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� Delprat, Sébastien. Pr. UPHF, INSA HdF, LAMIH UMR CNRS 8201.

Co-encadrant de thèse
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Abstract

This work is concerned with the development of hybrid electric vehicle technologies. It

is split into three main topics:

� The first topic, covered in Chapter 2, is concerned with the energetic supervisory

control that, by taking advantage of the extra degrees of freedom present in a

hybrid vehicle, satisfies the power demand from the driver such that the total fuel

consumption is minimized. This supervisory control can be cast as an optimal con-

trol problem. The contribution of this work is an approach based on Pontryagin’s

minimum principle, penalty functions, and an implicit Hamiltonian minimization

that allows computing the offline energy management under multiple states subject

to path constraints. The approach is used to compute the supervisory control, also

known as energy management strategy, for two case studies: (1) a series hybrid

electric vehicle (modeled as a mixed input-state constrained optimal control with

two states) under cold operating conditions and (2) a dual series hybrid electric

vehicle (modeled as a mixed input-state constrained optimal control problem with

two states and two inputs). The approach is shown to be up to 46 times faster

than dynamic programming.

� The second topic, covered in Chapter 3, is concerned with the undesired drive-

shaft oscillations. In a vehicle with a gear-based transmission, this phenomenon is

mainly noticeable at low gear ratios (and therefore low speeds) when the torsional

dynamics of the driveshaft are excited with large torque values. The contribution

of this work is the design and implementation of a damping controller able to

significantly reduce the undesired oscillations. The controller is implemented by

adding a damping torque signal to the reference torque of the electric machine

commanded by the energetic supervisory control (energy management strategy).

No additional actuators are required for the implementation of the controller.

Moreover, the damping controller is effective without significantly interfering with

the energetic supervisory control.

� The third topic, covered in Chapter 4, is the design of hybrid vehicle architectures.

The complex task of automatically computing the optimal architecture design sub-

sumes other important tasks such as the optimization of the supervisory control,

the technology of the powertrain components, and the parametrization of such

components. In this work, building upon existing results, the powertrain compo-

nents are fitted into piecewise affine convex models. In this convex formulation,

the hybrid powertrain is seen as a power network. The main contribution is the





2

formulation of the energy management and the architecture design in a simulta-

neous framework via mixed-integer linear programming.

Keywords: Hybrid electric vehicle, energy management, state constraints, op-

timal control, Pontryagin Minimum Principle, convex programming, powertrain

architecture design, driveshaft oscillations.

Résumé

La thèse s’intéresse au développement des technologies de véhicules hybrides. Elle com-

prend trois thèmes principaux:

� En portant des degrés de liberté supplémentaires du véhicule hybride, la stratégie

de gestion énergétique répond aux demandes de puissance du conducteur de telle

manière que la consommation totale d’essence soit minimisée. La contribution

sur ce sujet est une méthodologie basée sur le principe du minimum de Pontrya-

gin, des fonctions de pénalité, et la minimisation implicite du Hamiltonien. La

méthodologie proposée est capable de calculer la stratégie de gestion énergétique,

avec plusieurs contraintes sur les états. La méthodologie est illustrée avec deux ex-

emples. Il est montré que la méthodologie proposée est jusqu’à 46 fois plus rapide

que la programmation dynamique.

� Dans un véhicule avec une bôıte de vitesses, la présence des oscillations dans

la transmission, qui est plus notable quand le véhicule roule avec le 1er ou 2nd

rapport engagé (et donc aux bas vitesses), arrive lorsque la dynamique de tor-

sion de la transmission est excitée par des couples qui changent soudainement

et qui atteignent des valeurs considérables. Notre contribution sur ce sujet est

la conception et l’implémentation d’une loi de commande réduisant ces oscilla-

tions qui diminuent l’agrément de conduite. La commande est mise en œuvre en

ajoutant un signal de commande à la consigne de couple de la machine électrique

demandée par le superviseur énergétique. La loi de commande ne requiert aucun

actionneur supplémentaire. En outre, elle n’interfère pas avec la stratégie de ges-

tion énergétique, et par conséquent, son effet sur la consommation d’essence est

négligeable.

� Le calcul de l’architecture optimale d’un véhicule hybride est un problème con-

sidérablement complexe qui englobe l’optimisation de la stratégie de gestion

énergétique, le choix de la technologie des composants du groupe
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motopropulseur (GMP), et les paramètres de ces composants. Dans ce travail,

en s’appuyant sur des résultats existants, le comportement énergétique des com-

posants du groupe motopropulseur est modélisé par des modèles convexes. Avec

ces modèles convexes, le GMP hybride est considéré comme un réseau de puissance.

La contribution principale est la formulation de la stratégie de gestion énergétique

et du choix de l’architecture optimales via un problème de programmation linéaire

mixte en nombres entiers.

Mots-clés: Véhicule hybride électrique, gestion énergétique, contraintes sur l’état,

commande optimale, principe du minimum de Pontryagin, optimisation convexe,

conception des GMPs, oscillations de torsion.
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Chapter 1

Introduction

This chapter begins by explaining the relevance of the technology of hybrid electric

vehicles (HEVs). It later explains what is an HEV, what are its main characteristics,

and how it can reduce fuel consumption. The next section further explains how the

energy management, the principal feature of an HEV, is computed and it includes a

brief state of the art on the algorithms for energy management currently found in the

literature. The contributions made in this work are presented in Section 1.4. The last

two sections of the chapter present a list of publications and the organization of the rest

of the manuscript.

1.1 Why hybrid electric vehicles

HEVs are one of the approaches aimed to reduce the consumption of fossil fuel resources

used for transportation. The main reason why we are interested in reducing the amount

of fuel that our vehicles consume comes from the fact that their consumption generates

pollutants: CO2, NOx, particulate matter, hydrocarbons, and CO. These pollutants

have damaging effects on the environment that range from local to a global. The local

effects are the deterioration of air quality in urban areas [6, 7]. The global effects come

from the emission of CO2, a gas that contributes to climate change (greenhouse effect [8])

[9, 10]. In order to reduce these damaging effects, several government entities around

the world have imposed progresively stricter fuel efficiency and pollution restrictions.

At least ten government entities, representing the 80% of the light-duty vehicle world

market, have imposed fuel efficiency and/or CO2 emission standards for new light-duty

vehicles [11]. One of these government entities, the Europen Union (EU), has gone as far

as to set the target of reducing the average CO2 emissions from new passenger vehicles

by a 37.5% by 2030 with respect to the CO2 emissions of 2021 [12]. If this tendency

1
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continues and no drastic developments are made on increasing the efficiency of internal

combustion engines (ICE), in a few decades from now, the only type of vehicles capable

of meeting the fuel efficiency and CO2 emission restrictions will be hybrid and electric

vehicles. For instance, according to the United States (US) Environmental Protection

Agency, the hybrid version of a 2020 Toyota Camry can achieve 55% less CO2 emissions

and a around 44% better fuel economy than the conventional 2020 Toyota Camry [13].

Moreover, according to a study from Emission Analytics, the average hybrid vehicle in

the EU and US markets, having a 1.1 kWh battery, has 30% less CO2 emissions than

its conventional counterpart [14]. Nevertheless, hybrid and electric vehicles are by no

means the only way in which CO2 emission reduction targets can be achieved. There

are other methods that may play a significant role in meeting these targets as well, for

instance, the replacement of fossil fuels by low-carbon fuels, such as biofuels and e-fuels

[15]. In fact, it is likely that meeting the CO2 emission reduction targets will require

the simultaneous implementation of several approaches [16].

1.2 What is a hybrid electric vehicle and how does it im-

prove fuel efficiency

A vehicle is defined as hybrid if it is propelled by more than one source of energy and at

least one these sources is reversible. An HEV is built by adding a battery pack and/or

a supercapacitor (the reversible sources) and one or more electric machines (EM) to a

conventional ICE vehicle. Fig. 1.1a and 1.1b compare the powertrains of an HEV and

a conventional vehicle. An HEV can also be built combining a battery pack and/or a

supercapacitor (the reversible sources) and one or more electric machines (EM) with a

fuel-cell (nonreversible source), see Fig. 1.1d. The presence of the aforementioned com-

ponents gives an HEV more degrees-of-freedom, with respect to a conventional vehicle,

when meeting the power demand from the driver. The extra degrees-of-freedom can be

used to achieve a better fuel consumption by:

� operating the ICE in its most efficient region available,

� recovering energy via regenerative braking,

� shutting down the engine during stand-still and low-power driving conditions.

HEVs can be classified in mild, full and plug-in HEVs. The ability of an HEV to improve

fuel efficiency depends on to which of these classifications it belongs:



Chapter 1: Introduction 3

(a) A conventional ICE architecture (b) A parallel HEV architecture.

(c) A parallel plug-in HEV architecture. (d) A fuel-cell HEV architecture

Figure 1.1: Four different vehicle architectures: (a) a conventional ICE arhitecture;
(b) a parallel HEV architecture; (c) a parallel plug-in HEV architecture; (d) a fuel-cell

HEV architecture. In these figures, T stands for transmission.

� A mild HEV has the smallest energy storage system and EM of the three types

of HEV: around 0.4 kWh of capacity for the storage system. This HEV only has

some of the three capabilities listed above: turning off the engine at standstill and

regenerative braking. It does not turn off the engine during low-power driving

conditions since its EM is too small to propel the vehicle by its own.

� A full HEV improves fuel efficiency with respect to a mild HEV through a bigger

storage system (around 1.8 kWh of capacity) and more powerful EMs. It can

perform all of the three capabilities listed above: operating the ICE in its most

efficient region available, recovering energy via regenerative braking, shutting down

the engine during stand-still and low-power driving conditions. Moreover, it can

recover more energy via regenerative braking than a mild HEV.

� A Plug-in HEV can further improve the fuel efficiency by significantly increasing

the size of its components, the storage system (typically between 5 and 20 kWh)

and the EMs, and by having a battery pack that can be directly recharged from

the grid, see Fig. 1.1c.
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In the rest of the thesis, every discussion about HEVs will refer to full HEVs, unless it

is explicitly stated otherwise. Other factors that influence an HEV performance are its

architecture and the technology used by its components. A limitless number of HEV ar-

chitectures can be conceived. The most common architectures are the series, parallel and

power-split architectures. After an architecture has been chosen, it can be implemented

using different technologies. For example, an ICE may be spark-ignited or compression-

ignited, the battery pack may be built using lead–acid, or nickel-metal hydrides, or

lithium-on cells, the EMs may be permanent-magnet, or induction, or switched reluc-

tance machines, and the transmission may be a gearbox or a continuous variable trans-

mission (CVT) technology. However, the chance of an HEV being built and deployed on

the roads does not depend solely on its performance but also on its cost-effectiveness.

A high-performance HEV may never hit the roads if it is prohibitively expensive.

1.3 Energy management strategies

The algorithm that handles the extra degrees-of-freedom such that the total fuel con-

sumption is minimized is known as energy management strategy (EMS) [17]. Its oper-

ation is depicted in Fig. 1.2. Its inputs are the power request from the driver and the

state of the vehicle’s components; its outputs are set-points to the low-level controllers.

Although the main objective of an EMS is to improve the fuel efficiency, additional cri-

teria may be considered in its problem formulation as well, e.g., reducing the emission

of pollutants (the optimal energetic operation of the vehicle may not coincide with the

optimal operation of its catalyst) [18, 19], improving the driver’s comfort [20, 21], and

prolonging the lifetime of the energy sources [22, 23].

Figure 1.2: Diagram of the EMS operation.

1.3.1 Real-time energy management

Real-time EMS [24] are used to operate actual vehicles and can only rely on causal

algorithms. Examples of real-time EMS techniques are model predictive control (MPC)

[25], heuristic based control [26], and the equivalent consumption minimization strategy

(ECMS) [27].
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In MPC approaches, the optimal control problem equivalent to the EMS is computed

at every sampling time but only the first control sequence is used as set-point for the

vehicle’s controllers. This receding horizon feature helps to overcome the uncertainties

and unmodeled dynamics ignored during the design of the controller. One advantage of

the MPC method is that the constraints on the states and inputs can be included in the

problem formulation explicitly. Its main drawbacks are that (i) its performance depends

on the availability of sufficiently accurate predictions of the future driving conditions and

(ii) that it can required an important computation effort. The prediction of the future

driving conditions can be estimated using sensors such as GPS navigation systems,

cameras, LIDARs, general information about the traffic conditions ahead, exponential

decay models for the future torque signal [25], and stochastic models for the driving

profile [28].

Alternatively, heuristic rules can be designed using expert knowledge about the vehicle’s

powertrain and/or analyzing the offline solutions under different driving conditions [29,

30]. This approach can lead to close to optimal results and it has the advantage of

requiring an small computational effort. The main drawback of this approach is that the

heuristic rules designed for one vehicle architecture cannot be easily translated to another

architecture. Therefore, the design of the heuristic rules can be a time-consuming task.

