, t) = 1, u(10, t) = 1.5/h(10, t) for the right. At time T = 2000 and for
varying the friction angles we get the following results:
In Figure 3.10 (resp Figure 3.11) one can remark that the erosion rate is more important
for smaller values of the friction angle δ. We see also that the friction terms Manning
or stabilized do not have a notable difference for the sediment depth as for the case
of regular bed shown in Figure 3.8. While for the free surface the Manning friction
produces a slightly high height that the algebraic one tries to stabilize.

Below we consider the same configuration varying only the parameter k. The goal is
to show the correspondance between the MPM formula of the sediment transport and
the FMNZ formula for certain parameters. We can see in Figure 3.11 that the results
computed from the MPM formula match perfectly the ones obtained by the FMNZ
formula for δ = 89 and k = 8 as emphasized in Fernàndez-Nieto, Morales De Luna,
Narbona-Reina, et al. 2017.

Finally we perform a short comparison between the result obtained by the present
staggered scheme with an algebraic friction term against to the result presented in
Fernàndez-Nieto, Morales De Luna, Narbona-Reina, et al. 2017. Therein the authors
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Figure 3.10 – Movable discontinuity bed: Free surface on the top and sediment depth
on the bottom for k = 10

propose a stabilized friction type term resulting of a formal deduction of the Saint-
Venant-Exner model. In addition they use an approximate Riemann type solver
developed in Castro Dìaz, Fernàndez-Nieto, and Ferreiro 2008 for the numerical
approximation. Doing so, a screen capture from the reference paper Fernàndez-Nieto,
Morales De Luna, Narbona-Reina, et al. 2017 showing the evolution of the sediment
layer is presented here. In Figure 3.12 below we show the results for both staggered
and approximate Riemann solver strategies by means of a zoom of the regions of high
variations of the sediment depth. As one can observe both figures illustrate:

− the equivalence between "classical" definition which refers to the MPM formula
and FMNZ formula for the parameters δ= 89 and k = 8.

− the front shock progress in the downstream for the friction angle δ= 89 and the
commonly behavior for the others values of δ.

Note that in these simulations the friction terms (algebraic or formal deduction) yield
similar results. However the sediment transport flux formula plays a relevant role
and yields sediment profiles which are more realistic: see Fernàndez-Nieto, Morales
De Luna, Narbona-Reina, et al. 2017 for a comparison with experimental data. We
note also the improvement of the decoupled staggered scheme for this complex test
case.
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Figure 3.11 – Link between MPM&FMNZ: Free surface on the top and sediment depth
on the bottom resulting of an algebraic friction with k = 8
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Abstract. We address in this chapter a model for the simulation of turbulent de-
flagrations in industrial applications. The flow is governed by the Euler equations
for a variable composition mixture and the combustion modelling is based on a phe-
nomenological approach: the flame propagation is represented by the transport of the
characteristic function of the burnt zone, where the chemical reaction is complete;
outside this zone, the atmosphere remains in its fresh state. Numerically, we approxi-
mate this problem by a penalization-like approach, i.e. using a finite conversion rate
with a characteristic time tending to zero with the space and time steps. The numeri-
cal scheme works on staggered, possibly unstructured, meshes. The time-marching
algorithm is of segregated type, and consists in solving in a first step the chemical
species mass balances and then, in a second step, mass, momentum and energy
balances. For this latter stage of the algorithm, we use a pressure correction technique,
and solve a balance equation for the so-called sensible enthalpy instead of the total
energy balance, with corrective terms for consistency. The scheme is shown to satisfy
the same stability properties as the continuous problem: the chemical species mass
fractions are kept in the [0,1] interval, the density and the sensible internal energy
stay positive and the integral over the computational domain of a discrete total energy
is conserved. In addition, we show that the scheme is in fact conservative, i.e. that
its solution satisfy a conservative discrete total energy balance equation, with space
and time discretizations which are unusual but consistent in the Lax-Wendroff sense.
Finally, we observe numerically that the penalization procedure converges, i.e. that
making the chemical time scale tend to zero allows to converge to the solution of
the target (infinitely fast chemistry) continuous problem. Tests also evidence that
the scheme accuracy dramatically depends on the discretization of the convection
operator in the chemical species mass balances.

Keywords Finite-volume scheme, staggered discretization, pressure correction,
compressible flows, reactive flows.
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4.1 Problem position
In this paper, we study a numerical scheme for the computation of large scale

turbulent deflagrations occurring in a partially premixed atmosphere. In usual situ-
ations, such a physical phenomena is driven by the progress in the atmosphere of a
shell-shaped thin zone, where the chemical reaction occurs and which thus separates
the burnt area from fresh gases; this zone is called the flame brush. The onset of
the chemical reaction is due to the temperature elevation, so the displacement of
the flame brush is driven by the heat transfers inside and in the neighbour of this
zone. Modelling of deflagrations still remains a challenge, since the flame brush has
a very complex structure (sometimes presented as fractal in the literature), due to
thermo-convective instabilities or turbulence Poinsot and Veynante 2005; Peters 2000.
Whatever the modelling strategy, the problem thus needs a multiscale approach, since
the local flame brush structure is out of reach of the computations aimed at simulating
the flow dynamics at the observation scale, i.e. the whole reactive atmosphere scale.
A possible way to completely circumvent this problem is to perform an explicit compu-
tation of the flame brush location, solving a transport-like equation for a characteristic
function of the burnt zone; such an approach transfers the modelling difficulty to
the evaluation of the flame brush velocity (or, more precisely speaking, to the relative
velocity of the flame brush with respect to the fresh gases), by an adequate closure
relation, and the resulting model is generally referred to as a Turbulent Flame veloc-
ity Closure (TFC) model Zimont 2000. The transport equation for the characteristic
function of the burnt zone is called in this context the G-equation, its unknown being
denoted by G Peters 2000. Such a modelling is implemented in the in-house software
P2REMICS (for Partially PREMIxed Combustion Solver) developed, on the basis of
the software components library CALIF3S (for Components Adaptative Library For
Fluid Flow Simulations, see CALIF3S n.d.) at the French Institut de Radioprotection et
Sûreté Nucléaire (IRSN) for safety evaluation purposes; this is the context of the work
presented in the present paper.

Usually, TFC models apply to perfectly premixed flows ( i.e. flows with constant
initial composition), and the chemical state of the flow is governed by the value of G
only: G ∈ [0,1], for G ≥ 0.5, the mixture is supposed to be in its fresh (initial) state and
G < 0.5 is supposed to correspond to the burnt state; in both cases, the composition
of the gas is known (it is equal to the initial value in the fresh zones, and to the state
resulting from a complete chemical reaction in the burnt zone).

However, for partially premixed turbulent flows ( i.e. flows with non-constant
initial composition), the situation is longer complex, since the composition of the
mixture can no more be deduced from the value of G . An extension for this situation,
in the inviscid case, is proposed in Beccantini and Studer 2010. The line followed to
formulate this model is to write transport equations for the chemical species initially
present in the flow, as if no chemical reaction occured, and then to compute the actual
composition in the burnt zone ( i.e. the part of the physical space where G < 0.5) as
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the chemical equilibrium composition, thus supposing an infinitely fast reaction. This
model is referred to in the following as the “asymptotic model", and is recalled in the
first part of Section 4.2.

We propose here an alternate extension, which consists in keeping the classical
reactive formulation of the chemical species mass balance, but evaluating the reaction
term as a function of G : it is set to zero in the fresh zone (G ≥ 0.5), and to a finite
(but possibly large) value in the burnt zone (G < 0.5). This model is referred to as the
“relaxed model"; it is in fact more general, as it may be readily extended to cope with
diffusion terms, while the “asymptotic model" cannot (to this purpose, a balance for
the actual mass fractions is necessary). We then build a numerical scheme, based
on a staggered discretization of the unknowns, for the solution of the relaxed model;
this algorithm is of fractional step type, and employs a pressure correction technique
for hydrodynamics. The balance energy solved by the scheme is the so-called (non
conservative) sensible enthalpy balance, with corrective terms in order to ensure the
weak consistency (in the Lax-Wendroff senses) of the scheme. It enjoys the same
stability properties as the continuous model: positivity of the density and, thanks to
the choice of the enthalpy balance, the internal energy, conservation of the total energy,
chemical species mass fractions lying in the interval [0,1]. In addition, it is shown to
be in fact conservative: indeed, its solutions satisfy a discrete conservative total energy
balance whose time and space discretization is non-standard, but weakly consistent
with its continuous counterpart. This algorithm is an extension to the reactive case of
the numerical scheme for compressible Navier-Stokes equations described and tested
in Grapsas, Herbin, Kheriji, et al. 2016.

As the reaction term gets stiffer, the relaxed model should boil down to the asymp-
totic one, for which a closed form of the solution of Riemann problems is available.
Numerical tests are performed which show that indeed this is the case. In addition,
we observe that the accuracy of the scheme (for this kind of application) is highly
dependent on the numerical diffusion introduced by the scheme in the mass balance
equation for the chemical species, comparing the results for three approximations of
the convection operator in these equations: the standard upwind scheme, a MUSCL-
like scheme introduced in Piar, Babik, Herbin, et al. 2013 and a first order scheme
designed to reduce diffusion proposed in Després and Lagoutière 2002.

The presentation is structured as follows. We first introduce the asymptotic and the
relaxed models in Section 4.2. Then we give an overview of the content of this paper
in Section 4.3, writing the scheme in the time semi-discrete setting and stating its
stability and consistency property. The fully discrete setting is given in two steps, first
describing the space discretization (Section 4.4) and then the scheme itself (Section
4.5). The conservativity of the scheme is shown in Section 4.6. Finally, numerical
experiments are presented in Section 5.5.
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4.2 The physical models
We begin with the description of the asymptotic model introduced in Beccantini

and Studer 2010 and then turn to the relaxed model proposed in the present work.

The asymptotic model - For the sake of simplicity, only four chemical species are
supposed to be present in the flow, namely the fuel (denoted by F ), the oxydant (O),
the product (P ) of the reaction, and a neutral gas (N ). A one-step irreversible total
chemical reaction is considered, which is written:

νF F +νOO +N → νP P +N ,

where νF , νO and νP are the molar stoichiometric coefficients of the reaction. We
denote by I the set of the subscripts used to refer to the chemical species in the
flow, so I = {F,O, N ,P } and the set of mass fractions of the chemical species in the
flow reads {yi , i ∈I } ( i.e. {yF , yO , yN , yP }). We now define the auxiliary unknowns
{ỹi , i ∈I } as the result of the (inert) transport by the flow of the initial state, which
means that the {ỹi , i ∈I } are the solutions to the following system of equation:

∂t (ρ ỹi )+div(ρ ỹi u) = 0, ỹi (x ,0) = yi ,0(x) for i ∈I , (4.1)

where ρ stands for the fluid density, u for the velocity, and yi ,0(x) is the initial mass
fraction of the chemical species i in the flow. These equations are supposed to be
posed over a bounded domain Ω of Rd , d ∈ {1,2,3} and a finite time interval (0,T ).
The initial conditions are supposed to verify

∑
i∈I yi ,0 = 1 everywhere inΩ, and this

property is assumed to be valid for any t ∈ (0,T ), which is equivalent with the mixture
mass balance, given below. The characteristic function G is supposed to obey the
following equation:

∂t (ρG)+div(ρGu)+ρuu f |∇G| = 0, (4.2)

associated to the initial conditions G = 0 at the location where the flame starts and
G = 1 elsewhere. The quantity ρu is a constant density, which, from a physical point
of view, stands for a characteristic value for the unburnt gases density. The chemical
mass fractions are now computed as:∣∣∣∣∣∣∣∣∣

if G > 0.5, yi = ỹi for i ∈I ,

if G ≤ 0.5, yF = νF WF z̃+, yO = νOWO z̃−, yN = ỹN ,

with z̃ = 1

νF WF
ỹF − 1

νOWO
ỹO .

(4.3)

In these relation, z̃+ and z̃− stand for the positive and negative part of z̃, respectively,
i.e. z̃+ = max(z̃,0) and z̃− = −min(z̃,0), and, for i ∈ I , Wi is the molar mass of
the chemical species i . The physical meaning of Relation (4.3) is that the chemical
reaction is supposed to be infinitely fast, and thus that the flow composition is stuck
to the chemical equilibrium composition in the so-called burnt zone, which explains
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why the model is qualified as “asymptotic". The product mass fraction is given by
yP = 1− (yF + yO + yN ). The flow is governed by the Euler equations:

∂tρ+div(ρu) = 0, (4.4a)

∂t (ρui )+div(ρui u)+∂i p = 0, i = 1,d , (4.4b)

∂t (ρE)+div(ρEu)+div(pu) = 0, (4.4c)

p = (γ−1)ρes , E = 1

2
|u|2 +e, e = es +

∑
i∈I

yi∆h0
f ,i (4.4d)

where p stands for the pressure, E for the total energy, e for the internal energy, es for
the so-called sensible internal energy and, for i ∈I ,∆h0

f ,i is the formation enthalpy of
the chemical species i . The equation of state (4.4d) supposes that the fluid is a perfect
mixture of ideal gases, with the same iso-pressure to iso-volume specific heat ratio
γ> 1. This set of equations is complemented by homogeneous Neumann boundary
conditions for the velocity:

u ·n = 0 a.e. on ∂Ω, (4.5)

where ∂Ω stands for the boundary ofΩ and n its outward normal vector.

The “relaxed" model – This model retains the original form governing equations
for reactive flows: a a transport/reaction equation is written for each of the chemical
species mass fractions; the value of G controls the reaction rate ω̇, which is set to
zero when G ≥ 0.5, and takes non-zero (and possibly large) values otherwise. The
unknowns {yi , i ∈I } are thus now solution to the following balance equations:

∂t (ρyi )+div(ρyi u) = ω̇i , ỹi (x ,0) = yi ,0(x) for i ∈I , (4.6)

where the reactive term ω̇i is given by:

ω̇i = 1

ε
ζi νi Wi ω̇, with ω̇= η(yF , yO) (G −0.5)−

and η(yF , yO) = min(
yF

νF WF
,

yO

νOWO
), (4.7)

with ζF = ζO =−1, ζP = 1 and ζN = 0. Note that, since νF WF +νOW0 = νP WP , we have∑
i∈I ω̇i = 0, which, summing on i ∈ I the species mass balance, allows to recover

the equivalence between the mass balance and the fact that
∑

i∈I yi = 1. The factor
η(yF , yO) is a cut-off function, which prevents the chemical species mass fractions
from taking negative values (and, consequently, values greater than 1, since their sum
is equal to 1).

The rest of the model is left unchanged.
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4.3 General description of the scheme and main
results

Time semi-discrete algorithm Instead of the total energy balance equation, the
scheme solves a balance equation for the sensible enthalpy hs = es +p/ρ, which is
formally derived as follows. The first step is to establish the kinetic energy balance
formally and subtract from (4.4c) to obtain a balance equation for the internal energy.
Thanks to the mass balance equation, for any regular function ψ

∂t (ρψ)+div(ρψu) = ρ∂tψ+ρu ·∇ψ.

