Thèse soutenue

Réduction d'un modèle 0D instationnaire et non-linéaire de thermique habitacle pour l’optimisation énergétique des véhicules automobiles

FR  |  
EN
Auteur / Autrice : Youssef Hammadi
Direction : David Ryckelynck
Type : Thèse de doctorat
Discipline(s) : Mécanique
Date : Soutenance le 11/06/2020
Etablissement(s) : Université Paris sciences et lettres
Ecole(s) doctorale(s) : Ecole doctorale Ingénierie des Systèmes, Matériaux, Mécanique, Énergétique (Paris)
Partenaire(s) de recherche : Laboratoire : ENSMP MAT. Centre des matériaux (Evry, Essonne)
établissement de préparation de la thèse : École nationale supérieure des mines (Paris ; 1783-....)
Jury : Président / Présidente : Vincent Lemort
Examinateurs / Examinatrices : David Ryckelynck, Nissrine Akkari, Sylvain Brück, Elie Hachem
Rapporteurs / Rapporteuses : Laurent Gallimard, Hasna Louahlia-Gualous

Résumé

FR  |  
EN

L’utilisation de la climatisation automobile engendre physiquement une surconsommation de carburant. Pour diminuer cette surconsommation, il existe deux leviers principaux. Le premier consiste à travailler en amont sur la définition technique de l’habitacle et du système de climatisation. Le second levier consiste à optimiser les stratégies de contrôle. Dans les deux cas, il s’avère incontournable de construire des modèles de thermique habitacle précis et rapides à évaluer. Ce qui fait l’objet de cette thèse CIFRE du Groupe Renault. Dans un premier temps, une méthodologie de réduction de modèles est exploitée pour passer d’un modèle éléments finis 3D à un modèle 0D. Ce modèle 0D est basé sur des bilans de masse et d’énergie sur les différentes parois et zones d’air de la cabine. Il prend la forme d’un système d’équations algébro-différentielles non-linéaire qui peut être transcrit en Bond Graph. De plus, le modèle 0D exploite un couplage faible entre la thermique et la mécanique des fluides issue des calculs CFD (aéraulique et aérodynamique externe). Dans un deuxième temps, on applique une méthode d’apprentissage automatique aux données générées par le modèle 0D en vue de construire un modèle 0D réduit. Un plan d’expériences est considéré à cette étape. Du fait de la non-linéarité des échanges thermiques, nous avons développé une approche qui s’inspire des méthodes Gappy POD et EIM. La base réduite utilisée est une base multiphysique qui tient compte de plusieurs contributions (températures, enthalpies, flux thermiques et humidités). Le modèle réduit obtenu est un modèle hybride qui couple quelques équations physiques d’origine à un réseau de neurones artificiel. La méthodologie de réduction a été déployée sur des véhicules Renault. Les modèles réduits ont été intégrés dans la plateforme GREEN de synthèse énergétique qui modélise différentes thermiques (moteur, transmission, circuit de refroidissement, batterie, HVAC, boucle froide, sous-capot) en vue de faire des études de gestion thermique qui revêtent une importance particulière pour les véhicules électriques et hybrides. Les modèles réduits ont été validés sur plusieurs scénarios (boucle de régulation pour le confort thermique, cycle d’homologation, couplage HVAC) et ont permis d’obtenir des gains CPU allant jusqu’à 99% avec des erreurs moyennes de 0,5°C sur les températures et 0,6% sur les humidités relatives.