Effets de l’oxygène et de l’hydrogène sur la microstructure et le comportement mécanique d’alliages de zirconium après incursion à haute température
Auteur / Autrice : | Thai Le Hong |
Direction : | Jérôme Crépin, Matthieu Le Saux, Jean-Christophe Brachet |
Type : | Thèse de doctorat |
Discipline(s) : | Sciences et génie des matériaux |
Date : | Soutenance le 05/06/2020 |
Etablissement(s) : | Université Paris sciences et lettres |
Ecole(s) doctorale(s) : | Ecole doctorale Ingénierie des Systèmes, Matériaux, Mécanique, Énergétique (Paris) |
Partenaire(s) de recherche : | Laboratoire : ENSMP MAT. Centre des matériaux (Evry, Essonne) |
établissement de préparation de la thèse : École nationale supérieure des mines (Paris ; 1783-....) | |
Jury : | Président / Présidente : Marie-Christine Baietto |
Examinateurs / Examinatrices : Jérôme Crépin, Matthieu Le Saux, Jean-Christophe Brachet, Anne-Françoise Gourgues-Lorenzon, Dominique Poquillon | |
Rapporteurs / Rapporteuses : Eric Andrieu, Ivan Guillot |
Mots clés
Résumé
Lors d’un scénario hypothétique d’accident par perte de réfrigérant primaire, les gaines en alliage de zirconium des crayons combustibles des réacteurs nucléaires à eau pressurisée peuvent être exposées à des températures élevées (jusqu’à 1200°C) et, dans certaines conditions, absorber localement des quantités significatives d’hydrogène (jusqu’à 3000 ppm-mass.) et d’oxygène (jusqu’à 1 %-mass.). Ce travail vise ainsi à étudier les effets isolés et combinés, peu investigués jusqu’à présent, de fortes teneurs en oxygène et en hydrogène sur les évolutions métallurgiques et le comportement mécanique de deux alliages de zirconium industriels (le Zircaloy-4 et le M5Framatome) au cours et après refroidissement/trempe depuis le domaine βZr (>700°C). Un protocole a été mis au point pour élaborer, à partir de tronçons de tube de gainage ou de plaquettes, des matériaux « modèles » chargés de manière homogène en oxygène jusqu’à 1 %-mass. et en hydrogène jusqu’à 7000 ppm-mass. Les transformations de phases s’opérant au refroidissement depuis le domaine βZr dans les matériaux chargés en hydrogène et les évolutions des compositions chimiques et des paramètres de maille des phases en présence ont été quantifiées à l’aide de différentes techniques : calorimétrie, diffraction de neutrons in-situ en cours du refroidissement depuis 700°C, diffraction de neutrons et de rayons X à température ambiante, microsonde électronique, μ-ERDA et EBSD. Les résultats ont été confrontés à des prévisions thermodynamiques tenant compte de l’ensemble des éléments chimiques. En plus des phases stables attendues à l’équilibre, des phases métastables (hydrures γZrH et, dans le cas du M5Framatome, phase βZr enrichie en H et Nb) ainsi qu’une quantité significative d’hydrogène en solution solide dans la phase αZr ont été mises en évidence jusqu’à température ambiante, dans des proportions dépendant de la teneur globale en hydrogène et de la vitesse de refroidissement. Les propriétés mécaniques de la phase (ex-)βZr ont été caractérisées à partir d’essais de traction uniaxiale effectués en température entre 700 et 30°C au refroidissement depuis le domaine βZr sur les matériaux chargés en hydrogène et/ou en oxygène. Les résultats ont montré que le comportement mécanique et le mode de rupture dépendent fortement de la température et des teneurs en hydrogène et en oxygène. Des relations empiriques et une loi phénoménologique ont été proposées pour décrire la température de transition ductile-fragile macroscopique, les évolutions des caractéristiques mécaniques et le comportement plastique du matériau (lorsqu’il est ductile), en fonction de la température et des teneurs en oxygène et en hydrogène. L’observation des faciès de rupture, des analyses μ-ERDA et à la microsonde électronique et un essai de traction réalisé in-situ sous MEB ont mis en évidence une hétérogénéité de la déformation et du mode de rupture à l’échelle locale, due à l’effet du « partitioning » des éléments chimiques lors des transformations de phases au refroidissement.