Using twice this identity and then the momentum balance equation, we have for
1 ≤ i ≤ d :

1

2
∂t (ρu2

i )+ 1

2
div(ρu2

i u) = ρui∂t ui +ρui u ·∇ui = ui
[
∂t (ρui )+div(ρui u)

]=−ui∂i p,

and, summing for i = 1 to d , we obtain the kinetic energy balance:

1

2
∂t (ρ|u|2)+ 1

2
div(ρ|u|2u) = u · [∂t (ρu)+div(ρu ⊗u)

]=−u ·∇p.

Substituting the expression of the total energy in (4.4c), yields

∂t (ρe)+div(ρeu)+ 1

2
∂t (ρ|u|2)+ 1

2
div(ρ|u|2)+u ·∇p +pdiv(u) = 0,

which, using the kinetic energy balance, gives the total internal energy balance:

∂t (ρe)+div(ρeu)+pdiv(u) = 0. (4.8)

Using the linearity of the mass balance of the chemical species i , for any i ∈ I , we
derive the reactive energy balance:

∂t
[
ρ
( ∑

i∈I

∆h0
f ,i yi

)]+div
[
ρ
( ∑

i∈I

∆h0
f ,i yi

)
u

]= ∑
i∈I

∆h0
f ,i ω̇i =−ω̇θ. (4.9)

Subtracting (4.9) from (4.8) yields the sensible internal energy balance:

∂t (ρes)+div(ρesu)+pdiv(u) = ω̇θ. (4.10)

Finally, using the relation between the sensible energy and the sensible enthalpy, we
obtain the sensible enthalpy balance:

∂t (ρhs)+div(ρhsu)−∂t p −u ·∇p = ω̇θ. (4.11)

The numerical resolution of the mathematical model is realized by a fractional step
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algorithm, which implements a pressure correction technique for hydrodynamics in
order to separate the resolution of the momentum balance from the other equations
of the Euler system. Supposing that the time interval (0,T ) is split in N sub-intervals,
of constant length δt = T /N , the semi-discrete algorithm is given by:

Reactive step:

Gn+1 :
1

δt
(ρnGn+1 −ρn−1Gn)+div(ρnGk un)+ρuu f |∇Gn+1| = 0, (4.12a)

Y n+1
N :

1

δt
(ρn yn+1

N −ρn−1 yn
N )+div(ρn yk

N un) = 0. (4.12b)

zn+1 :
1

δt
(ρn zn+1 −ρn−1zn)+div(ρn zk un) = 0. (4.12c)

Y n+1
F :

1

δt
(ρn yn+1

F −ρn−1 yn
F )+div(ρn yk

F un) =
−1

ε
νF WF ω̇(yn+1

F , zn+1),
(4.12d)

Y n+1
P : yn+1

F + yn+1
O + yn+1

N + yn+1
P = 1. (4.12e)

(4.12f)

Euler step:

ũn+1 :

1

δt
(ρnũn+1

i −ρn−1un
i )+div(ρnũn+1

i un)

+
( ρn

ρn−1

)1/2
∂i pn = 0, i = 1, . . . ,d ,

(4.12g)

un+1

ρn+1

hn+1
s

pn+1

:

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1

δt
ρn(un+1

i − ũn+1
i )+∂i pn+1 −

√
ρn

ρn−1
∂i pn = 0, i ∈ �1,d�,

1

δt
(ρn+1 −ρn)+div(ρn+1un+1) = 0,

1

δt
(ρn+1hn+1

s −ρnhn
s )+div(ρn+1hn+1

s un+1)

− 1

δt
(pn+1 −pn)−un+1 ·∇pn+1 = ω̇n+1

θ +Sn+1,

pn+1 = γ−1

γ
ρn+1 hn+1

s .

(4.12h)

Equations (4.12a)-(4.12h) are solved successively, and the unknown for each equation
is specified before each equation. In the convection term of the equations of the
reactive step, the index k may take the value n (so the scheme is explicit) or n +1 (so
the scheme is implicit). The unknown z is an affine combination of yF and yO , defined
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so that the reactive term cancels:

z = 1

νF WF
yF − 1

νOWO
yO . (4.13)

Thus the value of yn+1
O is deduced from yn+1

F and zn+1, which allows to express ω̇
in (4.12d) as a function of yn+1

F and zn+1, instead of yn+1
F and yn+1

O as suggested by
Relation (4.7). In addition, we have:

η(yn+1
F , yn+1

O ) = min(
yn+1

F

νF WF
,

yn+1
O

νOWO
)

=

∣∣∣∣∣∣∣∣∣∣

1

νF WF
yn+1

F if zn+1 ≤ 0,

1

νOWO
yn+1

O = 1

νF WF
yn+1

F − zn+1 otherwise.

Hence, because of the specific form of the function η, the right hand side of (4.12d)
boils down to an affine term, even if η vanishes when yF or yO vanishes, and the
scheme is fully implicit in time with respect to the reaction term. This is the motivation
for the choice of the form of η. It is fundamental to remark that Equations (4.12b)-
(4.12e) are equivalent to the following system:

1

δt
(ρn yn+1

i −ρn−1 yn
i )+div(ρn yk

i un) = 1

ε
ζiνi Wi ω̇(yn+1

F , yn+1
O ), i ∈I , (4.14)

where we recall that ζF = ζO =−1, ζP = 1 and ζN = 0. Indeed, dividing the fuel mass
balance equation (4.12d) by νF WF , substracting Equation (4.12c) and finally multi-
plying by νOWO yields the desired mass balance equation for the oxydant chemical
species. Finally, we suppose that the product mass balance holds:

1

δt
(ρn yn+1

P −ρn−1 yn
P )+div(ρn yk

P un) = 1

ε
νP WP ω̇(yn+1

F , yn+1
O ). (4.15)

Since the sum of the chemical reaction terms vanishes, we have for Σ= yF + yO + yP +
yN , summing all the chemical species mass balances,

1

δt
(ρnΣn+1 −ρn−1Σn)+div(ρnΣk un) = 0, (4.16)

and this equation may equivalently replace the product mass balance equation (4.15).
Thanks to the mixture balance, we see that, provided that Σn satisfies Σn = 1 every-
where in Ω, the solution to Equation (4.16) is Σn+1 = 1 everywhere in Ω. Since the
initialization yields Σ0 = 1, this last equality is indeed true, and (4.15) is equivalent to
(4.12e). Finally, note that, when the chemical step is performed, the mass balance at
step n +1 is not yet solved; hence the (unusual) backward time shift for the densities
and for the mass fluxes in the equations of this step.
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Equations (4.12g)-(4.12h) implement a pressure correction technique, where the
correction step couples the velocity correction equation, the mass balance and the
sensible enthalpy balance. This coupling ensures that the pressure and velocity are
kept constant through the contact discontinuity associated to compositional non-
reactive Euler equations (precisely speaking, the usual contact discontinuity, already
present in 1D equations, but not slip lines); for this property to hold, it is necessary that
all chemical species share the same heat capacity ratio γ. The term Sn+1

K in the sensible
enthalpy balance equation is a corrective term which is necessary for consistency;
schematically speaking, it compensates the numerical dissipation which appears in a
discrete kinetic energy balance that is obtained from the discrete momentum balance.
Its expression is given in Section 4.5, and its derivation is explained in Section 4.6,
where the conservativity of the scheme is discussed.

Space discretization The space dicretization is performed by a finite volume tech-
nique, using a staggered arrangement of the unknowns (the scalar variables are ap-
proximated at the cell centers and the velocity components at the face centers), using
either a MAC scheme (for structured discretizations) or the degrees of freedom of low-
order non-conforming finite elements: Crouzeix-Raviart Crouzeix and P. Raviart 1973
for simplicial cells and Rannacher-Turek Rannacher and Turek 1992 for quadrangles
(d = 2) or hexahedra (d = 3). For the Euler equations ( i.e. Steps (4.12g)- (4.12h)),
upwinding is performed by building positivity-preserving convection operators, in the
spirit of the so-called Flux-Splitting methods, and only first-order upwinding is imple-
mented. The pressure gradient is built as the transpose (with respect to the L2 inner
product) of the natural velocity divergence operator. For the balance equations for the
other scalar unknowns, the time discretization is implicit when first-order upwinding
is used in the convection operator (in other words, k = n +1 in (4.12a)-(4.12d)) or
explicit (k = n in (4.12a)-(4.12d)) when a higher order (of MUSCL type, cf. Appendix
4.A) flux or an anti-diffusive flux (cf. Appendix 4.B) is used.

Properties of the scheme First, the positivity of the density is ensured by construc-
tion of the discrete mass balance equation, i.e. by the use of a first order upwind
scheme. In addition, the physical bounds of the mass fractions are preserved thanks
to the following (rather standard) arguments: first, building a discrete convection
operator which vanishes when the convected unknown is constant thanks to the dis-
crete mass balance equation ensures a positivity-preservation property Larrouturou
1991, under a CFL condition if an explicit time approximation is used; second, the
discretization of the chemical reaction rate ensures either that it vanishes when the
unknown of the equation vanishes (for yF and yO), or that it is non-negative (for yP ).
Consequently, mass fractions are non-negative and, since their sum is equal to 1 (see
above), they are also bounded by 1.

The positivity of the sensible energy stems from two essential arguments: first, a
discrete analog of the internal energy equation (4.8) may be obtained from the discrete
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sensible enthalpy balance, by mimicking the continuous computation; second, this
discrete relation may be shown to have only positive solutions, once again thanks to
the consistency of the discrete convection operator and the mass balance. This holds
provided that the equation is exothermic (ω̇θ ≥ 0) and thanks to the non-negativity of
Sn+1 (see below).

In order to calculate correct shocks, it is crucial for the scheme to be consistent with
the following weak formulation of the problem:

∀φ ∈C∞
c (Ω× [0,T )

)
,∫ T

0

∫
Ω

[
ρ∂tφ+ρu ·∇φ]

dx dt +
∫
Ω
ρ0(x)φ(x ,0)dx = 0,∫ T

0

∫
Ω

[
ρui∂tφ+ (ρuui ) ·∇φ+p∂iφ

]
dx dt

+
∫
Ω
ρ0(x)(ui )0(x)φ(x ,0)dx = 0, 1 ≤ i ≤ d ,∫ T

0

∫
Ω

[
ρE∂tφ+ (ρE +p)u ·∇φ]

dx dt +
∫
Ω
ρ0(x)E0(x)φ(x ,0)dx = 0,∫ T

0

∫
Ω

[
ρyi∂tφ+ρyi u ·∇φ]

dx dt +
∫ T

0

∫
Ω
ρ0(x)yi ,0(x)φ(x ,0)dx =

−
∫ T

0

∫
Ω
ω̇iφdx dt , 1 ≤ i ≤ d ,

p = (γ−1)ρes .

(4.17)

Remark that this system features the total energy balance equation and not the
sensible enthalpy balance equation, which is actually solved here. However, we show
in Section 4.6 that the solutions of the scheme satisfy a discrete total energy balance,
with a time and space dicretization which is unusual but allows however to prove the
consistency in the Lax-Wendroff sense. Finally, the integral of the total energy over the
domain is conserved, which yields a stability result for the scheme (irrespectively of
the time and space step, for this relation; recall however that the overall stability of
the scheme needs a CFL condition if an explicit version of the convection operator for
chemical species is used).

4.4 Meshes and unknowns
Let the computational domainΩ be an open polygonal subset of Rd , 1 ≤ d ≤ 3, with

boundary ∂Ω and let M be a decomposition ofΩ, supposed to be regular in the usual
sense of the finite element literature (e.g. Ciarlet 1991). The cells may be:

- for a general domainΩ, either convex quadrilaterals (d = 2) or hexahedra (d = 3)
or simplices, both type of cells being possibly combined in a same mesh,

- for a domain the boundaries of which are hyperplanes normal to a coordinate
axis, rectangles (d = 2) or rectangular parallelepipeds (d = 3) (the faces of which,
of course, are then also necessarily normal to a coordinate axis).

156



4 A staggered pressure correction numerical scheme to compute a travelling reactive
interface in a partially premixed mixture – 4.4 Meshes and unknowns

By E and E (K ) we denote the set of all (d −1)-faces σ of the mesh and of the element
K ∈M respectively. The set of faces included in the boundary ofΩ is denoted by Eext

and the set of internal edges ( i.e. E \Eext) is denoted by Eint; a face σ ∈ Eint separating
the cells K and L is denoted by σ= K |L. The outward normal vector to a face σ of K
is denoted by nK ,σ. For K ∈M and σ ∈ E , we denote by |K | the measure of K and by
|σ| the (d −1)-measure of the face σ. For any K ∈M and σ ∈ E (K ), we denote by dK ,σ

the Euclidean distance between the center xK of the mesh and the edge σ. For any
σ ∈ E , we define dσ = dK ,σ+dL,σ, if σ ∈ Eint and dσ = dK ,σ if σ ∈ Eext. The size of the
mesh is denoted by h. For 1 ≤ i ≤ d , we denote by E (i ) ⊂ E and E (i )

ext ⊂ Eext the subset
of the faces of E and Eext respectively which are perpendicular to the i th unit vector of
the canonical basis of Rd .

The space discretization is staggered, using either the Marker-And Cell (MAC)
scheme Harlow and Welsh 1965; Harlow and Amsden 1971, or nonconforming low-
order finite element approximations, namely the Rannacher and Turek (RT) element
Rannacher and Turek 1992 for quadrilateral or hexahedric meshes, or the lowest degree
Crouzeix-Raviart (CR) element Crouzeix and P. Raviart 1973 for simplicial meshes.

For all these space discretizations, the degrees of freedom for the pressure, the
density, the enthalpy, the mixture, fuel and neutral gas mass fractions and the flame
indicator are associated to the cells of the mesh M and are denoted by:{

pK , ρK , hK , yF,K , yN ,K , zK , GK , K ∈M
}
.

Let us then turn to the degrees of freedom for the velocity ( i.e. the discrete velocity
unknowns).

- Rannacher-Turek or Crouzeix-Raviart discretizations – The degrees of freedom
for the velocity components are located at the center of the faces of the mesh,
and we choose the version of the element where they represent the average of
the velocity through a face. The set of degrees of freedom reads:

{uσ, σ ∈ E }, of components {ui ,σ, σ ∈ E , 1 ≤ i ≤ d}.

- MAC discretization – The degrees of freedom for the i th component of the
velocity are defined at the centre of the faces of E (i ), so the whole set of discrete
velocity unknowns reads: {

ui ,σ, σ ∈ E (i ), 1 ≤ i ≤ d
}
.

For the definition of the schemes, we need a dual mesh which is defined as follows.

- Rannacher-Turek or Crouzeix-Raviart discretizations – For the RT or CR dis-
cretizations, the dual mesh is the same for all the velocity components. When
K ∈M is a simplex, a rectangle or a rectangular cuboid, for σ ∈ E (K ), we define
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DK ,σ as the cone with basis σ and with vertex the mass center of K (see Figure
4.1). We thus obtain a partition of K in m sub-volumes, where m is the number
of faces of the mesh, each sub-volume having the same measure |DK ,σ| = |K |/m.
We extend this definition to general quadrangles and hexahedra, by supposing
that we have built a partition still of equal-volume sub-cells, and with the same
connectivities; note that this is of course always possible, but that such a volume
DK ,σ may be no longer a cone; indeed, if K is far from a parallelogram, it may
not be possible to build a cone having σ as basis, the opposite vertex lying in
K and a volume equal to |K |/m (note that these dual cells do not need to be
constructed in the implementation of the scheme, only their volume is needed).
The volume DK ,σ is referred to as the half-diamond cell associated to K and σ.
For σ ∈ Eint, σ = K |L, we now define the diamond cell Dσ associated to σ by
Dσ = DK ,σ∪DL,σ; for an external faceσ ∈ Eext∩E (K ), Dσ is just the same volume
as DK ,σ.