The Equivalent consumption minimization strategy (ECMS) is yet another real-time

EMS [31]. ECMS is based on the fact that, in the case of charge sustaining HEVs,

the energy depleted from the battery will be eventually replenished by the ICE, thus,

consuming fuel. The ECMS consists in the instantaneous minimization of a function

formed by the sum of the fuel consumption rate and the electric power provided by

the battery pondered by an equivalent factor which accounts for the amount of fuel

that will be required to recharge the battery. Although it was originally conceived using

engineering intuition, it can be derived from the Pontryagin minimum principle (PMP) if

the equivalent factor is seen as a co-state [32]. In order to achieve close to optimal results,

ECMS requires a good estimate of the optimal co-state trajectory, which can be exactly

determined only if the driving conditions are perfectly known beforehand. Despite this,

the ECMS can achieve close to optimal results without any a priori knowledge of the

driving profile. The main advantages of the ECMS are that it can be more easily adapted

to different powertrain topologies than heuristic based approaches and that it requires

a smaller computational effort than MPC methods. Its main drawback is that it cannot

explicitly handle state constraints.
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1.3.2 Offline energy management

In simulation, finding the offline EMS consists in computing (eventually, in a non-causal

way) the ultimate performance of the HEV. In practice, the obtained results allow

assessing, from an energy consumption perspective, different vehicle architectures and

component sizing [33]. They can also be used to evaluate the performance of real-time

energy management algorithms. EMS in its most general form can be formulated as an

optimal control problem with:

� mixed input-state constraints,

� discrete and continuous inputs, and

� discrete and continuous dynamics.

The methods for solving this optimal control problem can be classified in three groups:

� dynamic programming (DP),

� direct-approach methods, and

� indirect-approach methods.

1.3.2.1 Dynamic programming

In the DP approach, all the variables, inputs, states and time, are quantized. Then, the

resulting discrete static optimization problem is solved to determine the optimal EMS.

The DP approach is widely used in the literature of HEV, since it can solve the EMS in

its most general form, i.e, with hybrid dynamics and input and state constraints. The

main drawback of this method comes from its computational expensiveness, referred as

the curse of dimensionality [34]. Namely, the number of elementary operations has an

exponential relationship with respect to the number of states and inputs in the problem

formulation. Likewise, the memory requirements increase exponentially with respect to

the number of states. As a consequence, DP is, usually, restricted to problems with only

one [35, 36], or two continuous states [37, 38].

1.3.2.2 Direct-approach methods

In the direct-approach methods, only the time is often quantized (finite-time prob-

lems). The resulting static minimization problem is solved using mathematical program-

ming techniques such as nonlinear programming, e.g., sequential quadratic programming
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(SQP) [39, 40], or convex programming, e.g., second-order cone programming (SOCP)

[41], quadratic programming (QP) [42], and linear programming (LP) [43, 44]. State

constraints can be taken into account. Optimizing discrete controls leads to very large

mixed-integer programming problems due to the considered long optimization horizon

(typically, more than 1000 time steps). These problems are not tractable in general,

even if they are restricted to be mixed-integer linear programming (MILP) problems.

Nonetheless, when only continuous controls are considered, the direct approach does not

posses the curse of dimensionality suffered by DP, therefore, it can be applied to obtain

the optimal EMS, when several continuous states are considered. Moreover, it has been

even applied to obtain, simultaneously, the optimal EMS and the optimal sizing of the

main powertrain components [45].

1.3.2.3 Indirect-approach methods

In the group of indirect methods, the calculus of variations or the Pontryagin minimum

principle (PMP) is applied to obtain optimality conditions. The original EMS is then

reduced to a simpler equivalent problem, namely, a boundary value problem (BVP).

Hybrid-PMP [46, 47] allows considering both continuous and discrete systems, and thus,

handling discrete controls signals, although they can lead to singular control issues

[48, 49]. State constraints lead to many theoretical difficulties, and there is no algorithm

available to efficiently derive a solution in the general case. An algorithm is proposed in

[50] to solve the EMS problem restricted to a single state.

1.4 Contribution

The contribution of the this work is in three important topics in the filed of hybrid vehi-

cle technology. How these topics are related and a brief explanation of the contributions

made on each of these topics will be discussed in the following. The first topic covered

is the main characteristic of an HEV: the EMS. In this work, its offline version is con-

sidered, Section 1.4.1. In an HEV, having the energetic performance as the paramount

objective may lead to the replacement or removal of components that provide a passive

damping to the driveline, i.e, an energetically efficient driveline may be underdamped,

and hence present driveshaft oscillations noticeable enough to affect the driver’s com-

fort. This drawback may be overcome by taking advantage of the additional actuators

available in a hybrid powertrain to implement an active damping controller. The main

constraint of this controller is that it should not interfere with the EMS. The design

and implementation of this damping controller is the second topic covered in this work,

Section 1.4.2. The third and last topic, Section 1.4.3, is the optimal design of powertrain
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architectures. This is the most general topic and it can subsume all the other ones: we

cannot determine the optimal architecture without first solving the EMS and we could

include the maximization of the driveline damping in the problem formulation affecting

the relevance of the second topic. In this work, the single criterion to be considered for

computing the optimal architecture is the minimization of the total losses along the pow-

ertrain, i.e., the EMS is included in the problem formulation but damping maximization

is not. The rest of this section explains the contributions made on each topic.

1.4.1 State constrained energy management for HEVs: an implicit

Hamiltonian minimization approach

The energy management under several constrained states can be solved using the penalty

function approach. It consists in adding an additional cost to the criterion that forces

the state to stay in the feasible region. This approach converts the state constrained

problem into an unconstrained one that can be solved using the classical PMP [51, 52].

Nevertheless, the resulting optimality conditions are significantly more difficult to solve

[53].

The contribution of this work is a novel method for the minimization of the Hamiltonian

that overcomes the difficulties found in the penalty-based approaches to satisfy the opti-

mality conditions. The novel method is based on an implicit Hamiltonian minimization

that, under strict convexity assumptions, can solve the EMS formulated with n states

and m inputs under mixed input-state constraints. Although other penalty approaches

have been successfully applied to the EMS under state constraints, they have been so far

restricted to formulations with only one state [51, 52]. Increasing the number of states

and inputs is relevant since it is necessary to produce a more accurate representation of

the vehicle and all its subsystems that have an effect on the energy management [54].

1.4.2 Energy management and active damping of the side-shaft oscil-

lations

Beyond the energetic management, the extra actuators in an HEV can help mitigate

the presence of drive-shaft oscillations. In a vehicle with a gear-based transmission, the

driveshaft oscillations are mainly noticeable at the first and second gear, and therefore

at relatively low speeds: when a low gear is engaged and the driver demands strong

accelerations, the driveshaft experiences steep and particularly high torque changes,

thus, exciting its torsional dynamics to the point of producing noticeable torque and

speed oscillations. These oscillations affect the driver’s comfort and can wear off the
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driveline components [55, 56]. The contribution of the thesis is a control law based on a

discrete RST approach able to mitigate these oscillations without significantly interfering

with the EMS: it is found in simulation that the total fuel consumption increases only

in a +0.26% when a synthetic driving mission designed to have a high number of steep

torque changes in a short period of time is used. This synthetic driving cycle is unlikely

to arrive in normal driving conditions and as such it is used as a worst case scenario. The

controller does not require the installation of new hardware and it has been validated

experimentally.

1.4.3 Architecture design for hybrid electric vehicles

The optimal design of powertrain topologies is a complex nonconvex and nonlinear

problem. It is a nondeterministic polynomial time (NP) problem in general. For this

reason, the works available in the literature constraint the number of components from

which the topology architectures can be built [4, 5, 57]. In order to answer the question of

what is the best topology design, one has to simultaneously determine, what technology

should be used for each of the components, how should the size of each of the components

be chosen together with the EMS. In this work, building upon existing results [42, 43,

58] the powertrain components are fitted into piecewise affine convex models. In this

convex formulation, the hybrid powertrain is modeled as a power network. The main

contribution is the formulation of the energy management and the architecture design

in a simultaneous framework via mixed-integer linear programming.

1.5 List of publications

The following publications were made on the topics presented in this work:

� International journals:

– Energy management of hybrid vehicles with state constraints: A penalty and

implicit Hamiltonian minimization approach (2020); M. Sanchez, S. Delprat,

T. Hofman. Applied Energy, 260, 114149.

� International conferences:

– Hybrid Vehicle Energy Management: Avoiding the Explicit Hamiltonian Min-

imization; M. Sanchez; S. Delprat. 2018 IEEE Vehicle Power and Propulsion

Conference (VPPC). IEEE, 2018. p. 1-5.
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– Optimal Hybrid Vehicle Energy Management and Active Damping of the

Side-Shaft Oscillations; M. Sanchez, S. Delprat, W. Lhomme, F. Tournez

,2018 IEEE Vehicle Power and Propulsion Conference (VPPC). IEEE, 2018.

p. 1-5.

The following publications were made outside the scope of the main topics presented in

this work:

� International journals:

– A novel parameter-dependent polynomial approach for robust automated lane

keeping (2020); M. Sanchez, J. Alvarez, S. Delprat, M. Bernal. International

Journal of Fuzzy Systems. Status: accepted for publication.

– A Tighter Exact Convex Modelling for Improved LMI-Based Nonlinear Sys-

tem Analysis and Design (2020); S. Delprat, J. Alvarez, M. Sanchez, M.

Bernal. IEEE Transactions on Fuzzy Systems.

1.6 Organization

Contribution 1.4.1 is found in Chapter 2. Contribution 1.4.2 is found in Chapter 3.

Contribution 1.4.3 is found in Chapter 4. At last, Chapter 5 presents conclusions and

future work perspectives for all the topics covered in the thesis.



Chapter 2

State-constrained energy

management for HEVs: an

implicit Hamiltonian

minimization approach

2.1 General energy management strategy

The algorithm that handles the extra degrees-of-freedom such that the total fuel con-

sumption is minimized is known as energy management strategy (EMS) [17]. In its more

general form, the EMS can be cast as an optimal control problem with:

� nonlinear and nonconvex functions,

� mixed input-state constraints,

� discrete and continuous inputs, and

� discrete and continuous dynamics.

Let us use u(t) to denote the vector of continuous inputs, ϑ[k] the vector of discrete

inputs, x(t) the vector of continuous state dynamics, and ξ[k] the vector of discrete state

11
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dynamics. The general EMS can be posed as the following optimal control problem:

min
u(t),ϑ[k]

J =

∫ tf

0
ṁf (u(t), ϑ[k]) dt, (2.1a)

subject to:

ẋ(t) = f(x(t), u(t), ξ[k], ϑ, w(t)) (2.1b)

ξ[k + 1] = g(ξ[k], ϑ[k], w(t)) (2.1c)

x ∈ X(t), (2.1d)

ξ ∈ Ξ[k] (2.1e)

u ∈ U(t, w(t))), (2.1f)

ϑ ∈ Θ(t, w(t)), (2.1g)

with ṁf (g/s) the fuel consumption rate, (·)[k] denoting (·) (t ∈ k ·∆t), k ∈ N, ∆t ∈
[0, t′], w(t) the vector of exogenous variables, and where X, Ξ, U , and Θ are nonconvex

sets in general. The vector of exogenous variables typically includes the power demand

from the driver, the vehicle longitudinal speed and the road slope. In short, EMS

seeks to minimize the total fuel consumption for a given driving mission under several

constraints. The main constraint being that the power demand from the driver has to

be satisfied all along the driving mission (t ∈ [0, tf ]).

