Thèse soutenue

Développement de métamatériaux super-absorbants pour l’acoustique sous-marine

FR  |  
EN
Auteur / Autrice : Margaux Thieury
Direction : Arnaud TourinValentin Leroy
Type : Thèse de doctorat
Discipline(s) : Physique
Date : Soutenance le 03/06/2020
Etablissement(s) : Université Paris sciences et lettres
Ecole(s) doctorale(s) : École doctorale Physique en Île-de-France (Paris ; 2014-....)
Partenaire(s) de recherche : Laboratoire : Institut Langevin-Ondes et images (Paris ; 1997-....) - Institut Langevin-Ondes et images (Paris ; 1997-....)
établissement opérateur d'inscription : Ecole supérieure de physique et de chimie industrielles de la Ville de Paris (1882-....)
Jury : Président / Présidente : Claire Prada
Examinateurs / Examinatrices : Arnaud Tourin, Valentin Leroy, Claire Prada, Philippe Roux, Anne-Christine Hladky
Rapporteurs / Rapporteuses : Thomas Brunet, Philippe Roux

Résumé

FR  |  
EN

L’évolution constante des performances des sonars nécessite de nouveaux designs de revêtements absorbants pour l’acoustique sous-marine. De tels revêtements sont utilisés pour améliorer la furtivité des sous-marins, mais ils permettent également d’accroître l’efficacité des systèmes de détection embarqués. Les méta-écrans bulleux (lointains descendants des revêtements de type Alberich) représentent une solution possible pour répondre à cet enjeu. Ils sont constitués d’une distribution périodique bi-dimensionnelle de cavités d’air de taille sub-longueur d’onde emprisonnées dans une matrice viscoélastique. Lorsqu’elles sont excitées par une onde acoustique, les cavités se comportent comme des bulles d’air, et présentent une résonance basse fréquence, dite de "Minnaert". Sous certaines conditions, le méta-écran bulleux permet d’atteindre une absorption totale lorsqu’il est placé devant un réflecteur parfait. Ce travail de thèse a permis la mise au point d’un modèle phénoménologique, validé par des simulations numériques et des mesures en cuve, pour prédire les coefficients de réflexion et de transmission d’un méta-écran bulleux en fonction de ses caractéristiques géométriques et rhéologiques. Ce modèle prend en compte l’influence de la température et de la pression statique sur les performances du méta-écran, ainsi que celle de la forme des cavités.