- MAC discretization – For the MAC scheme, the dual mesh depends on the com-
ponent of the velocity. For each component, the MAC dual mesh only differs
from the RT or CR dual mesh by the choice of the half-diamond cell, which, for
K ∈M and σ ∈ E (K ), is now the rectangle or rectangular parallelepiped of basis
σ and of measure |DK ,σ| = |K |/2.

We denote by |Dσ| the measure of the dual cell Dσ, and by ε= Dσ|Dσ′ the dual face
separating two diamond cells Dσ and Dσ′ .

In order to be able to write a unique expression of the discrete equations for both
MAC and CR/RT schemes, we introduce the set of faces E (i )

S
associated with the degrees

of freedom of each component of the velocity (S stands for “scheme”):

E (i )
S

=
∣∣∣∣∣ E (i ) \E (i )

ext for the MAC scheme,
E \E (i )

ext for the CR or RT schemes.

Similarly, we unify the notation for the set of dual faces for both schemes by defining:

Ẽ (i )
S

=
∣∣∣∣∣ Ẽ (i ) \ Ẽ (i )

ext for the MAC scheme,
Ẽ \ Ẽ (i )

ext for the CR or RT schemes,

where the symbol ˜ refers to the dual mesh; for instance, Ẽ (i ) is thus the set of faces
of the dual mesh associated with the i th component of the velocity, and Ẽ (i )

ext stands
for the subset of these dual faces included in the boundary. Note that, for the MAC
scheme, the faces of Ẽ (i ) are perpendicular to a unit vector of the canonical basis of
Rd , but not necessarily to the i th one.
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Dσ

Dσ
′

σ
′
=

K|MK

L

M

|σ|σ
=

K
|Lǫ

= D
σ |D

σ ′

Dσ

K

L

σ = K|L

σ
′

ǫ = Dσ|Dσ
′

Figure 4.1 – Primal and dual meshes for the Rannacher-Turek and Crouzeix-Raviart
elements.

4.5 The scheme
In this section, we give the fully discrete form of the scheme. Even if it corresponds

to the reverse order with respect to the semi-discrete scheme given in (4.12), we begin
with the hydrodynamics (Section 4.5.1) and then turn to the mass balance step for
chemical species and the transport of the characteristic function for the burnt zone
(Section 4.5.2). This choice is due to the fact that the definition of the convection
operators for scalar variables necessitates to introduce the discretization of the mixture
mass balance equation first.
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4.5.1 Euler step
For 0 ≤ n < N , the step n+1 of the algorithm for the resolution of the Euler equations

reads:

Pressure gradient scaling step – Solve for (∇̃p)n+1:

∀σ ∈ E , (∇̃p
n+1

)σ =
( ρn

Dσ

ρn−1
Dσ

)1/2
(∇pn)σ. (4.18a)

Prediction step – Solve for ũn+1:

For 1 ≤ i ≤ d , ∀σ ∈ E (i )
S

,

1

δt
(ρn

Dσ
ũn+1

i ,σ −ρn−1
Dσ

un
i ,σ)+divDσ(ρnũn+1

i un)+ (∇̃p)n+1
i ,σ = 0. (4.18b)

Correction step – Solve for ρn+1, pn+1 and un+1:

For 1 ≤ i ≤ d , ∀σ ∈ E (i )
S

,

1

δt
ρn

Dσ
(un+1

i ,σ − ũn+1
i ,σ )+ (∇p)n+1

i ,σ − (∇̃p)n+1
i ,σ = 0, (4.18c)

∀K ∈M ,
1

δt
(ρn+1

K −ρn
K )+divK (ρu)n+1 = 0, (4.18d)

∀K ∈M ,
1

δt

[
ρn+1

K (hs)n+1
K −ρn

K (hs)n
K

]+divK (ρhsu)n+1

− 1

δt
(pn+1

K −pn
K )− (

u ·∇p
)n+1

K = (ω̇θ)n+1
K +Sn+1

K ,
(4.18e)

∀K ∈M , pn+1
K = γ−1

γ
(hs)n+1

K ρn+1
K . (4.18f)

The initial approximations for ρ−1, h0
s and u0 are given by the mean values of the

initial conditions over the primal and dual cells:

∀K ∈M , ρ−1
K = 1

|K |
∫

K
ρ0(x)dx and (hs)0

K = 1

|K |
∫

K
(hs)0(x),

∀σ ∈ E (i )
S

, 1 ≤ i ≤ d , u0
i ,σ = 1

|Dσ|
∫

Dσ
(u0(x))i dx .

Then, ρ0 is computed by the mass balance equation (4.18d) and p0 is computed by
the equation of state (4.18f).

We now define each of the discrete operators featured in System (4.18).

Mass balance equation Equation (4.18d) is a finite volume discretisation of the
mass balance (4.4a) over the primal mesh. For a discrete density field ρ and a discrete
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velocity field u, the discrete divergence is defined by:

divK (ρu) = 1

|K |
∑

σ∈E (K )
FK ,σ, FK ,σ = |σ| ρσuσ ·nK ,σ,

where uσ ·nK ,σ is an approximation of the normal velocity to the face σ outward K .
The definition of this latter quantity depends on the discretization: in the MAC case,
uσ ·nK ,σ = ui ,σ e(i ) ·nK ,σ for a faceσ of K perpendicular to e(i ), with e(i ) the i -th vector
of the orthonormal basis of Rd , and, in the CR and RT cases, uσ ·nK ,σ = uσ ·nK ,σ

for any face σ of K . The density at the face σ= K |L is approximated by the upwind
technique, so ρσ = ρK if uσ ·nK ,σ ≥ 0 and ρσ = ρL otherwise. Since we assume that
the normal velocity vanishes on the boundary faces, the definition is complete.

Convection operators associated to the primal mesh We may now define the
discrete convection operator of any discrete field z defined on the primal cell by

divK (ρzu) = 1

|K |
∑

σ∈E (K )
FK ,σ zσ,

where zσ is the upwind approximation with respect to the mass flux FK ,σ at the face σ.

Momentum balance equation and pressure gradient scaling We now turn to
the discrete momentum balance (4.18b). For the MAC discretization, but also for the
RT and CR discretizations, the time derivative and convection terms are approximated
in (4.18b) by a finite volume technique over the dual cells, so the convection term
reads:

divDσ(ρũi u) = divDσ

(
ũi (ρu)

)= 1

|Dσ|
∑

ε∈Ẽ (Dσ)

Fσ,εũi ,ε,

where Fσ,ε stands for a mass flux through the dual face ε, and ũi ,ε is a centered ap-
proximation of the i th component of the velocity ũ on ε. The density at the dual
cell ρDσ

is obtained by a weighted average of the density in the neighbour cells:
|Dσ|ρDσ

= |DK ,σ|ρK + |DL,σ|ρL for σ = K |L ∈ Eint, and ρDσ
= ρK for an external face

of a cell K . The mass fluxes (Fσ,ε)ε∈E (Dσ) are evaluated as linear combinations, with
constant coefficients, of the primal mass fluxes at the neighbouring faces, in such
a way that the following discrete mass balance over the dual cells is implied by the
discrete mass balance (4.18d):

∀σ ∈ E and n ∈N,
|Dσ|
δt

(ρn+1
Dσ

−ρn
Dσ

)+ ∑
ε∈E (Dσ)

F n+1
σ,ε = 0. (4.19)

This relation is critical to derive a discrete kinetic energy balance (see Section 4.6
below). The computation of the dual mass fluxes is such that the flux through a dual
face lying on the boundary, which is then also a primal face, is the same as the primal
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flux, that is zero. For the expression of these densities and fluxes, we refer to Gastaldo,
Herbin, Kheriji, et al. 2011; Herbin, Kheriji, and Latché 2014; Herbin and Latché 2010.
Since the mass balance is not yet solved at the velocity prediction stage, they have to
be built from the mass balance at the previous time step: hence the backward time
shift for the densities in the time-derivative term.

The term (∇p)i ,σ stands for the i -th component of the discrete pressure gradient at
the face σ. This gradient operator is built as the transpose of the discrete operator for
the divergence of the velocity, i.e. in such a way that the following duality relation
with respect to the L2 inner product holds:

∑
K∈M

|K |pK divK (u)+
d∑

i=1

∑
σ∈E (i )

S

|Dσ|ui ,σ(∇p)i ,σ = 0.

This leads to the following expression:

∀σ= K |L ∈ Eint, (∇p)i ,σ = |σ|
|Dσ|

(pL −pK )nK ,σ ·e(i ).

The scaling of the pressure gradient (4.18a) is necessary for the solution to the scheme
to satisfy a local discrete (finite volume) kinetic energy balance Grapsas, Herbin,
Kheriji, et al. 2016, Lemma 4.1.

Sensible enthalpy equation The equation is discretised in such a way that the
present enthalpy formulation is strictly equivalent to the internal energy formulation
of the energy balance equation used in Grapsas, Herbin, Kheriji, et al. 2016. Conse-
quently, the term −(

u ·∇p
)

K reads:

−(
u ·∇p

)
K = 1

|K |
∑

σ∈E (K )
|σ|uσ ·nK ,σ (pK −pσ),

where pσ is the upwind approximation of p at the face σ with respect to uσ ·nK ,σ. The
reaction heat, (ω̇θ)K , is written in the following way:

(ω̇θ)K =−
Ns∑

i=1
∆h0

f ,i (ω̇i )K =
(
νF WF∆h0

f ,F +νOWO∆h0
f ,O−νP WP∆h0

f ,P

)
ω̇K .

The definition of ω̇K is given in Section 4.5.2, and the definition of the corrective term
Sn+1

K is given in Section 4.6 (see Equation (4.30) and Remark 4.3 below).
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4.5.2 Chemistry step
For 0 ≤ n < N , the step n +1 for the solution of the transport of the characteristic

function of the burnt zone and the chemical species mass balance equations reads:

Computation of the burnt zone characteristic function – Solve for Gn+1:

∀K ∈M ,
1

δt
(ρn

K Gn+1
K −ρn−1

K Gn
K )+divK (ρnGn+1un)+ (ρn

uun
f |∇G|)K = 0. (4.20a)

Computation of the variable z – Solve for zn+1:

∀K ∈M ,
1

δt
(ρn

K zn+1
K −ρn−1

K zn
K )+divK (ρn zn+1un) = 0. (4.20b)

Neutral gas mass fraction computation – Solve for yn+1
N :

∀K ∈M ,
1

δt

[
ρn

K (yN )n+1
K −ρn−1

K (yN )n
K

]+divK (ρn yn+1
N un) = 0. (4.20c)

Fuel mass fraction computation – Solve for yn+1
F :

∀K ∈M ,
1

δt

[
ρn

K (yF )n+1
K −ρn−1

K (yF )n
K

]+divK (ρn yn+1
F un) =−1

ε
νF WF ω̇

n+1
K . (4.20d)

Product mass fraction computation – Compute yn+1
P given by:

∀K ∈M , (yP )n+1
K = 1− (yF )n+1

K − (yO)n+1
K − (yN )n+1

K . (4.20e)

The initial value of the chemical variables is the mean value of the initial condition
over the primal cells and ∀K ∈M we define:

G0
K = 1

|K |
∫

K
G0(x)dx , z0

K = 1

|K |
∫

K
z0(x)dx , (yi )0

K = 1

|K |
∫

K
(yi )0(x)dx , i = N ,F,

where the reduced variable z is the linear combination of yF and yO given by Equation
(4.13). According to the developments of Section 4.3, the chemical reaction term reads
ω̇n+1

K = η((yF )n+1
K , zn+1

K ) (Gn+1
K −0.5)− with

η((yF )n+1
K , zn+1

K ) =

∣∣∣∣∣∣∣∣∣
1

νF WF
(yF )n+1

K if zn+1 ≤ 0,

1

νF WF
(yF )n+1

K − zn+1
K otherwise,

and the chemical species mass fractions satisfy the following system, which is equiva-
lent to (4.20b)-(4.20e):

1

δt
(ρn

K (yi )n+1
K −ρn−1

K (yi )n
K )+divK (ρn yk

i un) = 1

ε
ζiνi Wi ω̇

n+1
K , for i ∈I and K ∈M .

(4.21)
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At the continuous level, the last term of equation (4.20a) may be written:

ρu u f |∇G| = a ·∇G = div(G a)−G div(a), with a = ρu u f
∇G

|∇G| .

Using an upwind finite volume discretization of both divergence terms in this relation,
we get:

|K | (ρn
u un

f |∇G|)K = ∑
σ∈E (K )

|σ| (Gn+1
σ −Gn+1

K ) an
σ ·nK ,σ,

where Gn+1
σ stands for the upwind approximation of Gn+1 onσwith respect to an ·nK ,σ.

The flame velocity on σ, an
σ, is evaluated as

an
σ = (ρu u f )n

σ

(∇G)n
σ

|(∇G)n
σ|

,

where (ρu u f )n
σ stands for an approximation of the product ρu u f on the face σ at t n

(this product is often constant in applications), and the gradient of G on σ= K |L is
computed as:

(∇G)σ = 1

|K ∪L|
[ ∑
τ∈E (K )

|τ| Ĝτ nK ,τ+
∑

τ∈E (L)
|τ| Ĝτ nL,τ

]
,

where Ĝτ is a second order approximation of G at the center of the face τ.

4.6 Scheme conservativity
Let the discrete sensible internal energy be defined by pn

K = (γ− 1)ρn
K (es)n

K for
K ∈M and 0 ≤ n ≤ N . In view of the equation of state (4.18f), this definition implies
ρn

K (hs)n
K = ρn

K (es)n
K +pn

K , for K ∈M and 0 ≤ n ≤ N . The following lemma states that
the discrete solutions satisfy a local internal energy balance.

Lemma 4.1 (Discrete internal energy balance).
A solution to (4.18)-(4.20) satisfies the following equality, for any K ∈M and 0 ≤ n < N :

1

δt

[
(ρe)n+1

K − (ρe)n
K

]+ d̃ivK (ρeu)n+1 +pn+1
K divK (u)n+1 = Sn+1

K , (4.22)

where
(ρe)n+1

K = ρn+1
K (es)n+1

K +ρn
K

∑
i∈I

∆h0
f ,i (yi )n+1

K ,

d̃ivK (ρeu)n+1 = divK

[
(ρes)n+1un+1 +ρn[ ∑

i∈I

∆h0
f ,i yn+1

i

]
un

]
.