In simulation, the power demand from the driver, for a given driving mission, is com-

monly computed using a quasi-static approach [17]. This is the approach taken in this

work. Let us as denote m (kg) as the vehicle mass, v(t) (m/s) as the vehicle longitudinal

velocity, r (m) as the radius of the wheels, crr (-) as the rolling resistance coefficient,

g (m/s2) as the acceleration of gravity, α (rad) as the grade of the road, ρ (kg/m3) as

the air density, As (m2) as the vehicle frontal area, and cair (-) as the aerodynamic drag

coefficient. In the quasi-static approach, the vehicle is modeled as a lumped mass under

the action of 4 forces:

meq · av = Ftrac − Frr − Fslope − Fair, (2.2)

with meq = m+Iv(t)/r2 (kg) the equivalent mass and Iv(t) (kg·m2) the powertrain total

moment of inertia seen from the wheels1, av = dv/dt (m/s2) the vehicle acceleration,

Ftrac (N) the force provided by the vehicle powertrain, Frr = crr ·m · g · cosα (N) the

rolling resistance of the wheels, Fα = m ·g · sinα (N) the force exerted on the vehicle, by

the acceleration of gravity, due to the slope of the road, and Fair = 1
2 · ρ · cair ·As · v2 (N)

the aerodynamic drag force. Therefore, assuming that v(t), av(t) and α(t) are known

1Iv(t) depends on the vehicle architecture and the clutch and gears state of engaged/disengagement.
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and solving (2.2) for Ftract, the power demand can be computed as follows:

Pw(t) = Ftrac(t) · v(t). (2.3)

Pw(t) = (meq · av + Frr + Fα + Fair) · v(t), (2.4)

From a torque and angular velocity perspective, the powertrain has to provide the fol-

lowing torque signal at the wheels:

Tw(t) = (meq · av + Frr + Fα + Fair) · r (2.5)

under the kinematic constraints imposed by the angular speed:

ωw(t) = v(t)/r, (2.6)

in order to complete the driving mission. Quasi-static models are considered valid for

energy management applications because most of the energy flowing through the vehicle

is carried by low-frequency signals, which makes reasonable to neglect the transient

response of the vehicle components. As mentioned in the previous chapter, additional

criteria may be added to (2.1a). For instance, minimizing the total amount of pollutant

and green-house effect tailpipe emissions [18, 19], improving the driver’s comfort [20, 21],

and prolonging the lifetime of the energy sources [22, 23]. In simulation, the methods

for solving (2.1) can be classified in three groups:

� dynamic programming (DP),

� direct-approach methods, and

� indirect-approach methods.

The contribution of this work lies within the third group: the indirect-methods. How-

ever, a general discussion on the three groups of methods will be provided before entering

into the details of the contribution.
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2.2 State-of-the-art

2.2.1 Dynamic programming

In the DP approach, all the continuous variables, inputs, states and time, are quantized:

min
u[k],ϑ[k]

J =
N−1∑
k=0

ṁf (u[k], ϑ[k]) ·∆t, (2.7a)

subject to:

ẋ[k + 1] = f(x[k], u[k], ξ[k], ϑ[k], w[k]) (2.7b)

ξ[k + 1] = g(ξ[k], ϑ[k], w[k]) (2.7c)

x ∈ X[k], (2.7d)

ξ ∈ Ξ[k] (2.7e)

u ∈ U(k,w[k]), (2.7f)

ϑ ∈ Θ(k,w[k]), (2.7g)

with ∆t the time period of the quantization, k ∈ N; and where X ⊂ Rn, Ξ ⊂ Nnd ,

U ⊂ Rm, and Θ ⊂ Nmd are finite sets. Then, the resulting discrete static optimization

problem, (2.7) is solved to determine the optimal EMS. The DP approach is widely used

in the literature, since it can solve the EMS in its most general form and its solution is

globally optimal. The DP algorithm implements a backwards and a forwards simulation.

The backwards simulation of the DP algorithm is summarized in Algorithm 1. By ana-

Algorithm 1 Backward sub-routine of the DP algorithm. Adapted from [17].

1. for k = N − 1 : 0 do
2. for all x ∈ X, ξ ∈ Θ do
3. for all u ∈ U , ϑ ∈ Θ do
4. x[k + 1] = f (x, u, ξ, θ, w[k])
5. ξ[k + 1] = g (ξ, θ, w[k])
6. L = ṁf (u, θ) ·∆t

7. J (u, ϑ) = L+ Jctg (x[k + 1], ξ[k + 1], k + 1)
8. end for
9. Jctg(x, ξ, k) = minJ (u, ϑ)
10. [Uctg(x, ξ, k),Θctg(x, ξ, k)] = arg min J (u, ϑ)
11. end for
12. end for

lyzing this algorithm (pseudocode) and using |.| to define the cardinality of a set, it can

be inferred that its computational complexity is given by O (N × |X| × |Ξ| × |U | × |Θ|):
it grows linearly with respect to the length of the driving mission and the cardinality

of each set. However, |Ξ| and |Θ| are usually small with respect to |X| and |U |. For
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this reason, we will focus on the effect that continuous states and inputs have on the

computation complexity. Assuming a grid with X values for each of the n continuous

states and a grid with U values for each of the m continuous inputs, we have |X| = X n

and |U | = Um, thus, the computational complexity grows exponentially with respect to

the number of continuous inputs and states:

O(N ×X n × Um × |Ξ| × |Θ|), (2.8)

Moreover, from lines 7, 9, and 10 of the algorithm, it can be concluded that the memory

requirements are determined by matrices J (u, ϑ) which contains Um×|Θ| real numbers,

Jctg(x, ξ, k), which contains N × X n × |Ξ| real numbers, Uctg(x, ξ, k) which contains

N ×X n×|Ξ| m-length real vectors or m×N ×X n×|Ξ| real numbers, and Θctg(x, ξ, k),

which contains N × X n × |Ξ| md-length integer vectors or md × N × X n × |Ξ| integer

numbers, thus:

O ((m+md)× (N ×X n × |Ξ|) + Um × |Θ|) , (2.9)

Therefore, the memory requirements also grow exponentially with respect to the number

of continuous inputs and states. In general, X is much greater than U . For HEV

applications in particular, n ≈ m. Therefore, the memory requirements can be estimated

by m×N ×X n for HEV applications.

Let us consider an EMS problem with 1 continuous state and X = 2000, 1 continuous

input and U = 25, 1 discrete state and Ξ = 5, 1 discrete input and Θ = 3, and a

driving mission of length N = 1000. Based on (2.8) and (2.9), the number of basic

computations and the required number of variables will be estimated as N × X n ×
Um × |Ξ| × |Θ| and (m+md) × (N ×X n × |Ξ|) + Um × |Θ|, respectively. Assuming

that each basic operation takes 1 µ second and each variable requires 64 bits (or 8

bytes) of memory, the total computation time and the total memory requirements can

be estimated as 750 seconds and 160 MB, respectively. If we add a continuous state,

the computation time grows to 1.5 · 106 seconds or about 17 days. The memory goes up

to 320 GB. If a total of three continuous sates are considered, the requirements reach

3·109 seconds (or about 95 years!) of computation time and 640 TB of memory! In other

words, the requirements become highly prohibitive for n = 3 states. This computational

expensiveness, referred as the curse of dimensionality [34], explains why DP is usually

restricted to EMS problems with only one [35, 36] or two continuous states [37, 38]. The

estimations on the computational resources required by DP discussed in this paragraph

are summarized in Table 2.1.
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States X = 2000;
Ξ = 5

Inputs U = 25;
Θ = 3

Computation
time (seconds)

Memory

1 continuous; 1
discrete.

1 continuous; 1
discrete.

750 160 MB

2 continuous; 1
discrete.

1 continuous; 1
discrete.

1.5·106 320 GB

3 continuous; 1
discrete.

1 continuous; 1
discrete.

3·109 640 TB

Table 2.1: Estimated computation time and memory requirements for the DP algo-
rithm for different number of continuous states. N = 1000. Each basic operation is
assumed to take 1 µ second. Each variable is assumed to be stored using 64 bits (8

bytes) of memory.

2.2.2 Direct methods

In the direct-approach methods, only the time is often quantized (finite-time prob-

lems). The resulting static minimization problem is solved using mathematical program-

ming techniques such as nonlinear programming, e.g., sequential quadratic programming

(SQP) [39, 40], or convex programming, e.g., second-order cone programming (SOCP)

[41], quadratic programming (QP) [42], and linear programming (LP) [43, 44]. State

constraints can be taken into account. Optimizing discrete controls leads to (nonconvex)

very large mixed-integer programming problems due to the considered long optimiza-

tion horizon (typically, more than 1000 time steps). These problems are not tractable

in general, even if they are restricted to be mixed-integer linear programming (MILP)

problems. Nonetheless, when only continuous controls are considered, the direct ap-

proach does not posses the curse of dimensionality suffered by DP, therefore, it can

be applied to obtain the optimal EMS, when several continuous states are considered.

Moreover, it has been even applied to obtain, simultaneously, the optimal EMS and the

optimal sizing of the main powertrain components [45]. Including discrete controls can

be feasible by combining convex programming with another method better suited for

dealing with discrete inputs. For instance, it has been combined with DP in an iterative

approach in order to compute the EMS of a parallel HEV including discrete variables:

engine on/off state and gear-shifting [59]. Necessary and sufficient optimality conditions

for the iterative approach are provided therein. Similarly, in [60], convex programming

was combined with an indirect approach to compute the EMS of a parallel HEV with

engine on/off state.

One of the main difficulties that limits the use of convex programming is the challenge of

determining if the concerned mathematical program is indeed a convex program. This

is not tractable in general and it may require a high level of expertise. A modeling tool
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called disciplined convex programming was conceived to ease these expertise require-

ments on potential convex programming users [61]. A disciplined convex program can

be straightforwardly identified as such by applying a finite set of rules. Every disci-

plined convex program is a convex program but the opposite is not true: a mathematical

program may not be a disciplined convex program and still be a convex program. If a

mathematical program is indeed a disciplined convex program, it can be modeled as such

using the Matlab-based tool CVX [62]. Once the disciplined convex program has been

modeled, CVX will translate it into a standard form suitable for a convex programming

solver2. CVX has been regularly used in HEV applications. For instance, in [45], [41],

[59], and [60], among others.

2.2.3 Indirect methods

In the group of indirect methods, the calculus of variations or Pontryagin minimum

principle (PMP) is applied to obtain optimality conditions. The original EMS is then

reduced to a simpler equivalent problem, namely, a boundary value problem (BVP).

Although the optimality conditions usually do not require any quantization, computing

the solution of the BVP does require the quantization of the independent variable when-

ever an analytic solution is not possible. The conditions offered by PMP are necessary

conditions only. Assuming that an optimal solution exists, it can be obtained by com-

puting all the trajectories that satisfy the necessary conditions and then choosing the

one with the best performance. If it is proven that only one trajectory satisfies PMP

conditions, the necessary conditions become sufficient as well.

2.2.3.1 Classical Pontryagin minimum principle

The original version of PMP [63], referred in this work as classical PMP, offers neces-

sary optimality conditions on the assumption of smooth dynamics and absence of path

constraints. In other words, it does not allow to consider (2.1c), only allows continuous

2Up to its 2.2 version, CVX supports four solvers: SeDuMi, SDPT3, GUROBI, and MOSEK.
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inputs in (2.1b), and only terminal constraints in (2.1d):

min
u(t)

J =

∫ tf

0
ṁf (u(t)) dt, (2.10a)

subject to:

ẋ(t) = f(x(t), u(t), w(t)) (2.10b)

x(0) = X(0), (2.10c)

x(tf ) = X(tf ), (2.10d)

u ∈ U(t, w(t))), (2.10e)

In order to apply PMP, the Hamiltonian has to be computed first. For (2.10), the

Hamiltonian is defined as follows:

H(x(t), u(t) |w(t)) = ṁf (u(t)) + λ(t)T f(x(t), u(t), w(t)), (2.11)

where λ(t) ∈ Rn is the vector of costates of the optimal control problem. PMP states

the following necessary optimality conditions for (2.10) [63]:

λ̇(t) = −∂H (x(t), u(t) |w(t))

∂x
, (2.12a)

u∗(t) = arg min
u(t)∈U

H (x(t), u(t) |w(t)) . (2.12b)

Additionally, for each state xi that does not have a fixed terminal condition, i.e., xi(tf ) /∈
X(tf ), the following terminal condition has to be added [64, Page 200]:

λi(tf ) = 0. (2.13)
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2.2.3.2 Hybrid Pontryagin minimum principle

An extended version of PMP allows finding necessary optimality conditions for systems

with hybrid dynamics, and thus, handling discrete control signals [46, 47]:

min
u(t),ϑ[k]

J =

∫ tf

0
ṁf (u(t), ϑ[k]) , (2.14a)

subject to:

ẋ(t) = f(x(t), u(t), ξ[k], ϑ, w(t)) (2.14b)

ξ[k + 1] = g(ξ[k], ϑ[k], w(t)) (2.14c)

x(0) = X(0), (2.14d)

x(tf ) = X(tf ), (2.14e)

u ∈ U(t, w(t))), (2.14f)

ϑ ∈ Θ(t, w(t)), (2.14g)

Defining the Hamiltonian of (2.14) as follows:

H(x(t), ξ[k], u(t), ϑ[k] |w(t)) = ṁf (u(t), ϑ[k]) + λ(t)T f(x(t), ξ[k], u(t), ϑ[k], w(t)),

(2.15)

the necessary conditions of optimality offered by Hybrid-PMP are:

λ̇(t) = −∂H (x(t), ξ[k], u(t), ϑ[k] |w(t))

∂x
, (2.16a)

{u(t), ϑ[k]} = arg min
ϑ[k]∈Θ[k]

(
arg min

u(t)∈U
H (x(t), ξ[k], u(t), ϑ[k] |w(t))

)
(2.16b)

Again, for each state xi that does not have a fixed terminal condition, i.e., xi(tf ) /∈ X(tf ),

the following terminal condition has to be added:

λi(tf ) = 0. (2.17)

However, the inclusion of discrete inputs for EMS applied to HEV may lead to singular

control arcs3 [49]. A singular control arc occurs when, for a non-trivial period of time

[t1, t2], PMP optimality condition (2.16b) is not enough to compute an optimal control

candidate [64].

