Thèse soutenue

Étude thermodynamique de systèmes complexes contenant du gaz, de l'eau et des électrolytes : application au stockage souterrain de gaz

FR  |  
EN
Auteur / Autrice : Salaheddine Chabab
Direction : Christophe CoqueletPatrice Paricaud
Type : Thèse de doctorat
Discipline(s) : Energétique et génie des procédés
Date : Soutenance le 27/11/2020
Etablissement(s) : Université Paris sciences et lettres
Ecole(s) doctorale(s) : Ecole doctorale Ingénierie des Systèmes, Matériaux, Mécanique, Énergétique
Partenaire(s) de recherche : Laboratoire : Centre Thermodynamique des procédés. Fontainebleau
établissement de préparation de la thèse : École nationale supérieure des mines (Paris ; 1783-....)
Jury : Président / Présidente : Antonin Chapoy
Examinateurs / Examinatrices : Christophe Coquelet, Patrice Paricaud, Pierre Cézac, Simon Jallais, André Burnol
Rapporteurs / Rapporteuses : J. P. Martin Trusler, Pascale Bénézeth

Résumé

FR  |  
EN

L'étude thermodynamique (expérimentation et modélisation) des systèmes Gaz+Eau+Sels est d'une grande importance, que ce soit dans un contexte environnemental comme le Captage et le Stockage du dioxyde de Carbone (CSC) ou dans un contexte économique comme la récupération assistée du pétrole par injection de CO2, ou le Stockage Souterrain réversible massif de Gaz (SSG) à usage industriel (« Power-to-Gas » (PtG) et « Gas-to-Power » (GtP), industries chimiques, pétrochimiques et pharmaceutiques, etc.). Dans le cadre du SSG, l'industrie de l’énergie s'intéresse aux vecteurs énergétiques gazeux les plus demandés dans le secteur, tels que le méthane (ou le gaz naturel (GN)), le dioxyde de carbone (pur à destination des unités de méthanation ou mélangé avec le méthane pour le stockage du GN), l'oxygène (pour les unités d'oxycombustion) et l'hydrogène (utilisé directement ou pour alimenter les unités de méthanation). La conception et l'optimisation des installations de stockage, ainsi que la surveillance de la température, de la pression, de la quantité du gaz stocké dans les réservoirs géologiques (cavités salines, aquifères salins profonds et gisements de GN épuisés) et leurs pilotages selon différents scénarii (stockage journalier, hebdomadaire, mensuel ou annuel), nécessitent la connaissance des diagrammes de phases et plus spécifiquement la solubilité des gaz dans les saumures, les teneurs en eau et aussi les conditions de stabilité des hydrates de gaz dans le cadre de l’exploitation de gaz. Pour ce faire, il est essentiel de disposer d’un modèle thermodynamique qui repose sur des fondements théoriques et qui soit peu dépendant de l’acquisition de données expérimentales. L’objectif est de pouvoir extrapoler le modèle en dehors de la gamme d’ajustement des paramètres (température, pression et composition de la saumure) et également le transposer à d'autres applications. Pour pallier le manque de données expérimentales à haute pression de la solubilité des gaz (CO2, O2 et H2) dans la saumure, un dispositif expérimental basé sur la méthode "statique-analytique" a été adapté et utilisé pour mesurer la solubilité des gaz dans l’eau pure et la saumure. Pour comparer/valider les nouvelles mesures, un deuxième dispositif basé sur une technique dite "volumétrique" a également été utilisé. Une équation d’état pour les électrolytes (e-PR-CPA) a été développée en prenant en compte toutes les interactions entre espèces chimiques (molécules et ions). Les résultats de ce modèle ont été comparés avec des modèles existants tels que ceux utilisés par les géochimistes et en génie des procédés. Pour une meilleure évaluation des performances de notre modèle, les paramètres des modèles précédemment cités ont été réoptimisés en incluant les nouvelles données acquises