Proof. We begin by deriving a local sensible internal energy balance, starting from the
sensible enthalpy balance (4.18e) and mimicking the previously given formal passage
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between these two equations at the continuous level (i.e. the passage from Equation
(4.11) to Equation (4.10)). To this purpose, let us write (4.18e) as T1 +T2 = T3 with

T1 = 1

δt

[
ρn+1

K (hs)n+1
K −ρn

K (hs)n
K

]− 1

δt
(pn+1

K −pn
K ),

T2 = divK (ρhsu)n+1 − (
u ·∇p

)n+1
K ,

T3 = (ω̇θ)n+1
K +Sn+1

K .

Using ρ`K (hs)`K = ρ`K (es)`K +p`
K for `= n and `= n +1, we easily get

T1 = 1

δt

[
ρn+1

K (es)n+1
K −ρn

K (es)n
K

]
.

The term T2 reads:

|K | T2 =
∑

σ∈E (K )
|σ| [ρn+1

σ (hs)n+1
σ −pn+1

σ +pn+1
K

]
un+1
σ ·nK ,σ.

If un+1
σ ·nK ,σ > 0, by definition, ρn+1

σ (hs)n+1
σ = ρn+1

K (hs)n+1
K and pn+1

σ = pn+1
K ; otherwise,

thanks to the assumptions on the boundary conditions, σ is an internal face and,
denoting by L the adjacent cell to K such that σ= K |L, ρn+1

σ (hs)n+1
σ = ρn+1

L (hs)n+1
L and

pn+1
σ = pn+1

L . In both cases, denoting by (es)n+1
σ the upwind choice for (es)n+1 at the

face σ, we get
ρn+1
σ (hs)n+1

σ −pn+1
σ = ρn+1

σ (es)n+1
σ ,

so, finally
|K | T2 =

∑
σ∈E (K )

F n+1
K ,σ (es)n+1

σ +pn+1
K

∑
σ∈E (K )

|σ| un+1
σ ·nK ,σ.

We thus get the following sensible internal energy balance:

|K |
δt

[
ρn+1

K (es)n+1
K −ρn

K (es)n
K

]+ ∑
σ∈E (K )

F n+1
K ,σ (es)n+1

σ

+pn+1
K

∑
σ∈E (K )

|σ| un+1
σ ·nK ,σ = |K | [(ω̇θ)n+1

K +Sn+1
K

]
, (4.23)

or, using the discrete differential operator formalism,

1

δt

[
ρn+1

K (es)n+1
K −ρn

K (es)n
K

]+divK (ρesu)n+1+pn+1
K divK un+1 = (ω̇θ)n+1

K +Sn+1
K . (4.24)

We now derive from this relation a discrete (sensible and chemical) internal energy
balance. Multiplying the mass fraction balance equations by the corresponding for-
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mation enthalpy (∆h0
f ,i )i∈I and summing over i ∈I yields:

1

δt

∑
i∈I

∆h0
f ,i

[
ρn

K (yi )n+1
K −ρn+1

K (yi )n
K

]+ ∑
σ∈E (K )

F n
K ,σ

∑
i∈I

∆h0
f ,i (yi )n+1

σ

= ∑
i∈I

∆h0
f ,i (ω̇i )n+1

K =−(ω̇θ)n+1
K .

Adding this relation to (4.23) yields the balance equation which we are looking for.

Remark 4.1 (Positivity of the sensible internal energy). Equation (4.24) implies that
the sensible internal energy remains positive, provided that the right-hand side is non-
negative, which is true if ω̇θ ≥ 0, i.e. if the chemical reaction is exothermic. The
proof of this property may be found in Grapsas, Herbin, Kheriji, et al. 2016, Lemma 4.3,
and relies on two arguments: first, the convection operator may be recast as a discrete
positivity-preserving transport operator thanks to the mass balance, and, second, the
pressure pn+1

K vanishes when en+1
K , by the equation of state.

The following local discrete kinetic energy balance holds on the dual mesh (see
Grapsas, Herbin, Kheriji, et al. 2016, Lemma 4.1 for a proof).

Lemma 4.2 (Discrete kinetic energy balance on the dual mesh).
A solution to (4.18)-(4.20) satisfies the following equality, for 1 ≤ i ≤ d, σ ∈ E (i )

S
and

0 ≤ n < N :

|Dσ|
δt

[
(ek )n+1

i ,σ − (ek )n
i ,σ

]+ ∑
ε∈Ẽ (Dσ)

F n
σ,ε(ek )n+1

ε,i +|Dσ|(∇p)n+1
i ,σ un+1

i ,σ =−Rn+1
i ,σ , (4.25)

where

(ek )n+1
i ,σ = 1

2
ρn

Dσ
(un+1

i ,σ )2 +δt 2 |Dσ|
2ρn

Dσ

(
(∇p)n+1

i ,σ

)2,

(ek )n+1
ε,i = 1

2
ũn+1

i ,σ ũn+1
i ,σ′ ,

Rn+1
i ,σ = |Dσ| ρn−1

Dσ

2δt
(ũn+1

i ,σ −un
i ,σ)2.

We now derive a kinetic energy balance equation on the primal cells from Relation
(4.25). For the sake of clarity, we make a separate exposition for the Rannacher-Turek
case and the MAC case. The case of simplicial discretizations, with the degrees of
freedom of the Crouzeix-Raviart element, is an easy extension of the Rannacher-Turek
case.
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2 (−Fσ,ε1 (ek )ε1 −Fσ,ε2 (ek )ε2+Fσ,ε3 (ek )ε3 +Fσ,ε4 (ek )ε4 )

Figure 4.2 – From fluxes at dual faces to fluxes at primal faces, for the Rannacher-Turek
discretization.

The Rannacher-Turek case Since the dual meshes are the same for all the velocity
components in this case, we may sum up Equation (4.25) over i = 1, . . .d to obtain, for
σ ∈ E and 0 ≤ n < N :

|Dσ|
δt

[
(ek )n+1

σ − (ek )n
σ

]+ ∑
ε∈Ẽ (Dσ)

F n
σ,ε(ek )n+1

ε +|Dσ|(∇p)n+1
σ ·un+1

σ =−Rn+1
σ , (4.26)

with

(ek )`σ =
d∑

i=1
(ek )`i ,σ, for `= n or `= n +1, (ek )n+1

ε =
d∑

i=1
(ek )n+1

i ,ε , and Rn+1
σ =

d∑
i=1

Rn+1
i ,σ .

For K ∈M , let us define a kinetic energy associated to K and the flux Gn+1
K ,σ as follows

(see Figure 4.2):

(ek )`K = 1

|K |
∑

σ∈E (K )
|Dσ| (ek )`σ, `= n or `= n +1,

Gn+1
K ,σ =−1

2

∑
ε∈E (Dσ),ε⊂K

F n
σ,ε (ek )n+1

ε + 1

2

∑
ε∈E (Dσ),ε6⊂K

F n
σ,ε (ek )n+1

ε .
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We easily check that the fluxes Gn+1
K ,σ are conservative, in the sense that, for σ= K |L,

Gn+1
K ,σ =−Gn+1

L,σ . Let us now divide Equation (4.26) by 2 and sum over the faces of K . A
reordering of the summations, using the conservativity of the mass fluxes through the
dual edges and the expression of the discrete pressure gradient, yields:

|K |
δt

[
(ek )n+1

K − (ek )n
K

]+ ∑
σ∈E (K )

Gn+1
K ,σ + ∑

σ=K |L
|σ| (pn+1

L −pn+1
K ) un+1

σ ·nK ,σ =−Rn+1
K ,

with Rn+1
K = 1

2

∑
σ∈E (K )

Rn+1
σ . (4.27)

The MAC case Let 1 ≤ i ≤ d , let K ∈M , let us denote by σ and σ′ the two faces of
E (i )(K ), and let us define:

(ek )`i ,K = 1

|K |
[
|Dσ| (ek )`i ,σ+|Dσ| (ek )`i ,σ

]
, for `= n or `= n +1.

Case of primal faces parallel to the dual faces. Let τ=σ or τ=σ′, let ε1 and ε2 be the
two faces of Dτ perpendicular to e(i ), and let ε′ be included in K (see Figure 4.3). Then
we define

Gn+1
i ,K ,τ =

1

2

[
Fτ,ε1 (ek )n+1

i ,ε1
−Fτ,ε2 (ek )n+1

i ,ε2

]
.

K

σ σ
′

ε 1

Fσ,ε1

ε 2

−Fσ,ε2

G1,K ,σ = 1
2

[
Fσ,ε1 (ek )1,ε1 −Fσ,ε2 (ek )1,ε2

]

Figure 4.3 – From fluxes at dual faces to fluxes at primal faces, for the MAC discretiza-
tion, primal faces parallel to the dual edges, first component of the veloc-
ity.

Case of primal faces orthogonal to the dual faces. For τ ∈ E (K ) \ {σ,σ′}, let ε and ε′ be
such that τ⊂ (ε̄∪ ε̄′) with ε a face of Dσ and ε′ a face of Dσ′ (see Figure 4.4).

Then we define
Gn+1

i ,K ,τ = Fσ,ε(ek )n+1
i ,ε −Fσ′,ε′(ek )n+1

i ,ε′ .
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K
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σ σ
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ε F
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,ε

ε′ F
σ
′ ,ε

′

G1,K ,τ = 1
2

[
Fσ,ε(ek )1,ε+Fσ′,ε′(ek )1,ε′

]

Figure 4.4 – From fluxes at dual faces to fluxes at primal faces, for the MAC discretiza-
tion, primal faces orthogonal to the dual edges, first component of the
velocity.

Summing Equation (4.25) written for σ and for σ′ and dividing the result by 2 yields:

|K |
δt

[
(ek )n+1

i ,K − (ek )n
i ,K

]+ ∑
σ∈E (K )

Gn+1
i ,K ,σ+

∑
σ∈E (i )(K )
σ=K |L

|σ| (pn+1
L −pn+1

K )un+1
σ ·nK ,σ

=−1

2

(
Rn+1

i ,σ +Rn+1
i ,σ′

)
. (4.28)

Now let (ek )`K =
d∑

i=1
(ek )`i ,K , for ` = n or ` = n +1, and Gn+1

K ,σ =
d∑

i=1
Gn+1

i ,K ,σ, for σ ∈ E (K ).

Since only one equation is written for a given face σ of the mesh (for the velocity
component i with i such that the normal vector to σ is parallel to e(i )), we may define
in the MAC case Rn+1

σ = Rn+1
i ,σ . Summing Equation 4.28 over the space dimension, we

finally get

|K |
δt

[
(ek )n+1

K − (ek )n
K

]+ ∑
σ∈E (K )

Gn+1
K ,σ + ∑

σ=K |L
|σ| (pn+1

L −pn+1
K ) un+1

σ ·nK ,σ =−Rn+1
K ,

with Rn+1
K = 1

2

∑
σ∈E (K )

Rn+1
σ , (4.29)

which is formally the same equation as Relation (4.27) (although with a different
definition of all the terms in the equation except the pressure gradient).

Remark 4.2 (On the definition of the cell kinetic energy). Note that, both in the
Rannacher-Turek and the MAC case, the cell kinetic energy is not a convex com-
bination of the face kinetic energies, since, on a non-uniform mesh, the equalities
|K | = 1

2

∑
σ∈E (K )

|Dσ| (Rannacher Turek case) and |K | = 1
2

∑
σ∈E (i )(K )

|Dσ| (MAC case) do not

hold in general. Consequently, the cell kinetic energy may for instance oscillate from cell
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to cell while the face kinetic energy does not. Nevertheless, the discrete time derivative
of the cell kinetic energy is consistent in the Lax-Wendroff sense.

Equations (4.27) and (4.29) suggest a choice for the term Sn+1
K , the purpose of which

is to compensate the numerical dissipation terms appearing in the kinetic energy
balance:

Sn+1
K = Rn+1

K , for K ∈M and 0 ≤ n < N . (4.30)

This expression yields a conservative scheme, in the sense that the discrete solutions
satisfy a discrete total energy balance without any remainder term (see Equation
(4.4c) below); as a consequence, the scheme can be proven to be consistent in the
Lax-Wendroff sense. However, different definitions are possible (and this latitude
may be useful in explicit variants of the scheme, to ensure the positivity of Sn+1

K , see
Remark 4.3 below.

We are now in position to state a total energy balance for the scheme.

Theorem 4.1 (Discrete total energy and stability of the scheme).
A solution to (4.18)-(4.20) satisfies the following equality, for any K ∈M and 0 ≤ n < N :

1

δt

[
(ρE)n+1

K − (ρE)n
K

]+ d̃ivK ((ρE +p)u)n+1 = 0, (4.31)

where

(ρE)`K = (ek )`K +ρ`K (es)`K +ρ`−1
K

∑
i∈I

∆h0
f ,i (yi )`K , for `= n and `= n +1,

d̃ivK ((ρE +p)u)n+1 = divK

(
(ρes)n+1un+1 +ρn[ ∑

i∈I

∆h0
f ,i yn+1

i

]
un

)
+ 1

|K |
∑

σ=K |L
|σ| (pn+1

K +pn+1
L )un+1

σ ·nK ,σ+ 1

|K |
∑

σ∈E (K )
Gn+1

K ,σ .

Let us suppose that e0
s , ρ0 and ρ−1 are positive. Then, a solution to (4.18)-(4.20) satisfies

ρn+1 > 0, en+1 > 0 and the following stability result:

E n = E 0,

where, for 0 ≤ n ≤ N ,

E n = ∑
K∈M

|K |(ρe)n
K + 1

2

d∑
i=1

∑
σ∈E (i )

S

|Dσ|(un
i ,σ)2 +δt 2

∑
σ∈Eint

|Dσ|
ρn−1

Dσ

|(∇p)n
σ|2.

Proof. The discrete total energy balance equation (4.31) is obtained by summing
the internal energy balance (4.22) and the kinetic energy balance, i.e. Equation
(4.27) in the Rannacher-Turek case and Equation (4.29) for the MAC scheme, and
remarking that the numerical dissipation terms in the kinetic energy balance Rn+1

K
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exactly compensate with the corrective terms Sn+1
K in the internal energy balance.

Then the stability result is obtained by summation over the time steps.

Remark 4.3 (Consistency of the scheme). The consistency in the Lax-Wendroff sense
follows from the conservativity of the scheme (for all balance equations) so, in particular,
from the fact that the discrete solutions satisfy the discrete total energy balance (4.31),
thanks to standard (but technical) arguments.
Note however that the consistency of the scheme does not require a strict conservativity,
and in particular, variants for the choice (4.30) of the compensation term in the sensible
enthalpy balance are possible; indeed, what is really needed is only that the difference
between the dissipation in the kinetic energy balance and its compensation tend to zero
in a distributional sense. In practice, this allows a different redistribution of the face
residuals to the neighbour primal cells, and this can help to preserve the non-negativity
of the compensation term for explicit versions of the scheme.

4.7 Numerical tests
At the continuous level, the boundedness of the chemical mass fractions formally

implies that, when ε→ 0, the relaxed model converges to the asymptotic one. Indeed,
integrating any of the reactive species mass balance equations with respect to time
and space, we observe that ||ω̇||L1(Ω×(0,T )) tends to zero as ε, and thus two separate
zones appear: a zone characterized by G < 0.5 where the reaction is complete, and a
zone corresponding to G ≥ 0.5, where no reaction has occured.