3In some works, this phenomenon was wrongly blamed on numerical inaccuracy [48].
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2.3 Motivation

State constraints lead to many theoretical difficulties, and there is no algorithm available

to efficiently derive a solution in the general case. An algorithm is proposed in [50] to

solve the EMS problem restricted to a single state.

Problems with many constrained states can be handled using the penalty function ap-

proach. It consists in adding an additional cost to the criterion that forces the state to

stay in the feasible region. This approach converts the state constrained problem into

an unconstrained one that can be solved using the classical PMP [51, 52]. Nevertheless,

the resulting optimality conditions are significantly more difficult to solve [53].

2.4 Contribution: A penalty function and implicit Hamil-

tonian minimization approach

The first part of this section explains the penalty function approach: how the constraints

of the original EMS can be relaxed by adding nonlinear terms to the Hamiltonian. The

second part explains how the PMP optimality conditions can transform the relaxed EMS

formulation into an equivalent BVP. The optimal control must be chosen to minimize the

Hamiltonian, a given scalar function. The relaxation of the constraints by adding non-

linear terms to the Hamiltonian makes more difficult its explicit minimization. Hence,

the last subsection explains the main contribution: an implicit minimization scheme.

The contribution will be explained assuming an EMS with the following form4:

min
u(t)≤u(t)≤ū(t)

J =

∫ tf

0
ṁf (u(t)) , (2.18a)

subject to:

ẋ(t) = f(x(t), u(t), w(t)) (2.18b)

x ≤ x(t) ≤ x̄, (2.18c)

u(t) ≤ u(t) ≤ ū(t), (2.18d)

x(0) = X(0), (2.18e)

x(tf ) = X(tf ), (2.18f)

Discrete signals are omitted in EMS (2.18) in order to focus on the handling of the path

state constraints, the main contribution of the chapter; since their inclusion may lead to

4Throughout the rest of the chapter, an underline ( ) and an overline ( ¯ ) are used to denote minimum
and maximum value, respectively.
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singular control issues, which would require the explanation of additional methodologies

outside the scope of the contribution.

2.4.1 Penalty function approach

In the penalty approach, inequality constraints (2.18c) and (2.18d) are taken into account

by adding nonlinear terms, denoted as penalties, to the cost functional, (2.18a). These

nonlinear terms drastically increase their values, whenever a constraint is violated (for

exterior penalty functions) or close to be violated (for interior and extended penalty

functions). These characteristics force the optimal solution to satisfy the constraints.

Consider a function Pz defined as follows:

Pz = P (z) =


(z − z)n , z ≤ z

(z − z̄)n , z ≥ z̄

0, otherwise.

(2.19)

with z the minimum allowed value for z, z̄ the maximum allowed value for z, and n > 1

a function parameter. Pz is classified as an exterior penalty function, as it only affects

the cost-functional when the constraints have been violated. Define Pu and Px as the

exterior penalty functions for state constraints (2.18c) and input constraints (2.18d),

respectively. Given cost functional (2.18a), the penalty approach solves EMS (2.18) by

solving an equivalent unconstrained version of the problem:

min
u(t)∈Rm

Ĵ(u) =

∫ tf

0

[
ṁf (u) +

1

ε
(Pu + Px)

]
dt, (2.20a)

subject to:

state dynamics (2.18b), and boundary conditions (2.18e)-(2.18f), (2.20b)

where ε is a real positive parameter pondering the penalty functions Pu and Px. If ε

is small enough, the effect of Pu and Px increases to force the solution to EMS (2.20),

Ĵ∗, to be approximately equal to the solution to EMS (2.18), J∗. Moreover, Ĵ∗ → J∗

as ε→ 0. Therefore, in order to get a fairly accurate approximation for the solution to

EMS (2.18), it is sufficient to solve EMS (2.20) for a small enough value of ε. Proofs on

the convergence of the penalty approach are given in [65, 66].

2.4.2 Optimality conditions

As mentioned in section 2.2.3.1, necessary optimality conditions for EMS (2.20) can be

obtained from PMP. In order to apply PMP, the Hamiltonian of the problem has to be
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computed first. The Hamiltonian for EMS (2.20) is given by:

H(u, x, λ, w) = ṁf +
1

ε
(Pu + Px) + λT ẋ (2.21)

with λ(t) ∈ Rn denoting the vector of co-states. The necessary optimality conditions

for EMS (2.20) are the following [64]: (i) the optimal control, u∗(t), minimizes the

Hamiltonian for every possible control:

u∗(t) = arg min
u∈R
{H (u, x, λ, w)}, (2.22)

(ii) the co-states obey the following dynamics:

λ̇(t) = −∂H
∂x

, (2.23)

and (iii) for each state xi that does not have a fixed terminal condition, i.e., xi(tf ) /∈
X(tf ), the following terminal condition has to be added [64, Page 200]:

λi(tf ) = 0. (2.24)

It is not always possible to obtain u∗ explicitly. Nevertheless, let us assume by now

that an explicit expression can be computed for u∗ and let us denote this expression as

Π(u, x, λ, w):

u∗(t) = Π(u, x, λ, w). (2.25)

On the assumption that an optimal solution exists and that H satisfies the following

sufficient strict convexity condition with respect to u:

∂2H

∂u2
> 0, (2.26)

conditions (2.22)-(2.24) become necessary and sufficient optimality conditions [67, 68].

Using (2.22)-(2.25), EMS (2.20) can be formulated as an equivalent boundary value

problem (BVP):

ẋ(t) = f(x(t),Π (u(t), x(t), λ(t), w(t)) , w(t)) (2.27a)

λ̇(t) = −∂H
∂x

, (2.27b)

λi(tf ) = 0,∀xi(tf ) /∈ X(tf ) (2.27c)

state boundary constraints (2.18e)− (2.18f). (2.27d)

This BVP can be solved through different numerical methods, e.g. shooting, multiple-

shooting, or collocation [69][70]. Due to its numerical stability, a collocation method
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has been chosen in this work [70]. The use of penalty functions increases the difficulty

for minimizing the Hamiltonian, which is a necessary optimality condition. A solution

to overcome this issue is presented in the following subsection.

2.4.3 Implicit Hamiltonian minimization

Firstly, consider the minimization of the Hamiltonian with respect to the input vector:

optimality condition (2.22). For an unconstrained input signal and assuming that H

satisfies strict convexity condition (2.26), the optimal control, u∗(t), can be defined from

first order optimality conditions as follows:

u∗(t) =

{
u(t) | ∂H (u, x, λ, w)

∂u(t)
= 0

}
. (2.28)

In general, (2.28) cannot be solved explicitly but an implicit Hamiltonian minimization

can be used instead. Let us define q(t) ∈ Rm as follows:

q(t) =
∂H (u, x, λ, w)

∂u
. (2.29)

The following equivalent conditions for u∗(t) can be obtained from q(t):

q(0) = 0, (2.30)

q̇(t) = 0, (2.31)

From (2.31), it follows:
∂q

∂u
u̇+

∂q

∂x
ẋ+

∂q

∂λ
λ̇+

∂q

∂w
ẇ = 0,

from which the following optimal input dynamics can be computed:

u̇∗(t)= −
(
∂q

∂u

)−1(∂q
∂x
ẋ+

∂q

∂λ
λ̇+

∂q

∂w
ẇ

)
, (2.32)

Therefore, the explicit minimization of the Hamiltonian can be replaced by (2.30) and

(2.31), since ∂q
∂u = ∂2H

∂u2
, (2.26) guarantees that

(
∂q
∂u

)−1
is defined. A methodology

to approximate ẇ for the case when only w(t) is available is given in Appendix A.2.

Considering these new optimality conditions, EMS (2.20) can be solved via the following
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BVP [53, 71]:

ẋ(t) = f(x(t), u∗(t), w(t), w(t)) (2.33a)

λ̇(t) = −∂H
∂x

, (2.33b)

u̇∗(t) = −
(
∂q

∂u

)−1(∂q
∂x
ẋ+

∂q

∂λ
λ̇+

∂q

∂w
ẇ

)
, (2.33c)

q(0) = 0, (2.33d)

λi(tf ) = 0,∀xi(tf ) /∈ X(tf ) (2.33e)

state boundary constraints (2.18e)− (2.18f). (2.33f)

In the following, the solution to BVP (2.33) will be denoted as Y (t) ∈ R2n+m. The

dynamics of Y will be denoted as F (Y, t). Note that the idea of computing higher order

time derivatives of the Hamiltonian was also considered in [72]. There, it is presented

an inversion approach that allows parameterizing an optimal control problem using only

one higher-order unknown parameter. However, their inversion method requires having

access to an explicit expression of the optimal control, which is not the case for the

problem formulation considered in our contribution.

2.4.4 Numerical solution of the EMS

Whenever a state reaches its boundary, its corresponding co-state becomes discontinuous

[73]. BVP solvers cannot easily handle such discontinuities straightforwardly. This

section deals with the numerical aspects that need to be considered when computing the

solution to BVP (2.33). The first two subsections discuss the continuation procedure, a

numerical routine that breaks down the initial BVP into a sequence of several simpler

sub-problems, starting from an unconstrained one down to a fully constrained one.

Solutions to these sub-problems may temporarily exceed the state and control limits

and as a result, the solutions may even lay outside the definition domain of F (Y, t). To

deal with this issue, the third subsection proposes to extend F (Y, t) outside its domain

of definition.

2.4.4.1 Continuation Procedure

The numerical success of the BVP solver depends on the initial guess solution being close

enough to the unknown solution. The difficulty of generating a good enough initial guess

is overcome by the implementation of a continuation or homotopy procedure [74, 75].

Before explaining the continuation procedure used for the considered BVP, let us briefly

recall how a continuation procedure is implemented in general.
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Let us consider a BVP that depends on a set of parameters ζ. The objective is to

compute a solution for the parameter values ζN using a BVP solver. This is a difficult

task in general. Let us use Yi to denote the solution to the BVP for the set of parameters

ζi, with i ∈ {1, 2, . . . , N}. In the continuation procedure, a set of parameters ζ0 is chosen

such that Y0 can be easily computed. Y0 is used as an initial guess for Y1, where ζ1 is

chosen such that its values are between ζ0 and ζN but close enough to ζ0 such that Y0 is

a good enough initial guess for Y1. At each iteration i, with i > 0, Yi is computed using

the solution computed at the previous iteration, Yi−1, as an initial guess. The values

of ζi smoothly approach those of the original problem at each iteration. The algorithm

converges when YN , the solution to the original BVP, is reached. The convergence and

the computation time of the algorithm depend on the total number of iterations, N ,

and the update function applied to vary the parameters from ζ0 to ζN . The general

continuation procedure described in the present paragraph is summarized in Algorithm

2.

Algorithm 2 General continuation procedure

Inputs: ζ0, Y0, ζN , N
Outputs: YN

for i = 1 to N do
ζi ← update (ζi−1)
Yi ← solve (ζi, Yi−1)

end for

2.4.4.2 Application to the considered problem

In order to solve BVP (2.33), first, an initial guess is generated and then two con-

tinuation procedures are used. In order to identify the parameters of each continuation

procedure, the following notation is introduced: ζji denotes parameter values at iteration

i ∈ {0, 1, . . . , N} of the continuation procedure described in step j ∈ {a, b, c}.

2.4.4.3 Step a: generation of an initial solution

The penalty pondering coefficient εa is initially set to a large value so the penalty

functions are negligible. The initial co-states are selected such that strict convexity

assumption (2.26) is satisfied. Failing to meet this assumption could lead to ∂2H
∂u2

= ∂q
∂u

equal to zero, rendering the optimal control dynamics, (2.33c), undefined. The initial

values for the optimal control u(0) are numerically computed by solving q(0) = 0. Given

these initial conditions, a solution is numerically computed by integrating differential

equations (2.33a) -(2.33c) using an ODE solver. This solution is denoted by Y a(t).
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2.4.4.4 Step b: First continuation procedure

The purpose of the first continuation procedure is to bring the states and co-states to its

prescribed final values X(tf ) and λi(tf ) = 0, ∀xi(tf ) /∈ X(tf ), respectively. The penalty

pondering coefficient ε remains unchanged : εb = εa. The continuation procedure pa-

rameters are ζb =

[
x(tf ), λ(tf )

]T
. ζb0 is set equal to the final conditions

[
xa(tf ), λa(tf )

]T
from the initial solution Y a. ζbN is set to

[
X(tf ), λi(tf ) = 0

]T
as defined in (2.33e) and

(2.33f). The parameter update function is assumed linear, values of ζbi are given by:

ζbi =
ζbN − ζb0
N b

+ ζbi−1, (2.34)

Algorithm 3 First continuation procedure.