A closed form of the solution of the Riemann problem for the asymptotic model
is available Beccantini and Studer 2010. In order to perform numerical tests, a Rie-
mann problem with initial conditions such that the analytic solution has the profile
presented in Figure 4.5 is chosen.

x

W

Precursor shock

Reactive shock

CD

NL wave W?
R

W??

W?
L

WR
WL

Figure 4.5 – The analytic solution of the numerical test configuration.

Moreover, the selected configuration imposes zero amplitude for the contact disconti-
nuity and the left non linear wave, thus the solution consists of three different constant
states: W∗

R ,W∗∗ and WR . The right state corresponds to a stoichiometric mixture of
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hydrogen and air (so the molar fractions of Hydrogen, Oxygen and Nitrogen are 2/7,
1/7 and 4/7 respectively) at rest, at the pressure p = 9.9104 Pa and the temperature
T = 283◦ K. The velocity is supposed to be zero in the left state, which is sufficient to de-
termine the solution. Physically, speaking, supposing that the initial discontinuity lies
at x = 0, this situation corresponds to the left part of a (symmetrical) constant velocity
plane deflagration starting at x = 0.. The flame velocity is u f = 63 m/s and the forma-
tion enthalpies are zero except for the product (i.e. steam), with ∆h0

f ,O =−13.255106

J (Kg K)−1. The quantity ρu is the analytical density in the intermediate state (so the
total velocity of the flame brush is equal to the sum of u f and the material velocity on
the right side of the reactive shock, see Beccantini and Studer 2010). The computation
is initialized by the analytical solution at t = 0.002 and the final time is t = 0.005. The
computational domain is the interval (0,4.5).

The numerical tests performed aim at checking the convergence of the scheme to
such a solution, which in fact may result from two different properties: the conver-
gence of the relaxed model to the asymptotic model when ε tends to zero, and the
convergence of the scheme towards a numerical solution when the time and space
steps tend to zero. To this purpose, we choose ε proportional to the space step and
make it tend to zero, with a constant CFL number. We test the scheme behaviour with
three different discretizations of the convection operator in the chemical mass species
balances: the standard upwind scheme, a MUSCL-like discretization which is an ex-
tension to variable density flows of the scheme proposed in Piar, Babik, Herbin, et al.
2013 and is described in Appendix 4.A, and a first-order anti-diffusive scheme which
is an adaptation to our setting of the scheme proposed in Després and Lagoutière
2002; we detail it in Appendix 4.B for the sake of completeness. Results obtained at
t = 0.005 with the upwind scheme, the MUSCL-like scheme and the anti-diffusive
scheme, for increasingly refined meshes, are shown on Figure 4.6, Figure 4.7 and
Figure 4.8 respectively, together with the analytical solution. The expected conver-
gence is indeed observed but, with the upwind discretization, the rate of convergence
is poor. This seems to be due to the interaction between the numerical diffusion
of the upwind scheme, which artificially introduces unburnt reactive masses to the
burnt zone, and the stiffness of the reaction term. As expected in such a case, the
results are significantly improved by the use of a less diffusive scheme for the chemical
species balance equations. Indeed, passing from the upwind to the MUSCL-like and
to the anti-diffusive discretization improves the accuracy of the scheme, as may be
observed in Figure 4.9, where the results obtained by the three discretizations for a
regular mesh composed of 500 cells are plotted together with the continuous solution.
This observation is comforted by the measure, in L1-norm, of the difference between
the discrete and continuous solutions, see Table 4.1. For every mesh and variable,
the anti-diffusive scheme is the most accurate and the upwind one the least. The
calculated order of convergence is close to 0.5 for the upwind scheme, and to 1 for the
MUSCL-like and anti-diffusive schemes.
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Figure 4.6 – Upwind scheme – From top left to bottom right, fuel mass fraction, G ,
velocity, pressure, temperature and density at t = 0.005, as a function of
the space variable.

h ||p −pex ||L1 ×10−4 ||u −uex ||L1 ×10−2 ||ρ−ρex ||L1 ×10

h0 16.5 7.26 4.59 2.17 1.56 1.07 7.69 3.71 2.74
h0
2 12.5 3.88 2.43 1.64 0.787 0.579 6.16 2.23 1.65

h0
4 9.66 2.05 1.38 1.23 0.471 0.371 4.73 1.26 0.913

h0
8 7.58 1.17 0.708 0.958 0.263 0.175 3.63 0.691 0.476

h0
20 5.78 0.673 0.375 0.728 0.160 0.103 2.77 0.382 0.267
h0
40 4.31 0.414 0.194 0.543 0.0786 0.0458 2.03 0.201 0.134

Table 4.1 – L1 norm of the error between the discrete and continuous solutions for the
various schemes - Black : upwind scheme, blue: MUSCL scheme, orange:
anti-diffusive scheme; h0 = 4.5/250 is the size of the least refined mesh.
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Figure 4.7 – MUSCL scheme – From top left to bottom right, fuel mass fraction, G ,
velocity, pressure, temperature and density at t = 0.005, as a function of
the space variable.
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Figure 4.8 – Anti-diffusive scheme – From top left to bottom right, fuel mass fraction,
G , velocity, pressure, temperature and density at t = 0.005, as a function
of the space variable.
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Figure 4.9 – Comparison of the solutions obtained with the upwind, MUSCL and anti-
diffusive scheme – From top to bottom, fuel mass fraction, G , velocity,
pressure, temperature and density at t = 0.005, as a function of the space
variable. Results obtained with a regular mesh composed of n = 500 cells.
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Appendix

4.A The MUSCL interpolation scheme
The MUSCL discretization of the convection operators of the chemical species bal-

ance and G-equation closely follows the technique proposed in Piar, Babik, Herbin, et
al. 2013. To present this discretization, we consider the following system of equations:

∂tρ+div(ρu) = 0,

∂t (ρy)+div(ρu y) = 0.

We suppose for short that this system is complemented by impermeability boundary
conditions, i.e. that the normal velocity, both at the continuous and the discrete level,
vanishes on the boundary of the computational domain.

The discretization of the above system reads:

∀K ∈M ,
ρn+1

K −ρn
K

δt
+ 1

|K |
∑

σ∈E (K )
F n+1

K ,σ = 0,

ρn+1
K yn+1

K −ρn
K yn

K

δt
+ 1

|K |
∑

σ∈E (K )
F n+1

K ,σ yn
σ = 0.

For any σ ∈ E , the procedure consists in three steps:

- calculate a tentative value for yσ as a linear interpolate of nearby values,

- calculate an interval for yσ which guarantees the stability of the scheme,

- project the tentative value yσ on this stability interval.

For the tentative value of yσ, let us choose some real coefficients (ασK )K∈M such that

xσ = ∑
K∈M

ασK xK ,
∑

K∈M

ασK = 1.

The coefficients used in this interpolation are chosen in such a way that as few as
possible cells, to be picked up in the closest cells to σ, take part. For example, for
σ = K |L and if xK , xσ, xL are aligned, only two non-zero coefficients exist in the
family (ασK )K∈M , namely ασK and ασL . Then, these coefficients are used to calculate the
tentative value of yσ by

yσ = ∑
K∈M

ασK yK .
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The construction of the stability interval must be such that the following property
holds:

∀K ∈M , ∀σ ∈ E (K )∩Eint, ∃βσK ∈ [0,1] and Mσ
K ∈M such that

yn
σ− yn

K =
∣∣∣∣∣∣
βσK (yn

K − yn
Mσ

K
), if F n+1

K ,σ ≥ 0,

βσK (yn
Mσ

K
− yn

K ), otherwise.

(4.32)

Indeed, under this latter hypothesis and a CFL condition, the scheme preserves the
initial bounds of y .

Remark 4.4. Note that, in Assumption (4.32), only internal faces are considered, since
the fluxes through external faces are supposed to vanish. However, the present discussion
may easily be generalized to cope with convection fluxes entering the domain.

Definition 4.1. The so-called CFL number reads for any 0 ≤ n ≤ N :

CFLn+1 = max
K∈M

{ δt

ρn+1
K |K |

∑
σ∈E (K )

∣∣F n+1
K ,σ

∣∣}.

Lemma 4.3. Let us suppose that CFLn+1 ≤ 1. For K ∈M , let us note by V (K ) the union
of the set of cells Mσ

K , σ ∈ E (K )∩Eint such that (4.32) holds. Then ∀K ∈M , the value of
yn+1

K is a convex combination of {yn
K , (yn

M )M∈V (K )}.

Proof. The discrete mass balance equation yields:

ρn
K = ρn+1

K + δt

|K |
∑

σ∈E (K )
F n+1

K ,σ .

Replacing this expression of ρn
K in the discrete balance equation of y and using the

relations provided by (4.32), we obtain:

ρn+1
K yn+1

K = ρn
K yn

K − δt

|K |
∑

σ∈E (K )
F n+1

K ,σ yn
σ

= ρn+1
K yn

K − δt

|K |
∑

σ∈E (K )
F n+1

K ,σ (yn
σ− yn

K )

= ρn+1
K yn

K − δt

|K |
∑

σ∈E (K )

(
F n+1

K ,σ

)+(yn
σ− yn

K )+ δt

|K |
∑

σ∈E (K )

(
F n+1

K ,σ

)−(yn
σ− yn

K )

= ρn+1
K yn

K − δt

|K |
∑

σ∈E (K )

(
F n+1

K ,σ

)+
βσK (yn

K − yn
Mσ

K
)

+ δt

|K |
∑

σ∈E (K )

(
F n+1

K ,σ

)−
βσK (yn

Mσ
K
− yn

K ).
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This relation yields

yn+1
K = yn

K

(
1− δt

ρn+1
K |K |

∑
σ∈E (K )

βσK
∣∣F n+1

K ,σ

∣∣)+ δt

|K |
∑

σ∈E (K )
yn

Mσ
K
βσK

∣∣F n+1
K ,σ

∣∣,
which concludes the proof under the hypothesis that CFL ≤ 1.

We now need to reformulate (4.32) in order to construct the stability interval. Let
σ ∈ E , let us denote by V − and V + the upstream and downstream cell separated by σ,
and by Vσ(V −) and Vσ(V +) two sets of neighbouring cells of V − and V + respectively,
and let us suppose:

(H1)−∃M ∈ Vσ(V +) s.t. un
σ ∈ |[un

M ,un
M + ζ+

2
(un

V + −un
M )]|,

(H2)−∃M ∈ Vσ(V −) s.t. un
σ ∈ |[un

V − ,un
V − + ζ−

2
(un

V − −un
M )]|,

where for a, b ∈R, we denote by |[a,b]| the interval {αa + (1−α)b, α ∈ [0,1]}, and ζ+

and ζ− are two numerical parameters lying in the interval [0,2].

Conditions (H1)-(H2) and (4.32) are linked in the following way: let K ∈ M and
σ ∈ E (K ). If F n

K ,σ ≤ 0, i.e. K is the downstream cell for σ, denoted above by V +, since
ζ+ ∈ [0,2], condition (H1) yields that there exists M ∈ M such that un

σ ∈ |[un
K ,un

M ]|,
which is (4.32). Otherwise, i.e. if F n

K ,σ ≥ 0 and K is the upstream cell for σ, denoted
above by V −, condition (H2) yields that there exists M ∈M such that yn

σ ∈ |[yn
K ,2yn

K −
yn

M ]|, so yn
σ− yn

K ∈ |[0, yn
K − yn

M ]|, which is once again (4.32).

Remark 4.5. For σ ∈ E , if V − ∈ Vσ(V +), the upstream choice yn
σ = yn

V − always satisfies
the conditions (H1)-(H2), and is the only one to satisfy them if we choose ζ− = ζ+ = 0.

Remark 4.6 (1D case). Let us take the example of an interface σ separating Ki and
Ki+1 in a 1D case (see Figure 4.10 for the notations), with a uniform meshing and a
positive advection velocity, so that V − = Ki and V + = Ki+1. In 1D, a natural choice
is Vσ(Ki ) = {Ki−1} and Vσ(Ki+1) = {Ki }. On Figure 4.10, we sketch: on the left, the
admissible interval given by (H1) with ζ+ = 1 (green) and ζ+ = 2 (orange); on the right,
the admissible interval given by (H2) with ζ− = 1 (green) and ζ− = 2 (orange). The
parameters ζ− and ζ+ may be seen as limiting the admissible slope between (x i , yn

i ) and
(xσ, yn

σ) (with x i the abscissa of the mass centre of Ki and xσ the abscissa of σ), with
respect to a left and right slope, respectively. For ζ− = ζ+ = 1, one recognizes the usual
minmod limiter (e.g. Godlewski and P.-A. Raviart 1996, Chapter III). Note that, since,
on the example depicted on Figure 4.10, the discrete function yn has an extremum in
Ki , the combination of the conditions (H1) and (H2) imposes that, as usual, the only
admissible value for yn

σ is the upwind one.
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Figure 4.10 – Conditions (H1) and (H2) in 1D.

Figure 4.11 – Notations for the definition of the limitation process. In orange, control
volumes of the set Vσ(V −) for σ=V −|V +, with a constant advection field
F: upwind cells (a) or opposite cells (b).

Finally, we need to specify the choice of the sets Vσ(V −) and Vσ(V +). Here, we just
set Vσ(V +) = {V −}; such a choice guarantees that at least the upstream choice is in the
intersection of the intervals defined by (H1) and (H2), as explained in Remark 4.6. The
set Vσ(V −) may be defined in two different ways (cf. Figure 4.11):

– as the “upstream cells” to V −, i.e.

Vσ(V −) = {L ∈M , L shares a face σ with V − and FV −,σ ≤ 0},

– when this makes sense (i.e. with a mesh obtained by Q1 mappings from the
(0,1)d reference element), the opposite cells to σ in V − are chosen. Note that for
a structured mesh, this choice allows to recover the usual minmod limiter.

4.B An anti-diffusive scheme
The scheme proposed in Després and Lagoutière 2002 by of B. Després and F.

Lagoutière for the constant velocity advection problem presents some interesting prop-
erties in one space dimension (and may be extended to structured multi-dimensional
meshes using alternate directions techniques); in particular, it notably limits the nu-
merical diffusion. We extend here this scheme to work with unstructured meshes for
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which the "opposite cell to a face" (in the sense introduced in the previous section)
may be defined and with a variable density. With the same notations as in the previous
section, for σ ∈ Eint, σ= K |L with F n+1

K ,σ ≥ 0,

- the tentative value for yσ is chosen as the downwind value, i.e. yn
σ = yn

L ,

- Then we project yn
σ on the interval

Iσ = [
yn

K , yn
K + 1−ν

ν
(yK − yM )

]
, ν=

|F n+1
K ,σ |δt

ρn+1
K |K | ,

where M ∈M is the control volume which stands at the opposite side of K with
respect to L.