Inputs: ζb0 =
[
xa(tf ), λa(tf )

]T
, Y b

0 = Y a, ζbN =
[
X(tf ), λi(tf ) = 0

]T
, N b;

Outputs: Y b
N ;

for i = 1 to N b do
ζbi ←

(
ζbN − ζb0

)
/N b + ζbi−1

Y b
i ← solve

(
ζbi , Y

b
i−1

)
end for

The output of the continuation procedure is the unconstrained (non-penalized) solution

to EMS (2.18). The continuation procedure is summarized in Algorithm 3.

2.4.4.5 Step c: Second continuation procedure

The second continuation procedure activates the penalty functions by reducing the value

of ε, thus ζc = ε. ζc0 is set equal to the large value of ε used initially: ζc0 = εb = εa.

In order to obtain a solution that fulfills the constraints, a very small value of ε should

be reached at the end of this continuation procedure : ζcN ≈ 0. The values of ζci are

chosen to be varied exponentially. The continuation procedure can be summarized in

the following algorithm:

Algorithm 4 Second continuation procedure.

Inputs: ζc0, Y c
0 = Y b

N , ζcN ≈ 0, N c;
Outputs: Y c

N ;
α← (ln(ζcN )− ln(ζc0)) /N c

for i = 1 to N c do
ζci ← eα · ζci−1

Y c
i ← solve

(
ζci , Y

c
i−1

)
end for
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The output of the second continuation procedure is the solution to constrained (pe-

nalized) EMS (2.18). The general numerical procedure presented in this subsection is

summarized in Fig. 2.1.

Step a

λ(0)
s.t. (2.26)

ODE solver
Y a

Step b

Algorithm 2

BVP solver

BVP (2.33)

Y b
N

Step c

Algorithm 3

BVP solver

Y c
N

solution to
BVP (2.33)

ODES +
initial conditions:

(2.33a)-(2.33f),(2.17f),(2.17g)

Figure 2.1: Overview of Step a, Step b, and Step c.

2.4.4.6 Function extension

We now consider the case where dynamics F (Y, t) : U→ R2n+m in (2.33) have a defini-

tion domain such that U 6= R2n+m. For instance, it is frequently encountered that the

state dynamics f contains a term
√
E2 − 4R · u and therefore U =

[
−∞, E2

4·R

]
×R2n+m−1.

Since the only constraint for the initial co-states, used to generate the initial solution

in Step a, is to satisfy strict convexity assumption (2.26), the states may reach values

outside the definition domain of F . As a consequence, Step a and b may not be feasible.

Moreover, even in Step c, the BVP solver may require to evaluate F (Y, t) outside its

definition domain. To overcome the latter problems, F (Y, t) is extended outside its def-

inition domain and the resulting function is denoted by Fext(Y, t) : R2n+m → R2n+m. F

and Fext are identical for all Y ∈ U. Fext is obtained by replacing every scalar nonlinear

term in F which is not defined for all Rni , denoted as hi(y) with y ∈ Hi ⊂ Rni , by a

function extension based on the Taylor series, gi(y). Let us that all the hi terms are

C∞. The Taylor series expansion of hi around of ỹ is defined as follows:

hi(y) =hi(ỹ) + (y − ỹ)T ∇fi(ỹ)+

+
1

2
(y − ỹ)T ∇2fi(ỹ) (y − ỹ) + . . .

With ∇hi and ∇2hi defined as the gradient and Hessian matrix of hi, respectively. Given

ỹ ∈ ∂Hi, and z 6∈ Xi, the domain of hi is extended outside Hi by the following function:

gi(z) = hi(ỹ) + (z − ỹ)T ∇hi(ỹ) +
1

2
(z − ỹ)T ∇2hi(ỹ) (z − ỹ) , (2.35)

where ỹ is defined as the closest point on the boundary of Hi, ∂Hi, with respect to z.
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Taylor-based function extension (2.35) can preserve the convexity properties of the orig-

inal function and thus guarantee that the strict convexity assumption on the Hamilto-

nian, (2.26), which in turn guarantees that the solution remains unique and that optimal

control dynamics (2.33c) is well defined.

2.5 Application 1: Series HEV with battery thermal dy-

namics

In this first application, the penalty function and implicit Hamiltonian minimization

approach will be applied to compute the two-state (the battery state-of-energy and the

battery temperature) single-input (the power generated by the APU) EMS under input

and state constraints. The studied vehicle is a Series-HEV, shown in Fig. 2.2. We would

like to study the effect that extreme cold conditions (-20 degrees Celsius) have on fuel

consumption when battery thermal dynamics are considered in the EMS.

The driving mission used to model the power demand from the user is the Worldwide

Light-vehicle Test Cycle Class 3 (WLTC-C3), and it is depicted in Fig. 2.3 (left). For

the considered series hybrid vehicle, see Fig. 2.2, and the parameters of Table 2.2 the

EMS input data is the power w(t) (kW) required to propel the vehicle along the given

driving cycle [17].

In the rest of this section, the offline-EMS will be defined in more detail for the considered

series hybrid vehicle. However, it is worth noticing that the methodology presented in

this work can be applied to many other hybrid vehicle topologies as well.

2.5.1 Modeling

Consider the HEV powertrain topology displayed in Fig. 2.2. The power required by the

traction motor (TM) for propelling, w(t) ∈ R, must be provided at each instant by the

Figure 2.2: Diagram of the series-HEV powertrain.
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auxiliary power unit (APU), u(t) ∈ R, and/or the battery pack, Pb(t) ∈ R. Moreover,

the APU is subject to a on/off command signal, ϑ(t) ∈ {0, 1}. The series topology

imposes the following restriction among the power signals:

w(t) = ϑ(t) · u(t) + Pb(t). (2.36)

The models required to compute w(t), Pb(t), and u(t) are discussed in the following

subsections. For the ease of readiness, in the following, the time dependence of the

variables will be omitted when convenient.

2.5.1.1 Traction subsystem

The traction subsystem includes the vehicle model and transmission from the wheels to

the TM. The corresponding model allows evaluating the energetic requirement of the

vehicle. Given a velocity profile v(t), the vehicle parameters, and assuming a flat road

the torque Tw(t) and the angular velocity at the wheels ωw(t), required to complete the

driving mission, are computed [17]:

Tw(t) =rw

(
meq ·

dv(t)

dt
+m · g · cr +

1

2
ρa ·As · cd · v2(t)

)
, (2.37)

ωw(t) = v(t)/rw, (2.38)

with cr the tire rolling resistance (-), g the gravity acceleration
(
kg ·m/s2

)
, ρa the air

density
(
kg/m3

)
, As the vehicle frontal area

(
m2
)
, cd the drag coefficient (-), γ the

final gear ratio (-), rw the radius of the wheels (m), m the vehicle mass (kg), and

meq = m + Jtm/
(
γ2r2

w

)
the equivalent mass of the vehicle (kg). The vehicle is rear

wheel driven (RWD): when braking, Tw < 0, only 40% of the torque is assumed to

be provided by regenerative braking and the remaining 60% is assumed to be provided

by the mechanical brakes. Indicated with µb(t) as a piecewise constant torque brake

factor. A constant torque brake factor for regenerative braking is considered for the

sake of simplicity. More advanced blending braking strategies may be applied, as in

[76]. Finally, the TM torque and speed, denoted as Ttm and ωtm, are derived:

Ttm(t) = γ · µb (t) · Tw(t), (2.39)

µb(t) =

0.4, Tw(t) < 0

1, otherwise
(2.40)

ωtm(t) = ωw(t)/γ. (2.41)
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At last, the power demand signal w(t) is computed using the traction motor efficiency

map ηtm:

w(t) = Ttm(t)ωtm(t)ηtm (Ttm(t), ωtm(t))−sign(Ttm(t)) (2.42)

Given the WLTC-C3 driving cycle, the power demand signal w(t) is displayed in Fig.

2.3 (right).
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Figure 2.3: Worldwide Light-vehicle Test Cycle Class 3 (WLTC-C3) in m/s (left).
Power demand signal w(t) for the WLTC-C3 (right).

2.5.1.2 Battery Pack

The battery pack is connected to a DC/DC converter that fixes the DC bus voltage. Its

losses are assumed to be negligible. The energetic behavior is modeled using both the

state-of-energy dynamics given in [42] and a thermal model similar to the one found in

[77]. They relate the battery power, Pb(t), to the state-of-energy, denoted as x1(t), and

the battery temperature, denoted as x2(t). The battery state-of-energy, x1(t), is derived

from an equivalent electric circuit model. It consists of an open circuit voltage U(x1(t))

in series with a temperature dependent resistance Rb(x2(t)). The state-of-energy, x1(t),

has the following dynamics:

ẋ1(t) =
1

Ū ·Q

[
−Pb(t)−

Rb(x2(t))

U2(x1(t))
P 2
b (t)

]
, (2.43)

with Ū the maximum open circuit voltage (V) and Q the charge capacity of the battery

pack (Ah). The battery state-of-energy, x1(t), is constrained between x1 and x̄1

x1 ≤ x1(t) ≤ x̄1. (2.44)

Within the battery pack operating range (30%–90%), U is modeled as a linear function

of x1: U(x1) = ax1 + bx1x1, derived from LiFePO4 battery cell data found in [1], as

shown in Fig. 2.4. The resistance Rb (Ω) is given by a linear function of x2 (K).
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Figure 2.4: Open circuit voltage U as a function of x1 derived from [1] (in blue)
and the considered model U(x1) = ax1

+ bx1
x1 (in red); plotted along the whole range

of available data (left); plotted along the operating range (right). The parameters of
U(x1) are ax1

= 27.14 and bx1
= 653.85.

The battery pack power Pb(t) is constrained by the current limitations of the battery

pack:

P b(Rb, U) ≤ Pb(t) ≤ P̄b(Rb, U), (2.45)

with P b = I · U −Rb · I2 and P̄b = Ī · U −Rb · Ī2, I the minimum, and Ī the maximum

battery pack current (A).

For the dynamics of x2, the whole battery pack is modeled as a lumped mass and then

the model is derived from a thermal energy balance equation [42, 77–79]:

ẋ2(t) =
1

Cb

[
h · (T∞ − x2(t)) +

Rb(x2(t))

U2(x1(t))
P 2
b (t)

]
(2.46)

with Cb the heat capacity of the battery pack (kJ/K), T∞ the ambient temperature (K),

and h the heat transfer coefficient between the battery pack and its surroundings (W/K).

The term depending on Pb stands for the heat dissipated by the battery resistance Rb

whose dependency on x2 has been derived from [1]. The battery resistance increases

for low temperatures, thus reducing both the battery pack efficiency and the maximum

power P̄b.

2.5.1.3 Auxiliary Power Unit

The APU consists of one ICE coupled with one generator (Gen) to produce electrical

energy using fuel. The APU instantaneous fuel consumption, ṁf (t) (g/s), required

to generate electric power u(t) (W), is estimated by the following quadratic function

[42, 80]:

ṁf (u(t)) = a+ b · u(t) + c · u2(t). (2.47)
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The data used to compute the parameters of (2.47) is given in Appendix A.3. The

criterion to be minimized by the EMS is the total fuel consumption:

J =

∫ tf

0

[
ṁf (u(t))ϑ(t) + d · (1− ϑ(t))u2(t)

]
dt, (2.48)

where tf stands for the duration of the driving cycle and d is a conversion factor(
g

(kW)2·s

)
. The additional term (1 − ϑ) · u2 allows enforcing u = 0, whenever ϑ = 0

[53].

Recall that optimizing the binary variable ϑ may lead to theoretical difficulties, such as

singular controls [49] and non-unique optimal solutions. As stated in Section 2.4.1, in

order to focus on the state constraints handling, the binary signal ϑ is assumed to be

fixed beforehand as a function of w(t). For instance, it can be computed using a set of

empirical rules according to the power demand w(t). The power produced by the APU

is constrained by the physical limits of its components:

0 ≤ u(t) ≤ ū, (2.49)

yet also by the limits of other components on the powertrain via (2.36):

w(t)− P̄b(t) ≤ u(t) ≤ w(t)− P b(t). (2.50)

Constraints (2.49) and (2.50) can be combined together:

u′(t) ≤ u(t) ≤ ū′(t), (2.51)

u′(t) = max
[
0, w(t)− P̄b

]
,

ū′(t) = min [ū, w(t)− P b] .
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2.5.2 Problem statement

At last, the EMS can be cast as follows:

min J(u) =

∫ tf

0

[
ϑ ·
(
a+ b · u+ c · u2

)
+ d · (1− ϑ) · u2

]
dt, (2.52a)

subject to:

ẋ1(t) =
1

Ū ·Q

[
− (w − ϑu)− Rb(x2)

U2(x1)
(w − ϑu)2

]
, (2.52b)

ẋ2(t) =
1

Cb

[
h · (T∞ − x2) +

Rb(x2)

U2(x1)
(w − ϑu)2

]
, (2.52c)

u′(t) ≤ u(t) ≤ ū′(t), (2.52d)

u′(t) = max
[
0, w(t)− P̄b(t)

]
,

ū′(t) = min [ū, w(t)− P b(t)] .

x1 ≤ x1(t) ≤ x̄1, (2.52e)

x1(0) = x1,0, (2.52f)

x2(0) = x2,0, (2.52g)

x1(tf ) = x1,f . (2.52h)

The final condition x1(tf ) allows to guarantee that a certain amount of energy will

remain in the battery at the end of the driving cycle. The final state-of-energy x1(tf ) is

often assumed to be equal to x1(0) to allow a fair comparison with respect to the fuel

consumption of conventional vehicles.

The problem statement above is a state and input constrained formulation of the EMS.

As it accounts for the battery thermal modeling, its solution allows investigating the

effect that a battery operating under low-temperature has on fuel consumption.

2.5.3 Solution

2.5.3.1 Penalty functions

Path constraint (2.52e) and input constraint (2.52d) are relaxed by adding 1
ε

(
P̃u + Px

)
to cost functional (2.52a)

min Ĵ(u) =

∫ tf

0

[
ϑ · ṁf (u) + d · (1− ϑ) · u2 +

1

ε

(
P̃u + Px

)]
dt, (2.53)
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with:

Px = P (x) =


(x − x)2 , x ≤ x

(x − x̄)2 , x ≥ x̄

0, otherwise,

(2.54)

and P̃u = φ · Pu, where

Pu = P (u) =


(u − u)2 , u ≤ u

(u − ū)2 , u ≥ ū

0, otherwise,

(2.55)

and where φ = (1/ū)2 is meant to scale P̃u down to the range of values of Px.

2.5.3.2 Implicit Hamiltonian minimization

Considering optimality conditions (2.33c)-(2.33d) and cost functional, (2.52) can be

solved via the following BVP:

ẋ1(t) =
1

Ū ·Q

[
− (w − ϑ · u∗)− Rb(x2)

U2(x1)
(w − ϑ · u∗)2

]
, (2.56a)

ẋ2(t) =
1

Cb

[
h · (T∞ − x2) +

Rb(x2)

U2(x1)
(w − ϑ · u∗)2

]
, (2.56b)

λ̇1(t) = −1

ε

∂Px
∂x1

, (2.56c)

λ̇2(t) = −λ1
∂ẋ1

∂x2
− λ2

∂ẋ2

∂x2
, (2.56d)

u̇∗(t)=−
(
∂q

∂u

)−1( ∂q

∂x1
ẋ1 +

∂q

∂x2
ẋ2 +

∂q

∂λ1
λ̇1 +

∂q

∂λ2
λ̇2 +

∂q

∂w
ẇ +

∂q

∂ϑ
ϑ̇

)
, (2.56e)

q(0) = 0, (2.56f)

λ2(tf ) = 0, (2.56g)

state boundary constraints (2.52f)− (2.52h), (2.56h)

The solution to (2.56) is denoted as Y (t) =

[
x1(t), x2(t), λ1(t), λ2(t), u∗(t)

]T
. The dy-

namics of Y is denoted as F (Y, t).

2.5.3.3 Function extension

Dynamics F (Y, t) is not defined for open circuit voltage U(x1) = ax1x1 + bx1 = 0 due

to the presence of the term 1/U(x1) in (2.56a) and (2.56b). F (Y, t) is replaced by
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Fext(Y, t) ∈ R5 via (2.35). Namely, Fext is obtained by replacing f(x1) = 1/U(x1) :

(−ax1/bx1 ,+∞]→ R+ by fext(x1 | x̃1) : R→ R+, with:

fext(x1 | x̃1) =

1/U(x1), if x1 ≥ x̃1

g(x1), otherwise
(2.57)

g(x1) =1/U(x̃1) + (x1 − x̃1)
d (1/U(x1))

dx1
+

1

2
(x1 − x̃1)2 d2 (1/U(x1))

dx2
1

, (2.58)

where x̃1 is a scalar to be chosen from the interval (−ax1/bx1 , x1].

In this case, the Taylor-based function extension preserves the convexity properties of

the original function, thus, preserving strict convexity assumption (2.26).
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Figure 2.5: 1/U(x1) (blue line), its function extension fext(x1 | x̃1) (black line), the
limit of the definition domain of 1/U(x1): x1 = −ax1

/bx1
(red dotted line), and x̃1 =

x1 = 0.1 (green dotted line).

2.5.4 Numerical Results

Considering the vehicle parameters contained in Table 2.2, the offline-EMS is solved

under low-temperature and warm operation conditions in order to study the effect that

battery temperature has on fuel consumption.

2.5.5 Low-temperature operation

The low-temperature operation is defined here as starting the vehicle with T∞ = 253.15 K

(−20 ◦C), where T∞ is assumed to remain constant along the entire driving cycle. At the

beginning of the driving cycle, the following assumption holds: x2 = T∞. Considering

the WLTC-C3 driving cycle, the offline-EMS defined in (2.52) is solved via the equivalent
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BVP (2.56) using a collocation solver [70] and the numerical procedure and function

extension described in Section 2.4.4.

First, the initial guess Y a is generated as described in Step a using λ(0) =[
1.4 · 105 1.45 · 105

]T
and the initial penalty pondering coefficient εa = 1 · 1012. The

obtained initial solution Y a is depicted in Fig. 2.6. The state-of-energy reaches negative

values, showing that the initial guess does not necessarily have a physical meaning.

The final conditions from Y a,

[
xa1(tf ), λa2(tf )

]T
=

[
−7.3, 5.32 · 106

]T
, are applied at

the beginning of Step b: ζb0 =

[
xa1(tf ), λa2(tf )

]T
. Step b allows computing a solution

that reaches the expected final state-of-energy and the necessary final condition for the

second co-state: ζbf = [x1(tf ), 0]T . This procedure is depicted in Fig. 2.7. Its output Y b
N ,

shown in Fig. 2.8, is the solution to EMS (2.52) without constraints, since the penalty

functions are negligible: εb = εa = 1 · 1012.

Parameter Value Units

Meq 2166 kg

As 1.98 m2

cd 0.32 -

cr 0.01 -

γ 4.2 -

rw 0.26 m

g 9.81 kg·m/s2

Jtm 0.045 kg·m2

I −40 A

Ī 40 A

ax1 653.85 V

bx1 27.14 V

Q 1800 A·s
h 4.343 W/K

Cb 142.56 kJ/K

a 0.2924 g/s

b 0.0834 g
kW·s

c 0.0055 g
(kW)2·s

d 1 g
(kW)2·s

ū 17.5 kW

Table 2.2: Parameters considered in the numerical experiments of application 1.
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Figure 2.6: Initial guess Y a generated in Step a for the WLTC-C3 driving cycle.

Figure 2.7: Set of solutions computed in Step b for the low-temperature operation
and the WLTC-C3 driving cycle: the light gray trajectory denotes the first solution of
the continuation procedure. As the trajectories become darker, they approach the final

boundary conditions. The final trajectory of the procedure is displayed in black.

The output of Step b, Y b
N , is fed into Step c: Y c

0 = Y b
N . Step c is used to activate the

penalty functions. The initial penalty pondering coefficient is set to the same value of

Step b: ζc0 = εc0 = εb = 1 · 1012. The final penalty pondering coefficient is set to a small

positive value: εcN = 1 ·10−9. This procedure is depicted in Fig. 2.9. The output of Step

c, Y c
N , is the solution to constrained EMS (2.52) and is shown in Fig. 2.10. It allows
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Figure 2.8: Unconstrained solution to (2.52) for the low-temperature operation and
the WLTC-C3 driving cycle. The fuel consumption is 9.53 l/100 km. The red dashed
lines at the top and bottom subfigures represent the bounds on the state-of-energy and

the control input, (2.52e) and (2.52d), respectively.

Figure 2.9: Set of solutions computed in Step c for the low-temperature operation
and the WLTC-C3 driving cycle: the light gray trajectory denotes the first solution
of the continuation procedure. As the trajectories become darker, they approach the

constrained solution. The final trajectory of the procedure is displayed in black.

computing the fuel consumption for the low-temperature operation : 9.85 l/100km.

The constrained solution for the EMS, Fig. 2.10, shows a discontinuity phenomenon
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Figure 2.10: Constrained solution to (2.52) for low-temperature operation and the
WLTC-C3 driving cycle. The fuel consumption is 9.85 l/100 km. The red dashed lines
at the top and bottom subfigures represent the bounds on the state-of-energy and the

control input, (2.52e) and (2.52d), respectively.

for λ1(t). This phenomenon is to be expected, whenever a state makes contact with

its bounds [73]. It is worth noticing that the procedure proposed in this work does not

require any a priori knowledge about these discontinuities.

2.5.6 Warm versus low-temperature operation

Here, the fuel consumption of the low-temperature operation will be compared with an

ideal warm operation. The warm operation is defined as T∞ = 298.15 K (25 ◦C), with

T∞ assumed constant along the entire driving cycle. At the beginning of the driving

cycle x2 = T∞ holds. Moreover, in the warm operation, the dynamics of the battery

temperature is considered to be equal to zero; on the assumption that a cooling system is

in place to keep x2 ≈ 298.15 K (25 ◦C) along the entire driving cycle. The offline-EMS

is solved under warm operation conditions using the same vehicle parameters of the

low-temperature operation. The fuel consumption for each operation is shown in Table

2.3. The low-temperature operation increases the fuel consumption with respect to the

ideal warm operation in a 4.01%.
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Operation
Fuel consumption

(WLTC-C3)
Difference

Warm 9.47 l/100km -

Low-temperature 9.85 l/100km +4.01 %

Table 2.3: Fuel consumption results for each operating condition.

2.5.7 Solution via DP

The optimal energy management for the low-temperature operation will be solved again

using DP. The objective is to validate the optimality of the proposed approach and to

benchmark its computational efficiency. As mentioned in Section 2.2.1, DP has been

widely used to solve the EMS in the literature of hybrid electric vehicles [35][36]. Its

advantages are that it can solve the EMS with mixed input-state constraints with a

guarantee of global optimality. Its main drawback is that it has an exponential growth

of space and computational complexity with respect to the number of states and inputs,

denoted as the curse of dimensionality [34]. For this reason, its use is limited to EMS

formulations with one [35] or two states [37]. The DP algorithm is implemented using

the Matlab code from [81], together with the iterative approach described in [82]. The

solution has been computed using the parameters presented in Table 2.2. The results of

the DP solution to (2.52) are displayed in Fig. 2.11 along with the solution computed

with the proposed approach. The fuel consumption and computation times are compared

in Table 2.4. The proposed approach is 46 times faster than DP but obtains +0.4% more

fuel consumption as well. The small difference in fuel consumption can be due to the

limited accuracy that DP posses as a consequence of the quantization of all variables

and the Euler integration scheme in which it relies on.

Method
Fuel consumption

(WLTC-C3)
Computation time (hours)

DP 9.81 l/100km (100%) 17.186 (≈4600%)

Implicit Hamiltonian minimization 9.85 l/100km (100.4%) 0.366 (100%)

Table 2.4: Fuel consumption and computation time for DP and the proposed implicit
Hamiltonian minimization under low-temperature conditions. The algorithms were im-
plemented in a workstation with 64 GB of RAM and a processor Intel(R) Core(TM)

i7-9800X CPU @3.80GHz with 8 cores.
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Figure 2.11: Solution to (2.52) for the low-temperature operation and the WLTC-
C3 driving cycle with DP (green solid line) and the proposed implicit Hamiltonian
minimization (black solid line). The red dashed lines at the top and bottom subfigures
represent the bounds on the state-of-energy and the control input, (2.52e) and (2.52d),

respectively.

2.6 Application 2: Dual Series HEV

In this application, the energy management is solved for an HEV equipped with a bat-

tery pack and a supercapacitor in a series configuration, see Fig. 2.12. The problem

formulation has two states (the battery state-of-charge and the capacitor voltage), and

two inputs (the current going through the battery and the current going through the su-

percapacitor). Both states are subject to path constraints. Both inputs are constrained

as well. As in the previous application, the solution will be bench-marked and vali-

dated with the help of iterative-dynamic programming. The solution provided by our

contribution is once more able to solve the problem significantly faster than the I-DP

approach.