The original scheme presented in Després and Lagoutière 2002 is recovered by this for-
mulation for the one-dimensional constant velocity convection equation. In addition,
by arguments similar to those of the previous section, the discretization proposed
here may be shown to satisfy a discrete maximum principle.
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5 Modelling of a spherical deflagration at constant speed –

Abstract. We build in this paper a numerical solution procedure to compute the
flow induced by a spherical flame expanding from a point source at a constant ex-
pansion velocity, with an instantaneous chemical reaction. The solution is supposed
to be self-similar and the flow is split in three zones: an inner zone composed of
burnt gases at rest, an intermediate zone where the solution is regular and the initial
atmosphere composed of fresh gases at rest. The intermediate zone is bounded by the
reactive shock (inner side) and the so-called precursor shock (outer side), for which
Rankine-Hugoniot conditions are written; the solution in this zone is governed by
two ordinary differential equations which are solved numerically. We show that, for
any admissible precursor shock speed, the construction combining this numerical
resolution with the exploitation of jump conditions is unique, and yields decreasing
pressure, density and velocity profiles in the intermediate zone. In addition, the re-
active shock speed is larger than the velocity on the outer side of the shock, which
is consistent with the fact that the difference of these two quantities is the so-called
flame velocity, i.e. the (relative) velocity at which the chemical reaction progresses in
the fresh gases. Finally, we also observe numerically that the function giving the flame
velocity as a function of the precursor shock speed is increasing; this allows to embed
the resolution in a Newton-like procedure to compute the flow for a given flame speed
(instead of for a given precursor shock speed). The resulting numerical algorithm is
applied to stoichiometric hydrogen-air mixtures.

keywords spherical flames, reactive Euler equations, Riemann problems.
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5.1 Problem position

burnt zone
(constant state)

intermediate zone
(regular solution)

unburnt zone
(constant initial state)

Wb

W2

W1

W0

reactive shock, r =σr t .
precursor shock, r =σp t .

W = (ρ,u, p): local fluid state.

Figure 5.1 – Structure of the solution.

We address the flame propagation in a reactive infinite atmosphere of initial con-
stant composition. The ignition is supposed to occur at a single point (chosen to be
the origin of R3) and the flow is supposed to satisfy a spherical symmetry property:
the density ρ, the pressure p, the internal energy e and the entropy s only depend on
the distance r to the origin and the velocity reads u = ur /r , where r stands for the
position vector. The flame is supposed to be infinitely thin and to move at a constant
speed. The flow is governed by the Euler equations, and we seek a solution with the
following structure:

— the solution is self-similar, i.e. the quantities ρ, p, e, s and u are functions of the
variable x = r /t only.

— the flow is split in three zones, referred to as the inner, intermediate and outer
zones. The inner zone stands for the burnt zone while, in the other two zones, the
gas is supposed to be in its initial (referred to as fresh or unburnt) composition.
Burnt and fresh gases differ by the expression of the total energy:

E = 1

2
u2 +e −ζb Q, ζb = 1 in the burnt zone, ζb = 0 in the fresh zone, (5.1)

with Q > 0 the chemical heat reaction. Both burnt and unburnt gases are consid-
ered as ideal gases, possibly with different heat capacity ratios:

p = (γ−1)ρe, γ= γb for burnt gases, γ= γu for unburnt gases.

— In the burnt zone, the solution is supposed to be constant; this constant state
is denoted by Wb = (ρb ,ub , pb). For symmetry reasons, the fluid is at rest in this
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zone, i.e. ub = 0.
— The burnt and intermediate zones are separated by a shock, which coincides

with the flame front. This shock is called the reactive shock, and travels at a
constant speed σr . The outer state of the shock is denoted by W2 = (ρ2,u2, p2).
Note that the usual Rankine-Hugoniot jump conditions apply at the reactive
shock, up to the fact that the expression of the total energy in the inner and outer
states differ (see Equation (5.1)).

— The intermediate and the outer zone are separated by a 3-shock, referred to as
the precursor shock, and travelling at a velocity denoted by σp . We denote by
W1 = (ρ1,u1, p1) the inner state of the precursor shock, and, since the usual jump
conditions for the Euler equations apply, we have σp ≥ u1. In the outer zone,
conditions are constant and equal to the initial condition W0 = (ρ0,u0, p0); the
fluid is at rest, i.e. u0 = 0.

— In the intermediate zones, the states W2 and W1 are supposed to be linked by a
regular solution.

In addition, for physical reasons, we expect that

u2 > 0 and σr = u2 +u f with u f > 0. (5.2)

Indeed, the velocity u f is the velocity at which the chemical reaction progresses in
the fresh gases; these are pushed away from the origin by the expansion of the burnt
gases, and therefore u2 > 0.

The aim of this paper is to build a numerical procedure to compute a solution with
the above described structure. More precisely speaking, we present the two following
developments:

— First, for a given precursor shock speed σp , we derive a solution with the de-
sired structure in a constructive way (and this construction yields a unique
solution), and propose a simple numerical scheme to compute it. Moreover, the
constructed solution is such that the inequalities (5.2) are satisfied (in fact, we
obtain that σr −u2 > 0 since we seek and find a solution such that x −u(x) > 0
in the whole intermediate zone), and thus yields a physically meaningful flame
velocity u f .

— As a by-product, we numerically obtain the velocity u f as a function of σp , i.e.
we construct a function G̃ such that u f = G̃ (σp ), and observe that this function
G̃ is strictly increasing, which was expected from physical reasons (the faster the
combustion, the stronger the generated shock-wave). It is thus easy to build an
iteration to compute the flow associated to a given u f , which is generally the
problem of physical interest.

Finally, this process is implemented in the free software CALIF3S n.d. developped at
the french Institut de Radioprotection et de Sûreté Nucléaire (IRSN) and applied to
obtain solutions as a function of u f for a stoichiometric mixture of hydrogen and air.

The derivation of a solution for the same problem may be found in Kuhl, Kamel, and
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Oppenheim 1973; however, the techniques used in this latter paper are different (the
solution is performed in the phase space), and the uniqueness of the construction
together with the proof of the decreasing properties of the solution are not explicit.
The developments in Kuhl, Kamel, and Oppenheim 1973 are built upon techniques de-
veloped for non-reactive problems in Sedov 1945; Taylor 1946. Approximate solutions
in closed form are given in Guirano, Bash, and Lee 1976; Cambray and Deshaies 1977,
and extensions to accelerating flames may be found in Strehlow, Luckritz, Adamczyk,
et al. 1979; Deshaies and Leyer 1981. Finally, the complete solution of the plane case
(i.e. the one-dimensional case in cartesian coordinates), in closed form, is given in
Beccantini and Studer 2010.

The remainder of the this paper is organized as follows: In Section 5.2 we present the
Euler equations in spherical coordinates. Then in Section 5.3 we describe the solution
for a given precursor shock speed followed by the solution for a given flame speed in
Section 5.4. Finally in Section 5.5 we perform an application for a flame propagating
in a stoichiometric mixture of hydrogen and air.

5.2 Euler equations in spherical coordinates
The Euler equations read in Cartesian coordinates:

∂t ρ̄+div(ρ̄ū) = 0, (5.3a)

∂t (ρ̄ū)+div(ρ̄ū ⊗ ū)+∇p̄ = 0, (5.3b)

∂t (ρ̄Ē)+div(ρ̄Ē ū + p̄ū) = 0, (5.3c)

where ρ̄ = ρ̄(t , x) ∈ R the density, ū = ū(t , x) ∈ R3 the velocity, p̄ = p̄(t , x) ∈ R the
pressure and Ē = Ē(t , x) ∈R the total energy for all t ∈R and x = (x1, x2, x3) ∈R3. This
system is closed by the equation of state, which for a perfect gas, is given by

Ē = 1

2
|ū|2 + ē, with p̄ = (γ−1)ρ̄ē, (5.4)

where ē = ē(t , x) the internal energy and γ > 1 the heat capacity ratio. We suppose
that the flow satisfies a spherical symmetry assumption, so the solution of equations
(5.3)-(5.4) may be recast as:

ρ̄(t , x) = ρ(t ,r ), p̄(t , x) = p(t ,r ), Ē(t , x) = E(t ,r ) and ū(t , x) = u(t ,r )
x

r
, (5.5)

with r = |x | and where (ρ,u, p,E)(t ,r ) ∈ R4 are scalar functions, i.e. (ρ,u, p,E) ∈ R4.
The aim of this section is to derive the system of equations satisfied by (ρ,u, p,E).
We suppose first that these functions are regular, so we obtain the strong form of the
so-called Euler equations in spherical coordinates; then we turn to the weak form,
valid for discontinuous solutions.
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5.2.1 Regular solutions

Let us use the notation ∂i = ∂

∂xi
. We begin by deriving the following three identities:

(a) ∂i r = xi

r
, for i = 1, 2, 3.

(b) If f = f (r ), div( f ū) = 1

r 2
∂r (r 2 f u).

(c) If f = f (r ), ∇ f = ∂r f
x

r
.

The first item is a straightforward consequence of the definition r = |x |. For Item (b),
we have, thanks to (a),

div( f ū) =
3∑

i=1
∂i ( f u

xi

r
)

= f u
3∑

i=1
∂i (

xi

r
)+

3∑
i=1

xi

r
∂i ( f u)

= f u
3∑

i=1
(

1

r
− x2

i

r 3
)+

3∑
i=1

xi

r
∂i r ∂r ( f u)

= 1

r
f u

3∑
i=1

(1− x2
i

r 2
)+∂r ( f u)

3∑
i=1

x2
i

r 2

= 2

r
f u +∂r ( f u) = 1

r 2
∂r (r 2 f u).

Item (c) is an immediate consequence of (a).

We are now in position to state the following lemma.

Lemma 5.1. Suppose that (ρ̄, ū, p̄, Ē) is solution of (5.3); then (ρ,u, p,E) satisfies:

∂t (r 2ρ)+∂r (r 2ρu) = 0, (5.6a)

∂t (r 2ρu)+∂r (r 2(ρu2 +p)) = 2r p, (5.6b)

∂t (r 2ρE)+∂r (r 2(ρuE +pu)) = 0, (5.6c)

with E = 1
2 u2 +e and p = (γ−1)ρe.

Proof. The mass balance equation (5.6a) is a straightforward consequence of Item (b).
For the momentum balance equation, we first remark that, for any function f (r ), we
have:

div( f xi ū) = xi

r 2
∂r (r 2 f u)+ xi

r
f u.

Indeed, this relation follows from the development div( f xi ū) = xi div( f ū)+ f ū ·∇xi
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thanks to Item (b). Applying this identity with f = ρu

r
, we thus obtain

div(ρui u) = div(
ρu

r
xi u) = xi

r 2

(
∂r (ρu2r )+ρu2)

= xi

r 2

(
r∂r (ρu2)+2ρu2)= xi

r 3
∂r (r 2ρu2).

Thanks to this relation and using (c) for the pressure gradient, for i = 1, 2, 3, the i−th
component of the momentum equation reads:

xi

r

[
∂t (ρu)+ 1

r 2
∂r (r 2ρu2)+∂r p

]= 0.

The three components of this vector balance equation thus boil down to the single
relation:

∂t (ρu)+ 1

r 2
∂r (r 2ρu2)+∂r p = 0.

Multiplying by r 2, we obtain the conservative form (5.6b). For the energy balance
equation, we first note that Ē = 1

2 |ū|2 + ē = 1
2 u2 + e = E . Then, using once again (b),

we get

div(ρ̄Ē ū) = 1

r 2
∂r (ρEur 2) and div(p̄ū) = 1

r 2
∂r (pur 2),

and (5.6c) follows by adding the time derivative of (ρ̄Ē).

We can apply the same process for the entropy balance equation. In the Cartesian
system of coordinates, this relation reads, for regular solutions:

∂t (ρ̄ s̄)+div(ρ̄ū s̄) = 0, with s̄ = p̄

ρ̄γ
, (5.7)

with s̄ = s̄(t , x). By this latter expression, under spherical symmetry assumption, there
exists a function s(t ,r ) such that s̄(t , x) = s(t ,r ). This latter function satisfies

s = p

ργ
,

and a straightforward application of Identity (b) with f = ρs yields, from (5.7):

∂t (r 2ρs)+∂r (r 2ρsu) = 0. (5.8)

5.2.2 Weak solutions
Let us now treat the case of no classical solution of (5.3) and for the sake of simplicity

we only consider the mass balance equation for a velocity ū given by (5.5). So ρ̄ is
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weak solution of ∂t ρ̄+div(ρ̄ū) = 0, if ∀ϕ̄ ∈C∞
c (R+×Rd ,R), we have∫

R+

∫
R
ρ̄∂t ϕ̄+ ρ̄ū ·∇ϕ̄d x d t +

∫
Rd
ρ̄0(x)ϕ̄(0, x)d x = 0, (5.9)

with ρ̄0(x) = ρ̄(0, x).

Lemma 5.2. LetΩ a open set of R∗+ and let consider ρ̄, given by (5.5), a weak solution of
(5.9) in the form

ρ(t ,r ) =
{
ρL if r ∈Ω−

ρR if r ∈Ω+ with u(t ,r ) =
{

uL if r ∈Ω−

uR if r ∈Ω+ (5.10)

where Ω− = {r ∈ Ω,r ≤ tσ} and Ω+ = {r ∈ Ω,r > tσ} with (ρR ,uR ) and (ρL ,uL) are
constant in the domains R+×Ω+ and R+×Ω− respectively.
Let ϕ̄ ∈C∞

c (R+×Rd ,R) andϕ ∈C∞
c (R+×R∗+,R) such that ϕ̄(t , x) =ϕ(t ,r ), then ρ satisfies

the following weak formulation :∫
R+

∫
R∗+

(r 2ρ∂tϕ+ r 2ρu∂rϕ)dr d t +
∫
R∗+

r 2ρ0(r )ϕ(0,r )dr = 0. (5.11)

Furthermore σ checks the relationship:

σ(ρR −ρL) = (ρR uR −ρLuL). (5.12)

Proof. Let ϕ̄ ∈ C∞
c (R+×Rd ,R) and let introduce the function ϕ such that ϕ̄(t , x) =

ϕ(t ,r ), then ϕ ∈C∞
c (R+×R∗+,R). So we have that∫

R+

∫
Rd
ρ̄(∂t ϕ̄+ ρ̄ū ·∇ϕ̄)d x d t

=
∫
R+

∫
R+

(ρ(t ,r )∂tϕ(t ,r )+ρ(t ,r )u(t ,r )
x

r
·∇ϕ(t ,r ))r 2 dr d t

=
∫
R+

∫
R+

(r 2ρ(t ,r )∂tϕ(t ,r )+ r 2ρ(t ,r )u(t ,r )
x

r
· x

r
∂rϕ(t ,r ))dr d t

=
∫
R+

∫
R+

(r 2ρ(t ,r )∂tϕ(t ,r )+ r 2ρ(t ,r )u(t ,r )∂rϕ(t ,r ))dr d t .

We have also that ∫
Rd
ρ̄0(x)ϕ̄(0, x)d x =

∫
R+

r 2ρ0(r )ϕ(0,r )dr
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Thus (5.9) reads:∫
R+

∫
R+

(r 2ρ(t ,r )∂tϕ(t ,r )+ r 2ρ(t ,r )u(t ,r )∂rϕ(t ,r ))dr d t

+
∫
R+

r 2ρ0(r )ϕ(0,r )dr = 0, ∀ϕ ∈C∞
c (R+×R+,R).