Figure 2.12: Dual Series HEV diagram.
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2.6.1 Modeling

Consider the HEV powertrain topology displayed in Fig. 2.12. The power required by

the traction motor (TM) for propelling, w(t) ∈ R, must be provided at each instant by

the auxiliary power unit (APU), u1(t) ∈ R, and/or the battery pack, Pb(t) ∈ R, and/or

the supercapacitor. The series topology operates with a constant DC voltage Vbus and

imposes the following restriction among the power signals:

w(t) = u1(t) + Psc(t) + Pb(t). (2.59)

The models required to compute w(t), Psc(t), Pb(t) and u1(t) are discussed in the fol-

lowing subsections. For the ease of readiness, in the following, the time dependence of

the variables will be omitted when convenient.

2.6.1.1 Traction subsystem

The traction subsystem includes the vehicle model and transmission from the wheels to

the TM. The corresponding model allows evaluating the energetic requirement of the

vehicle. Given a velocity profile v(t), the vehicle parameters, and assuming a flat road,

the torque Tw(t) and the angular velocity at the wheels ωw(t), required to complete the

driving mission, are computed [17]:

Tw(t) =rw

(
meq ·

dv(t)

dt
+m · g · cr +

1

2
ρa ·As · cd · v2(t)

)
, (2.60)

ωw(t) = v(t)/rw, (2.61)

with cr the tire rolling resistance (-), g the gravity acceleration
(
kg ·m/s2

)
, ρa the air

density
(
kg/m3

)
, As the vehicle frontal area

(
m2
)
, cd the drag coefficient (-), γ the

final gear ratio (-), rw the radius of the wheels (m), m the vehicle mass (kg), and

meq = m + Jtm/
(
γ2r2

w

)
the equivalent mass of the vehicle (kg). The vehicle is rear

wheel driven (RWD): when braking, Tw < 0, only 40% of the torque is assumed to be

provided by regenerative braking and the remaining 60% is assumed to be provided by

the mechanical brakes. Indicated with µb(t) as a piecewise constant torque brake factor.

A constant torque brake factor for regenerative braking is considered for the sake of



Chapter 2: State-constrained energy management for HEVs: an implicit Hamiltonian
minimization approach 43

simplicity. Finally, the TM torque and speed, denoted as Ttm and ωtm, are derived:

Ttm(t) = γ · µb (t) · Tw(t), (2.62)

µb(t) =

0.4, Tw(t) < 0

1, otherwise
(2.63)

ωtm(t) = ωw(t)/γ. (2.64)

At last, the power demand signal w(t) is computed using the traction motor efficiency

map ηtm:

w(t) = Ttm(t)ωtm(t)ηtm (Ttm(t), ωtm(t))−sign(Ttm(t)) (2.65)

Given the WLTC-C3 driving cycle, the power demand signal w(t) is displayed in Fig.

2.3 (right).

2.6.1.2 Battery Pack

The battery pack is connected to a DC/DC converter that fixes the DC bus voltage Vbus.

Its losses are assumed to be negligible. The energetic behavior is modeled using a single

dynamics model: it relates the battery power, Pb(t), to the state-of-charge, denoted as

x1(t). It is derived from an equivalent electric circuit model. It consists of a fixed open

circuit voltage U in series with a fixed resistance Rb. The state-of-charge, x1(t), has the

following dynamics:

ẋ1(t) =
−U +

√
U2 − 4 ·Rb · Vbus · i1(t)

2 · QRb
, (2.66)

with Q the charge capacity of the battery pack (As). The battery state-of-charge, x1(t),

is constrained between x1 and x̄1

x1 ≤ x1(t) ≤ x̄1, (2.67)

likewise, i1 is constrained as follows:

i1 ≤ i1(t) ≤ ī1. (2.68)
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2.6.1.3 Supercapacitor Pack

Assuming a DC/DC converter with negligible losses, the power at the SC, Psc, can be

described as:

Psc = i1 (t) · Vbus = isc · (xsc (t)−Rsc · isc (t)) = −Rsc · i2sc (t) + isc · xsc,

then, we can obtain the expression for the current from−Rsc·i2sc (t)+isc·xsc−i1 (t)·Vbus =

0:

isc (t) =
−xsc ±

√
x2
sc − 4 ·R · i1 (t) · Vbus
−2 ·Rsc

=
−xsc ±

√
x2
sc − 4 ·R · i1 (t) · Vbus
−2 ·Rsc

. (2.69)

Defining x2 = xsc and considering that voltage and current in a capacitor obey isc (t) =

C · dxsc
dt , the voltage dynamics of the SC are given as follows:

ẋ2 (t) = − 1

C
isc (t) =

−x2 +
√
x2

2 − 4 ·R · i2 (t) · Vbus
2 · C ·Rsc

. (2.70)

x2 is constrained between x2 ≤ x2 ≤ x̄2:

x2 ≤ x2(t) ≤ x̄2, (2.71)

likewise, i2 is constrained as follows:

i2 ≤ i2(t) ≤ ī2. (2.72)

2.6.1.4 Auxiliary Power Unit

The APU consists of one ICE coupled with one generator (Gen) to produce electrical

energy using fuel. The APU instantaneous fuel consumption, ṁf (t) (g/s), required

to generate a given electric power u1(t) (W), is estimated by the following quadratic

function [42, 80]:

ṁf (u1(t)) = a+ b · u1(t) + c · u2
1(t). (2.73)

The data used to compute the parameters of (2.47) is given in Appendix A.3. The

criterion to be minimized by the EMS is the total fuel consumption:

J =

∫ tf

0
ṁf (u1(t)) dt, (2.74)
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where tf stands for the duration of the driving cycle. The power produced by the APU

is constrained by the physical limits of its components:

0 ≤ u1(t) ≤ ū1, (2.75)

and by (2.36):

w(t)− P̄b − P̄b ≤ u1(t) ≤ w(t)− P b − P sc, (2.76)

with P b = Vbus · i1, P sc = Vbus · i2, P̄b = Vbus · i1, and P̄sc = Vbus · ī2. These constraints

can be combined together as follows:

u′1(t) ≤ u1(t) ≤ ū′(t), (2.77)

u′1(t) = max [0, w(t)− Vbus · ī1 − Vbus · ī2] ,

ū′1(t) = min [ū1, w(t)− Vbus · i1 − Vbus · i2] .

2.6.2 Problem statement

Defining u2 = i2 and considering solving (2.59) for Pb, the EMS can be cast as follows:

min J(u1) =

∫ tf

0

[
a+ b · u1 + c · u2

1

]
dt, (2.78a)

subject to:

ẋ1(t) =
−U +

√
U2 − 4 ·Rb · (w − u1 − Vbus · u2)

2 · QRb
, (2.78b)

ẋ2(t) =
−x2 +

√
x2

2 − 4 ·Rsc · Vbus · u2

2 · C ·Rsc
, (2.78c)

u′1(t) ≤ u1(t) ≤ ū′1(t), (2.78d)

u′1(t) = max [0, w(t)− Vbus · ī1 − Vbus · ū2] ,

ū′1(t) = min [ū1, w(t)− Vbus · i1 − Vbus · u2] ,

u2 ≤ u2(t) ≤ ū2, (2.78e)

x1 ≤ x1(t) ≤ x̄1, (2.78f)

x2 ≤ x2(t) ≤ x̄2, (2.78g)

x1(0) = x1,0, (2.78h)

x2(0) = x2,0, (2.78i)

x1(tf ) = x1,f . (2.78j)

x2(tf ) = x2,f . (2.78k)

The final condition x1(tf ) allows to guarantee that a certain amount of energy will

remain in the battery at the end of the driving cycle. The final state-of-charge x1(tf ) is
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often assumed to be equal to x1(0) to allow a fair comparison with respect to the fuel

consumption of conventional vehicles.

The problem statement above is a state and input constrained formulation of the EMS.

2.6.3 Solution

2.6.3.1 Penalty functions

Path constraints (2.78f)-(2.78g) and input constraints are relaxed by adding
1
ε

(
P̃u1 + P̃u2 + Px1 + P̃x2

)
to cost functional (2.78a)

min Ĵ(u) =

∫ tf

0

[
ṁf +

1

ε

(
P̃u1 + P̃u2 + Px1 + P̃x2

)]
dt, (2.79)

with:

Px1 = P (x1) =


(x1 − x1)2 , x1 ≤ x1

(x1 − x̄1)2 , x1 ≥ x̄1

0, otherwise,

(2.80)

P̃u1 = φ1 · Pu1 , P̃u2 = φ2 · Pu2 , and P̃x2 = φ3 · Px2 , where

Pu1 = P (u1) =


(u1 − u1)2 , u1 ≤ u1

(u1 − ū1)2 , u1 ≥ ū1

0, otherwise,

,

Pu2 = P (u2) =


(u2 − u2)2 , u2 ≤ u2

(u2 − ū2)2 , u2 ≥ ū2

0, otherwise,

,

Px2 = P (x2) =


(x2 − x2)2 , x2 ≤ x2

(x2 − x̄2)2 , x2 ≥ x̄2

0, otherwise,

,

and where φ1 = (1/ū1)2, φ2 = (1/ū2)2, and φ3 = (1/x̄2)2 are meant to scale P̃u1 , P̃u2 ,

and P̃x2 down to the range of values of Px1 .
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2.6.3.2 Implicit Hamiltonian minimization

Considering optimality conditions (2.33c)-(2.33d) and cost functional, (2.78a) can be

solved via the following BVP:

ẋ1(t) =
−U +

√
U2 − 4 ·Rb · (w − u∗1 − Vbus · u∗2)

2 · QRb
, (2.81a)

ẋ2(t) =
−x2 +

√
x2

2 − 4 ·Rsc · Vbus · u∗2
2 · C ·Rsc

, (2.81b)

λ̇1(t) = −1

ε

∂Px1
∂x1

, (2.81c)

λ̇2(t) = −λ2
∂ẋ2

∂x2
− 1

ε

∂P̃x2
∂x2

, (2.81d)

u̇∗(t)=−
(
∂q

∂u

)−1(∂q
∂x
ẋ+

∂q

∂λ
λ̇+

∂q

∂w
ẇ

)
, (2.81e)

q(0) = 0, (2.81f)

state boundary constraints (2.78h)− (2.78k). (2.81g)

with u =

[
u1 u2

]T
, x =

[
x1 x2

]T
, q =

[
q1 q2

]T
. The solution to (2.81) is denoted

as Y (t) =

[
x1(t) x2(t) λ1(t) λ2(t) u∗1(t) u∗2(t)

]T
. The dynamics of Y is denoted

as F (Y, t).

2.6.3.3 Function extension

Dynamics F (Y, t) is not defined for all R6 due to the presence of the terms√
U2 − 4 ·Rb · Pb and

√
x2

2 − 4 ·Rsc · Psc. The former term, which is defined for

U2 − 4 ·Rb · Pb ≥ 0, will be replaced by:

fext,1(Pb | P̃b) =


√
U2 − 4 ·Rb · Pb, if Pb ≥ P̃b

g1(Pb), otherwise

g1(Pb) =

√
U2 − 4 ·Rb · P̃b + (Pb − P̃b)

d
(√

U2 − 4 ·Rb · Pb
)

dPb
+

1

2
(Pb − P̃b)2

d2
(√

U2 − 4 ·Rb · Pb
)

dP 2
b

,
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with P̃b ≤ U2

4·Rb
. The term

√
x2

2 − 4 ·Rsc · Psc, which is defined for x2
2 − 4 ·Rsc · Psc ≥ 0,

will be replaced by the following extended function:

fext,2(x2, Psc | x̃2, P̃sc) =


√
x2

2 − 4 ·Rsc · Psc, if Psc ≥ P̃sc or x2 ≤ x̃2

g2(x2, Psc), otherwise

g2(x2, Psc) =

√
x̃2

2 − 4 ·Rsc · P̃sc +


 x2 − x̃2

Psc − P̃sc



T

∂
(√

x2
2 − 4 ·Rsc · Psc

)
∂

 x2

Psc


+


 x2 − x̃2

Psc − P̃sc



T

∂
(√

x2
2 − 4 ·Rsc · Psc

)
∂

 x2

Psc



 x2 − x̃2

Psc − P̃sc


 ,

with P̃sc = 2 · 104 (W) and x̃2 = 60 (V) which ensures that x2
2 − 4 ·Rsc · Psc ≥ 0.