According to the definition (5.10) and decomposing the integral into space onΩ+ and
Ω−, we obtain that∫

R+

∫
Ω+

r 2ρR∂tϕ+ r 2ρR uR∂rϕdr d t +
∫
R+

∫
Ω−

r 2ρL∂tϕ+ r 2ρLuL∂rϕdr d t = 0.

Thus as in the scalar case, we can show that,σ satisfies the following Rankine Hugoniot
relationship:

σ(r 2(ρR −ρL)) = (r 2(ρR uR −ρLuL)).

The lemma is thus proved.

5.3 Solution for a given precursor shock speed
We first propose a constructive derivation of the solution for a given precursor shock

speed, and then state the numerical scheme to compute it.

5.3.1 Derivation of the solution
Since the fluid state in the outer zone W0 is given, we may equivalently use hereafter

either σp or the precursor shock Mach number defined by Mp = σp /c0, with c0 =
(γu p0/ρ0)1/2 the speed of sound in the outer zone. We recall that, for entropy condition
reasons, Mp > 1.

Left state of a shock as a function of the right state and the shock velocity
In this section, we recall a classical computation which consists in determining the
left state of a shock as a function of the right state and the shock velocity.

Lemma 5.3. Let W1 = (ρ1,u1, p1) be the left state of a shock travelling at the given speed
σ. Let WR = (ρR ,uR , pR ) be the given right state, which is supposed to satisfy uR = 0.
Let cR be the speed of sound in the right state,i.e. c2

R = γpR /cR , and let M be the Mach

190



5 Modelling of a spherical deflagration at constant speed – 5.3 Solution for a given
precursor shock speed

number associated to the incident shock, defined by M =σ/cR . Then W1 is given by:

ρ1 = γ+1

γ−1+ 2

M 2

ρR , (5.13a)

u1 = (1− ρR

ρ1
)σ, (5.13b)

p1 = pR + (1− ρR

ρ1
)ρR σ

2. (5.13c)

Proof. We first change the coordinate system, in such a way that the shock is steady in
the new coordinate system. The density and the pressure are left unchanged, while the
velocity is now u1 −σ and −σ in the left and right state respectively. In this coordinate
system, the Rankine-Hugoniot conditions imply that the jump of the fluxes vanishes,
which reads for the Euler equations:

ρ1 (u1 −σ) = ρR (−σ), (5.14a)

ρ1 (u1 −σ)2 +p1 = ρR (−σ)2 +pR , (5.14b)

1

2
ρ1 (u1 −σ)3 +ρ1e1 (u1 −σ)+p1 (u1 −σ) = 1

2
ρR (−σ)3 +ρR eR (−σ)+pR (−σ).

(5.14c)

This system must be complemented by the equation of state p = (γ−1)ρe and pR =
(γ−1)ρR eR . Thanks to this relation, we may recast (5.14c) as:

ρ1 (σ−u1)3 +ξp1 (σ−u1) = ρRσ
3 +ξσpR , ξ= 2γ

γ−1
. (5.15)

Relation (5.14b) reads

1

ρ 1

[
ρ1 (u1 −σ)

]2 +p1 = ρR (−σ)2 +pR ,

so, using (5.14a):
1

ρ1
(ρR σ)2 +p1 = ρR σ

2 +pR .

We thus obtain p1 as a function of known quantities (i.e. σ and the right state) and ρ1

only:

p1 = pR + (1− ρR

ρ1
)σ2. (5.16)

We now notice that substituting, in the jump condition associated to the energy
balance (5.15), this expression for p1 and (ρR /ρ1)σ for (u1 −σ), thanks once again to
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Equation (5.14a), we get an equation for ρ only:

ρ1
(ρR

ρ1
σ

)3 +ξ
(
pR + (1− ρR

ρ1
)σ2

)(ρR

ρ1
σ

)= ρRσ
3 +ξσ.

Ifσ= 0, the first jump condition implies u1 = 0 (excluding ρ1 = 0), then the second one
yields p1 = PR and the third one is automatically satisfied: the considered discontinu-
ity is a (stationary) contact. In such a case, the right state remains partially undermined
by the jump conditions: ρ1 and e1 may take any value satisfying (γ−1)ρ1e1 = pR . If we
only consider a shock, σ 6= 0 and the last relation may be simplified by σ. Reordering,
we get:

ρR σ
2
(
(
ρR

ρ1
)2 −1

)
+ξpR (

ρR

ρ1
−1)−ξρR σ

2ρR

ρ1
(
ρR

ρ1
−1) = 0.

The case ρ1 = ρR has no interest: it yields, by the first jump condition, u1 = 0, and the
second one implies that p1 = pR , which means in fine that W1 =WR , i.e. that there is
no discontinuity at all. We may thus simplify by 1−ρR /ρ1, to obtain a linear equation
for the ratio ρR /ρ1. Solving this latter equation, we obtain:

ρ1 = γ+1

γ−1+ 2

M 2

ρR , with M = σ

cR
, c2

R = γpR

ρR
.

We thus obtain (5.13a). Relation (5.13b) is a straightforward consequence of (5.14a)
and (5.13c) was already proven (Relation (5.16) below). The proof is thus complete.

For a 3-shock, entropy conditions requires that σ> cR , which is equivalent to M > 1.
We thus have ρ1 > pR , p1 > pR and 0 < u1 <σ.

It is worth noting that it is now easy to relax the assumption uR = 0 of Lemma 5.3.
Indeed, for the general case, we may work in the system of coordinates in translation
at the velocity uR with respect to the initial one: in the new coordinate system, the
right state is now at rest and Lemma 5.3 applies, replacing σ by σ−uR and u1 by
u1 −uR in the definition of the Mach number M and in the system of equations (5.13).

A relation satisfied by the right state of a shock when the left state is at rest
Here we perform a technical computation motivated by the following arguments. Let
us suppose that a shock travelling at the speed σr separates a left state denoted by
Wb = (ρb ,ub , pb) and a right state denoted by W2 = (ρ2,u2, p2), and that ub = 0. The
Rankine-Hugoniot conditions yield 3 independent equations, and thus constitute a
system in which ρb and pb may be eliminated, to obtain a relation linking W2 and
σr only. It is this relation that we now derive, supposing that the following specific
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constitutive relations hold for both states:

Eb = 1

2
u2

b +eb +Q, pb = (γb −1)ρb eb , (5.17a)

E2 = 1

2
u2

2 +e2, p2 = (γu −1)ρ2 e2. (5.17b)

Note that eliminating ρb and pb consists in establishing an expression of these quanti-
ties (and thus of Wb , since ub = 0) as a function of W2 and σr . All of these relations,
i.e. the equation linking W2 and σr and the expression of Wb as a function of these
variables, are gathered in the following lemma.

Lemma 5.4 (Some conditions at the reactive shock). The state W2 and the shock speed
σr satisfy the following relation

1

2
u2

2 +
1

γb −1
u2σr +

( γu

γu −1
− γb

γb −1

σr

σr −u2

)p2

ρ2
+Q = 0. (5.18)

In addition, Wb is given as a function of W2 and σr by:

ρb = ρ2(
σr −u2

σr
), pb = p2 −ρ2u2(σr −u2). (5.19)

Proof. Using the standard change of coordinates to work in the coordinate system
in which the shock is at rest (see e.g. Godlewski and P.-A. Raviart 1996), the Rankine-
Hugoniot relationships (which boil down to the fact that the jump of the fluxes van-
ishes) through the shock for the mass and momentum balance equations read respec-
tively:

ρbσr = ρ2 (σr −u2), ρbσ
2
r +pb = ρ2(σr −u2)2 +p2.

These two relations readily yields the expression (5.19) of Wb as a function of W2 and
σr that we are looking for:

ρb = ρ2 (
σr −u2

σr
) and pb = p2 −ρ2 u2 (σr −u2).

Let us now write the Rankine-Hugoniot condition for the conservation equation of
the total energy:

ρbσr Eb +σr pb = ρ2 (σr −u2)E2 + (σr −u2) p2. (5.20)

We may divide the left-hand side of his relation by ρbσr and the right-hand side by
ρ2(σr −u2) (since these two expressions are equal by the jump condition associated
to the mass balance equation), to obtain:

Eb +
pb

ρb
= E2 + p2

ρ2
.
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Using the constitutive relations (5.17) and the expression (5.19) of ρb and pb in this
equation yields (5.18) and thus concludes the proof.

To complete the derivation of the solution, we must now show that the following
program makes sense: starting from x = σp , solve the Euler equations for x ≤ σp

until the point x =σr where Equation (5.18) is verified. The solution at this point is
equal to W2 and Equations (5.19) yield the burnt state Wb . Let us now embark on this
development.

Governing equations in the intermediate zone Since we suppose that the so-
lution is regular in this zone, we may replace the total energy balance in the Euler
equations by the entropy equation, which, under the spherical symmetry assumption,
yields the following system:

∂t (r 2ρ)+∂r (r 2ρu) = 0, (5.21a)

∂t (r 2ρu)+∂r (r 2(ρu2 +p)) = 2r p, (5.21b)

∂t (r 2ρs)+∂r (r 2ρsu) = 0. (5.21c)

The mass balance equation (5.21a) may be developed to obtain:

∂tρ+u∂rρ+ρ∂r u + 2

r
ρu = 0. (5.22)

In addition, thanks to the mass balance equation and for a regular function f = f (t ,r ),
we have:

∂t (r 2ρ f )+∂r (r 2ρ f u) = ρ (∂t f +ρu∂r f ).

Using this identity in the momentum and entropy balances, i.e. Equation (5.21b) and
(5.21c) respectively, we get:

∂t u +u∂r u + 1

ρ
∂r p = 0,

∂t s +u∂r s = 0.
(5.23)

We now use the fact that, if a regular function ϕ(t ,r ) only depends on x = r /t , which
means that there exists ϕ̃ : R→R such that ϕ̃(x) =ϕ(t ,r ), we have

∂tϕ(t ,r ) =− r

t 2
ϕ̃(x) and ∂rϕ(t ,r ) = 1

t
ϕ̃′(x).

Since we look for a self-similar solution, we may apply this identity to (5.22) and (5.23).
Keeping the same notation for functions of the pair (t ,r ) and x for short, we obtain
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the following system:

−x +u

ρ
ρ′(x)+u′(x)+ 2u(x)

x
= 0, (5.24a)

(−x +u(x))u′(x)+ 1

ρ
(x) p ′(x) = 0, (5.24b)

(u(x)−x) s′(x) = 0. (5.24c)

Let us now suppose that u < x in the intermediate zone. Note that the fact that the
precursor shock is a 3-shock implies that u1 <σp , so the assumed inequality is true in
the outer boundary of the intermediate zone, and the assumption amounts to suppose
that the intermediate zone ends (more precisely speaking, may be made to end in the
construction of the solution) before u = x occurs, which will be checked further. The
last relation thus implies that the entropy remains constant over the zone:

s = p

ργu
= s1 = p1

ρ
γu
1

, (5.25)

and this is a known value thanks to (5.13). We thus have p ′ = γu s1ρ
γu−1ρ′; using

c2 = γu p/ρ = γu s1ρ
γu−1, we thus get p ′ = c2ρ′. Substituting this expression in (5.24a)-

(5.24b) and solving for ρ′ and u′, we get:

ρ′(x) =− 2u(x)(u(x)−x)

x
(
(u(x)−x)2 − c(x)2

) ρ(x), (5.26a)

u′(x) = 2c(x)2

x
(
(u(x)−x)2 − c(x)2

) u(x). (5.26b)

This system of coupled ODEs is complemented by initial conditions, which consist
in the data of the velocity and the density at the precursor shock, i.e. at the outer
boundary of the intermediate zone x =σp :

ρ(σp ) = ρ1,u(σp ) = u1. (5.27)

Existence, uniqueness and properties of the solution We begin by proving an
a priori property of the solution, namely the fact that ρ(x) and u(x) are necessarily
decreasing functions in the intermediate zone. To this end, we will invoke the following
easy lemma, which is a consequence of the mean value theorem.

Lemma 5.5. Let h be a continuously differentiable real function, let us suppose that
there exists a > 0 such that h(a) > 0, and that h satisfies the property h′(x) ≤ 0 if h(x) > 0.
Then h(x) ≥ h(a), for all x ≤ a.

From the expression (5.13), we know that 0 < u1 < σp and ρ1 > 0. Let us now
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introduce σ` as the largest real number in [0,σp ) such that, for x ∈ [σ`,σp ], 0 ≤ u ≤ x
and ρ ≥ 0. Note that such a closed interval exists by the continuity (assumed in this
zone) of ρ and u. We are now in position to state the following result.

Lemma 5.6 (Variations of the solution). Let us suppose that the pair (ρ,u) satisfies
(5.26). Then ρ and u are two decreasing functions over [σ`,σp ]. Consequently, ρ ≥ ρ1 >
0 and u ≥ u1 > 0 over [σ`,σp ].

Proof. Let us consider the function h :R+ ∈R defined by h(x) = u(x)+c(x)−x. First,
we remark that, by the Lax entropy condition, we have h(σp ) = u1 +c1 −σp > 0 (and
this property may be checked using the expressions (5.13) of W1). Second, if h(x) > 0,
since by assumption u(x) ≤ x, ρ ≥ 0 and c ≥ 0, we have:

(u(x)−x)2 − c(x)2 = (u(x)−x − c(x)) (u(x)−x + c(x)) ≤ 0.

Equations (5.26a) and (5.26b) thus readily imply that ρ′ ≤ 0 and u′ ≤ 0 since, still by
assumption, u ≥ 0 and ρ ≥ 0. The function h is thus the sum of three non-increasing
functions, and is hence non-increasing itself. Lemma 5.5 applies, and yields h(x) =
u(x)−x−c(x) ≥ h(σp ) > 0 over the whole interval [σ`,σp ], which in turn implies ρ′ ≤ 0
and u′ ≤ 0. We thus have ρ ≥ ρ1 > 0 and u ≥ u1 > 0, which finally yields ρ′ < 0 and
u′ < 0 over [σ`,σp ].

Note that the inequality h(x) ≥ h(σp ) > 0 derived in this proof implies that the
denominator in Equations (5.26a) and (5.26b) does not vanish in the interval [σ`,σp ].
The right-hand side of System (5.26) is thus a C∞ function of ρ, u and x, and the
existence and uniqueness of a solution follows by the Cauchy-Lipschitz theorem. This
result is stated in the following lemma.

Lemma 5.7 (Existence and uniqueness of the solution). There exists one and only one
solution (ρ,u) of System (5.26)-(5.27) over the interval [σ`,σp ].

In addition, Lemma 5.6 allows to characterize σ`. Indeed, since u ≥ u1 > 0 and ρ ≥
ρ1 > 0 over [σ`,σp ], by definition of σ`, either σ` = 0 or u(σ`) =σ`. Since u ≥ u1 > 0
and u(x) ≥ x over [σ`,σp ], the first option cannot hold, and we get

u(σ`) =σ`. (5.28)

To complete the construction of a solution, it now remains to show the existence
of a real number σr , i.e. the fact that there exists x ∈ (σ`,σp ) such that W (x) =(
ρ(x),u(x), p(x)

)
satisfies the condition Fr (x) = 0, where Fr is defined by:

Fr (x) := 1

2
u(x)2 + 1

γb −1
x u(x)+ ( γu

γu −1
− γb

γb −1

x

x −u(x)

)p(x)

ρ(x)
+Q. (5.29)

The existence of σr is stated in the following lemma.
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Lemma 5.8 (Existence of σr ). The function Fr is defined and continuously differ-
entiable on the interal (σ`,σp ], and limx→σ+

`
Fr (x) = −∞. In addition, Fr (σp ) >

0 when γu = γb or when the reaction heat Q is large enough, according to Equa-
tion (5.31) below. Consequently, under one of these conditions, the set Sr = {x ∈
(σ`,σp ) such that Fr (x) = 0} is a non-empty closed subset of (σ`,σp ) which admits
a maximal element σr .

Proof. When x tends to σ`, we have seen that u(σ`) tends to σ` and thus Fr tends to
−∞. When x =σp , if γu = γb , we observe that:

Fr (σp ) =Q > 0.

This relation is a consequence of the fact that, with Q = 0, Fr (σ) = 0 is the relation
satisfied by one adjacent state of a shock travelling at the speed σ when the velocity in
the other adjacent state is zero, which is precisely the case of the state W1 with σ=σp .
It may also be checked by injecting the relations (5.13) in the definition of Fr . When
γu 6= γb , we thus get:

Fr (σp ) = [ 1

γb −1
− 1

γu −1

]
σp u1 −

[ γb

γb −1
− γu

γu −1

] σp

σp −u1

p1

ρ1
+Q. (5.30)

Let us recast Relations (5.13) as

ρ1 = 1

α
ρ0, u1 = (1−α)σp , p1 = p0 + (1−α)ρ0σ

2
p , with α=

γu −1+ 2

M 2
p

γu +1
.

Using these relations in (5.30), we get:

Fr (σp ) = [1− (1−α)γb

γb −1
− 1− (1−α)γu

γu −1

]
(1−α)c2

0 M 2
p

− [ γb

γb −1
− γu

γu −1

] p0

ρ0
+Q. (5.31)

Thanks to the Lax entropy conditions, Mp > 1, and, for Mp ∈ (1,+∞), the function
α(Mp ) decreases from 1 to (γu −1)/(γu +1). Depending on the values of γb and γu ,
the quantity 1−(1−α)γb may become negative when Mp →+∞ for admissible values
of α, and thus the first term may tends to −∞; however, for a given Mp , this term is
finite. The second term may be negative (still according to the values of γb and γu) but
does not depend on Mp . Hence, for any given Mp , for Q large enough, the condition
Fr (σp ) > 0 is satisfied.

In addition, when γu = γb , we are able to prove that Fr (σp ) is an increasing function
over (σ`,σp ), and therefore the set Sr contains a single point; this result is stated in
the following Lemma.
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Lemma 5.9 (Variations of Fr when γb = γu). The function Fr defined by (5.32) is
increasing over (σ`,σp ) if the heat capacity ratios γb and γu are equal.

Proof. Let us denote by γ the common heat capacity ratio, and recall the expression
of Fr :

Fr (x) = 1

2
u(x)2 + 1

γ−1
x u(x)− γ

γ−1

u(x)

x −u(x)

p(x)

ρ(x)
+Q. (5.32)

Using γp/ρ = c2, we have

F ′
r (x) = u(x)u′(x)+ x

γ−1
u′(x)+ 1

γ−1
u(x)

− 1

γ−1

xu′(x)−u(x)

(x −u(x))2
c2(x)− 1

γ−1

u(x)

x −u(x)
(c2)′(x),

with

(c2)′ = s1γ(ργ−1)′ = s1γ(γ−1)ργ−2ρ′ = (γ−1)c2 ρ
′

ρ
.

So we get that F ′
r (x) = T1(x)+T2(x)+T3(x) with

T1(x) = 1

γ−1

(
1+ c2(x)

(x −u(x))2

)
u(x),

T2(x) =
(
u(x)+ x

γ−1
− 1

γ−1

xc2(x)

(x −u(x))2

)
u′(x),

T3(x) =− u(x)c2(x)

(x −u(x))ρ
ρ′.

Since u > 0 by Lemma 5.6, T1 > 0. In addition, in the proof of the same lemma 5.6, we
showed that u(x)+ c(x)−x > 0, so that c(x) > x −u(x) and

u(x)+ x

γ−1
(1− c2(x)

(x −u(x))2
) ≤ u(x).

Since u′ ≤ 0, this implies that T2 ≥ uu′. Replacing ρ′ and u′ by their expressions given
in (5.26), we obtain that uu′+T3 = 0, which concludes the proof.

Finally, note that σr > σ`; since u is a decreasing function, this yields that σr −
u(σr ) > 0. As mentioned in (5.2), this was expected, from a physical point of view,
since this quantity is nothing else that the flame velocity u f .

5.3.2 Numerical approximation of the solution in the
intermediate zone

The problem tackled in this section is twofold: first, we need to solve numerically
the system of ODEs (5.26)-(5.27), and second, to determine the speed of the reactive
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shock σr . To this purpose, we solve (5.26)-(5.27) by an explicit Euler scheme, starting
at N ∈N and xN =σp and, for indices n decreasing from N , performing steps of −δx,
with δx = σp /N ; at each new step n associated to xn = nδx, we obtain W n and we
evaluate the function Fr , until we obtain Fr (xn) ≤ 0. Here, the algorithm stops and
we know that the computed approximation σapp

r of σr satisfies xn <σapp
r < xn+1; for

δx small enough, xn+1 may thus be considered as a reasonable approximation of σr ;
this is indeed the way it is computed in the numerical experiments described below.

The scheme thus reads:

for n = N , uN = u1, ρN = ρ1,

for n = N −1 to 0 and while Fr (xn+1) > 0,

(cn+1)2 = γ s1 (ρn+1)γu−1,

ρn = ρn+1 +δx
2un+1 (un+1 −xn+1)

xn+1
(
(un+1 −xn+1)2 − (cn+1)2

) ρn+1,

un = un+1 −δx
2(cn+1)2

xn+1
(
(un+1 −xn+1)2 − (cn+1)2

)un+1.

(5.33)

Then, for any valid value of n ≤ N , the pressure is given by

pn = s1 (ρn)γu .

Since the algorithm stops as soon as Fr (xn+1) becomes negative, from the expression
of this latter function, we have un < xn in all the performed steps n. We thus have
un > 0, ρn > 0, un ≥ un+1 and ρn ≥ ρn+1 at all steps.

5.4 Solution for a given flame speed
The construction performed in the previous section shows that, to any precursor

shock velocity σp greater than the speed of sound c0 in the outer zone of the fresh
atmosphere, we are able to associate a positive flame velocity u f given by u f =σr −u2.
In addition, even if we have no proof, physical arguments suggest that u f is an increas-
ing function of σp (or equivalently of the Mach number M = σp /c0, considering a
family of problems with the same initial atmosphere and thus c0 as a fixed parameter);
this behaviour is confirmed by numerical experiments (see Section 5.5). Computing
the flow for a given u f , which is in fact usually the engineering problem to be tack-
led, amounts to invert the function u f = G̃ (M), and this equation for M thus should
have one and only one solution, at least for reasonable values of u f . To compute this
solution, we define G by

G (M) := G̃ (M)−u f (5.34)
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and search for M such that G (M) = 0 with the following iterative algorithm depending
on the parameters M0, δ and ε:

initialization: let M0 be given, and compute G (M0),

let M1 = M0 +δ, and compute G (M1)

current iteration: For k ≥ 2, let Mk = Mk−1 −
Mk−1 −Mk−2

G (Mk−1)−G (Mk−2)
G (Mk−1),

and compute G (Mk ).

stopping criteria: stop when G (Mk ) ≤ ε.

This algorithm is used in the following section with M0 = 1.0001, δ= 0.001 and ε= 10−5.
Convergence is obtained for all cases, provided that the number of cells used in the
numerical computation of the solution in the intermediate zone is large enough;
otherwise, the error on σr is too large and the prescribed tolerance threshold for the
value of G cannot be reached.

5.5 Application to hydrogen deflagrations
We now apply the developed procedure for a flame propagating in a stoichiometric

mixture of hydrogen and air. We consider a unique total and irreversible chemical
reaction, which reads:

2H2 +O2 −→ 2H2O

Supposing that air is composed of 1/5 of oxygen and 4/5 nitrogen (molar or volume
proportions), the molar fractions of hydrogen, oxygen and nitrogen in the considered
stoichiometric mixture are thus equal to 2/7, 1/7 and 4/7 respectively. The mass
fractions of these constituents are thus easily deduced from these values:

yH2 =
2WH2

Wt
, yO2 =

WO2

Wt
, yN2 =

4WN2

Wt
, Wt = 2WH2 +WO2 +4WN2

where WH2 = 0.002 Kg, WO2 = 0.032 Kg and WN2 = 0.028 Kg stand for the molar mass of
the hydrogen, oxygen and nitrogen molecules respectively. Since H2 and O2 are pure
substances (and thus their formation enthalpy is equal to zero), the chemical reaction
heat reads:

Q = yH2O ∆H f
0 = (yH2 + yO2 ) ∆H f

0 ,

where ∆H f
0 = 1.3255107 J/Kg stands for the formation enthalpy of steam. The initial

pressure is p = 105 Pa, the initial temperature is T = 283◦K, the initial density is given
by the Boyle-Mariotte law and the heat capacity ratio is γu = γb = 1.4.

We plot on Figures 5.2 and 5.3 the density, velocity and pressure profiles obtained
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Figure 5.2 – Density (kgm−3), velocity (ms−1) and pressure (Pa) profiles obtained for a
flame velocity of u f = 32 m/s.
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Figure 5.3 – Density (kgm−3), velocity (ms−1) and pressure (Pa) profiles obtained for a
flame velocity of u f = 4 m/s.
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for u f = 32 m/s and u f = 4 m/s respectively. The solution in the intermediate zone is
obtained with a regular mesh, splitting the interval between 5 m and the position of
the precursor shock (which is unknown up to the last solution step of the algorithm)
in 5000 equal subintervals. Then we show on Figures 5.4-5.6 the evolution of the
states W1, W2 and Wb as a function of the flame velocity. The temperature in the burnt
state, not shown here, is close to T = 3050◦K for all the values of the flame velocity u f .
We observe that the precursor shock is of very weak amplitude for low values of the
flame velocity; in fact, it becomes visible only when u f reaches 20 m/s. For u f = 4, the
computed velocity at state W1 is lower than 10−6 m/s, while it reaches values greater
than 30 m/s at State W2. Since the ordinary differential equation governing the velocity
in the intermediate zone (5.26b) is of the form

u′ = f (ρ,u) u,

one may anticipate such a low value as initial (right) condition to lead to severe
accuracy problems. In this respect, the computed value which seems to be the most af-
fected is the velocity at state W2: the convergence value seems to be close to 33.00 m/s,
we obtain u2 ' 34.5 m/s with n = 5103 cells and u2 ∈ (32.95m/s, 33m/s) for n = 8104,
n = 16104, n = 32104 and n = 64104. As expected, convergence is easier when the
precursor shock has a significant amplitude: u2 ' 243.0 m/s for n = 5000, for a conver-
gence value in the range of 243.8 m/s.
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Figure 5.4 – Density in the burnt zone as a function of the flame velocity.
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Figure 5.5 – Velocity at state 1 and state 2 and speed of the precursor shock as a func-
tion of the flame velocity.
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Figure 5.6 – Pressure at state 1, at state 2 and in the burnt zone as a function of the
flame velocity.
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Conclusion
The aim of this Phd thesis was to contribute to the development of efficient nu-

merical scheme for the simulation of incompressible and compressible flows using
staggered grids. Several time integration methods are studied in this thesis for differ-
ent fluid flows which are enforced by numerical analysis and simulations.

The first chapter presented an extension of the Lax-Wendroff consistency Theorem
in the case of a staggered discretization for the 2D shallow water equations with regular
topography. Indeed, the consistency of the MAC schemes are shown for both the first
order segregated and second order Heun schemes with a MUSCL-like interpolation
for the numerical fluxes (mass and momentum). Furthermore the consistency of
the entropy inequality is only proven for the first order scheme thanks to a BV-norm
bounded assumption. Numerical investigations show the better accuracy of the Heun
scheme with respect to the first order scheme. Indeed, the order of convergence of
this latter is close to 1 for both the height and the velocity while the Heun scheme
yields an order 2 for the height and 1.5 for the velocity. It is shown numerically that the
Heun scheme has a smoothing effect which damps numerical oscillations occurring
for a shock wave; these ocillations are furthermore reduced by a regularization term
which is introduced in the discrete momentum equation to stabilize the scheme.

In chapter 2, formal upwind and stabilized centered schemes based on a staggered
discretization are studied for the non-linear shallow water equations with a Coriolis
source term. A theoretical study shows that the schemes based on the RT finite el-
ements enjoy important discrete properties such as the decay of the semi-discrete
mechanical energy and the preservation of the (linear) geostrophic equilibrium. How-
ever the upwind and stabilized centered RT schemes produce results that are not as
good as those obtained by the MAC schemes.The MAC schemes are largely stable and
accurate compared to RT and HLLC schemes despite their discrete properties that do
not meet the requirements set that are the preservation of the geostrophic equilibrium
for the linear schemes and the dissipation of the semi-discrete mechanical energy for
the non-linear one. In conclusion, this small comparative study allows us to argue that:
a staggered scheme working on the RT finite elements is less efficient on rectangular
grids.
In this context, a future work is planed in the purpose to develop staggered schemes
for the non-linear SWC equations. Conduct an advanced stabilization study for the
MAC scheme while trying to decrease the mechanical energy computed from the
semi-discrete scheme.
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We showed in Chapter 3 the efficiency of the decoupled staggered scheme for the
computation of the sediment transport process. We evidence numerically the relevant
role played by a correction of the sediment transport flux when classical formulae fail.
Furthermore we show the compatibility of the stabilized friction term which allows
the modified shallow-water-Exner equations to dissipate the mechanical energy and
which produces satisfactory results compared to the formal Saint-Venant-Exner model
proposed by Fernàndez-Nieto, Morales De Luna, Narbona-Reina, et al. 2017. The
numerical results validate on one hand the decoupled staggered approach and on
the other hand the improvement of the sediment flux and shear stress corrections to
model shallow water flow and sediment transport.
An interesting issue is then to extend the present work in the framework of two di-
mensional water flow and sediment process as performed by S. Li and Duffy 2011
where the authors implement a fully coupled approach based on a Roe approximate
Riemann solver.

Chapter 4 is devoted to a pressure correction time discretization scheme for the
numerical approximation of the reactive Euler equations. This scheme works on
general staggered grids and solves the so-called sensible enthalpy instead of the
total energy for the Euler equations. The approximation of the convection terms is
improved thanks to a MUSCL-like interpolation and an anti-diffusive scheme. The
consistency and the robustness of the scheme are shown as well as the efficiency of
the algorithm for the simulation of a plane deflagration.
An important perspective is to validate this staggered pressure correction scheme in
the case of three dimensional flow using the reference solution constructed in Chapter
5. This track is undertaken thanks to the CALIF3S free software developed by the IRSN.
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