2.6.4 Numerical results

The EMS will be solved considering the vehicle parameters of Table 2.5. The initial guess

Y a is generated as described in Step a 2.4.4.3 using λ(0) =

[
3.258 · 107 3.622 · 107

]T
and the initial penalty pondering coefficient εa = 1·1010. The obtained initial solution Y a

is depicted in Fig. 2.13. The supercapacitor voltage reaches negative values, illustrating

that the initial guess does not necessarily have a physical meaning.

The final conditions from Y a,

[
xa1(tf ), xa2(tf )

]T
=

[
2.66 · 104 −1.89 · 106

]T
, are applied

at the beginning of Step b: ζb0 =

[
xa1(tf ), xa2(tf )

]T
. Step b allows computing a solution

that reaches the expected final state-of-charge and the necessary final condition for the

second co-state: ζbf = [x1(tf ), x2(tf )]T . This procedure is depicted in Fig. 2.14. Its

output Y b
N , shown in Fig. 2.15, is the solution to EMS (2.78) without constraints, since

the penalty functions are negligible: εb = εa = 1 · 1010. The output of Step b, Y b
N , is

used in Step c: Y c
0 = Y b

N . Step c is used to activate the penalty functions. The initial

penalty pondering coefficient is set to the same value of Step b: ζc0 = εc0 = εb = 1 · 1010.

The final penalty pondering coefficient is set to a small positive value: εcN = 1 · 10−9.

This procedure is depicted in Fig. 2.16. The output of Step c, Y c
N , is the solution to

constrained EMS (2.78) and is shown in Fig. 2.17. It allows computing the total fuel

consumption : 9.415 l/100km.
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As it ocurred in the solution of the previous application, the constrained EMS, see Fig.

2.17, presents discontinuity phenomena for λ1(t) and λ2(t). These phenomena are to be

expected, whenever a state makes contact with its bounds [73]. The procedure proposed

in this work does not require any a priori knowledge about these discontinuities.

Parameter Value Units

Meq 2166 kg

As 1.98 m2

cd 0.32 -

cr 0.01 -

γ 4.2 -

rw 0.26 m

g 9.81 kg·m/s2

Jtm 0.045 kg·m2

Vbus 30 V

P b -22656 W

P̄b 19584 W

U 528 V

Q 900 A·s
Rb 0.96 Ω

x1 0 %

x̄1 100 %

Rsc 0.0258 Ω

C 27.27 F

x2 55 V

x̄2 308 V

a 0.2924 g/s

b 0.0834 g
kW·s

c 0.0055 g
(kW)2·s

ū1 17.5 kW

u2 -500 A

ū2 500 A

Table 2.5: Parameters considered in the numerical experiments of application 2.
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Figure 2.13: Initial guess Y a generated in Step a for the WLTC-C3 driving cycle and
the Dual Series HEV.
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Figure 2.14: Set of solutions computed in Step b for the low-temperature operation
and the WLTC-C3 driving cycle: the light gray trajectory denotes the first solution of
the continuation procedure. As the trajectories become darker, they approach the final

boundary conditions. The final trajectory of the procedure is displayed in black.

2.6.5 Solution via DP

The optimality of the approach will be validated by solving the EMS once again us-

ing DP. The DP algorithm is implemented using the Matlab code from [81], together

with the iterative approach described in [82]. The solution has been computed using
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Figure 2.15: Unconstrained solution to (2.78) for the WLTC-C3 driving cycle. The
fuel consumption is 9.2935 l/100km. The red dashed lines at the top and bottom
subfigures represent the bounds on the state-of-charge, the supercapacitor voltage, and

the control inputs (2.78f), (2.78g), (2.78d), and (2.78e), respectively.
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Figure 2.16: Set of solutions computed in Step c for the low-temperature operation
and the WLTC-C3 driving cycle: the light gray trajectory denotes the first solution
of the continuation procedure. As the trajectories become darker, they approach the

constrained solution. The final trajectory of the procedure is displayed in black.

the parameters presented in Table 2.5. The results of the DP solution to (2.78) are

displayed in Fig. 2.18 along with the solution computed with the implicit Hamiltonian

minimization approach. The fuel consumption and computation times are compared in
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Figure 2.17: Constrained solution to (2.78) for the WLTC-C3 driving cycle. The fuel
consumption is 9.415 l/100km. The red dashed lines at the top and bottom subfigures
represent the bounds on the state-of-charge, the supercapacitor voltage, and the control

inputs (2.78f), (2.78g), (2.78d), and (2.78e), respectively.

Table 2.6. The proposed approach is 35 times faster than DP but obtains +0.043% more

fuel consumption. The small difference in fuel consumption can be due to the limited

accuracy that DP posses as a consequence of the quantization of all variables and the

Euler integration scheme in which it relies on.

Method
Fuel consumption

(WLTC-C3)

Computation time

(hours)

DP 9.411 l/100km (100%) 7.286 (≈3500%)

Implicit Hamiltonian minimization 9.415 l/100km (100.043%) 0.206 (100%)

Table 2.6: Fuel consumption and computation time for DP and the proposed implicit
Hamiltonian minimization for the dual series HEV application. The algorithms were
implemented in a workstation with 64 GB of RAM and a processor Intel(R) Core(TM)

i7-9800X CPU @3.80GHz with 8 cores.

2.7 Conclusion

An indirect-approach method to compute the optimal offline energy management strat-

egy of a hybrid vehicle with several continuous states and under input and state con-

straints has been proposed. The indirect-approach method relies on exterior penalty

functions and an implicit Hamiltonian minimization to handle the constraints and solve
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Figure 2.18: Solution to (2.78) for operation and the WLTC-C3 driving cycle with
DP (green solid line) and the proposed implicit Hamiltonian minimization (black solid
line). The red dashed lines at the top and bottom subfigures represent the bounds on
the state-of-charge, the supercapacitor voltage, and the control inputs (2.78f), (2.78g),

(2.78d), and (2.78e), respectively.

the Pontryagin’s minimum principle optimality conditions. A continuation procedure

and a domain function-extension are also proposed to deal with the difficulties of com-

puting a numerical solution. The proposed method does not require any a priori knowl-

edge on the optimal solution and can be applied to energy management formulations

with several inputs and states. The proposed method is shown effective by solving the

offline energy management strategy for:

� a series HEV under low-temperature conditions modeled as a two-state, the battery

state-of-energy and temperature, mixed input-state constrained problem, and

� a dual series HEV modeled as a two-state, the battery state of charge and the

supercapacitor voltage, two-input, the APU power and the current going through

the supercapacitor, mixed input-state constrained problem.

The optimality of the solution is validated by obtaining a slightly different solution via

dynamic programming. The small difference is not surprising since in dynamic program-

ming all variables are quantized, which limits the accuracy of the solution. Moreover,

the proposed method shows to be up to 46 times faster than dynamic programming.

One possible extension of this work is to solve a more general energy management

formulation, for example, by considering both the engine and the catalytic converter

temperature and including the emission of pollutants in the objective function [18, 83].
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Also, real-time algorithms for hybrid vehicle energy management were derived using

the Pontryagin’s minimum principle within a model predictive control framework in

[84]. The method proposed here could be combined with the latter to account for

mixed input-state constraints and a second dynamics in a real-time energy management

algorithm but more work is needed to cope with the actual computing power available

on a vehicle.





Chapter 3

Energy management and active

damping of the side-shaft

oscillations

3.1 Introduction

In a hybrid electric vehicle (HEV) powertrain, the main role of the electric machines

(EMs) is to achieve the powersplit that reduces the total fuel consumption for a given

driving mission. Furthermore, the capabilities of a powertrain to solve automotive re-

lated problems go beyond this main purpose. One of these problems is the presence of

drive-shaft oscillations. In a vehicle with a gear-based transmission, it is is mainly per-

ceivable at low gear ratios (first and second), so it occurs at relatively low speeds. The

reason behind this is that when a low gear ratio is engaged and the driver demands strong

accelerations, the driveshaft experiences steep and particularly high torque changes,

thus, exciting its torsional dynamics to the point of producing noticeable torque and

speed oscillations. These oscillations affect the driver’s comfort and can stress the vehi-

cle’s components [55, 56]. Since the EMs are actuators with a larger frequency response

than that of internal combustion engines (ICEs), they can be used to actively damp

the drive-shaft oscillations. Moreover, considering that most of the energetic flow on

the powertrain is carried by low frequency signals and that drive-shaft oscillations have

higher frequencies, it is possible to design a damping controller such that its influence

on the energetic behavior of the vehicle is negligible.

Several works in the literature are concerned with active damping of the drive-shaft

oscillations for conventional [85–90], hybrid [91–98], and electric vehicles [54, 56, 99, 100].

PID-based controllers were designed to actively damp the oscillations for a conventional

55
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vehicle as well as an HEV in [90]. There, it is found that due to the fast response of

the electric machine, an HEV allows for a more effective damping than a conventional

ICE vehicle. A PID controller was also compared to a linear-quadratic-guassian (LQG)

controller for a conventional heavy-duty truck in [86]. The LQG controller was found to

be superior and it was implemented in real-time. This work was extended to a parallel

HEV in [91], contrary to [90], there the ICE torque is also considered a control signal,

i.e., the problem formulation contains two inputs and control allocation is use to split

the damping torque between the two actuators. In [92], active damping was used in a

power-split HEV to suppress the torque oscillations at the wheels below 100 N·m (the

minimum value perceived by the driver on the 1820-kg vehicle studied there). This study

included experimental validation. A powersplit HEV is also studied in [98], where model

reference adaptive control is combined with linear state feedback to produce a controller

that can overcome the uncertainty generated by the changing transmission ratio. The

controller is tested in a hardware-in-the-loop experiment

In [99], a nonlinear observer is combined with a controller designed on the frequency

domain to actively damp the drive-shafts of an electric vehicle. A discrete Kalman

filter is the chosen observer. The observer dynamics includes a measurement time-delay

for the speed at the wheels, induced by the controller area network (CAN) bus, and

a nonlinearity introduced by the backlash phenomenon. Oscillations are damped for

a powersplit HEV in [95], via a linear quadratic regulator with loop transfer recovery

LQR/LTR and integral action. The integral action is based on the assumption that the

actual driveshaft torque and the desired driveshaft torque, commanded by the EMS,

are available. In [56], a damping controller including time-varying delays compensation

induced by the CAN bus is designed with a guaranteed H∞ performance. The effect

of the controller under braking conditions is studied by the modeling of the hydraulic

braking system and a cooperative braking control algorithm. The desired damping effect

is corroborated by HIL simulations. In [100], the proposed control scheme relies on a

dual Kalman filter to estimate the vehicle mass and the driveshaft torsion. As in [99],

nonlinear phenomena induced by backlash is included in the problem formulation. The

estimated torsion is used to decide whether the driveline is either in contact mode or in

backlash mode. If the driveline is in contact mode, then a LQR controller is in charge of

damping the oscillations. If the driveline is in backlash mode, a PID controller is used

instead. Model predictive control was considered in [54] to damp the oscillations in an

electric bus. Damping is achieved by the minimization of two square error signals: (1)

the minimization of the difference between shaft and wheel speeds and their predicted

future values, computed as if the shaft was ideally stiff, and (2) the minimization of

the difference between the reference shaft torque and the actual shaft torque. If the

second error term was not considered in the objective functional, the controller could
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still successfully damp the oscillations but at the cost of overriding the torque request

from the driver or the EMS.

3.1.1 Motivation

In the case of an HEV, a proper EMS allows to reduce the vehicle total fuel consumption,

and thus the pollution and emission of green-house effect gasses, and as such it is the

most important feature of this type of vehicle. Nevertheless, most of the works discussed

above overlook the energetic cost/effect of their proposed controllers. Motivated by this

mostly overlook aspect, the present work is concerned with the design of a damping

controller and the study of its influence on the energetic behavior of the powertrain.

3.1.2 Contribution

A damping controller for a parallel HEV with a gear-based transmission. The controller

is based on discrete RST compensation. It includes communication delays induced by

the CAN bus and it relies only on the hardware already present in the vehicle. More

importantly, contrary to the current works found in the literature, in this work it is shown

that the damping controller does not compromise the proper operation of the EMS. The

effectiveness of the controller is shown in simulation and experimental results.

3.1.3 Organization

The organization for the rest of the Chapter is as follows. Section 3.2 presents the prob-

lem formulation and the considered driveline model. Section 3.3 details the proposed

damping controller. In Section 3.4, the robustness of the proposed controller to para-

metric uncertainty is studied. In Section 3.5, it is shown that the controller does not

significantly affect the EMS. Experimental validation of the control law is presented in

Section 3.6. At last, conclusions and possible future work extensions are discussed in

Section 3.7.

3.2 Problem formulation

The system studied in this work is a parallel P0 HEV, whose powertrain is shown in Fig.

3.1. When the driver requests power through the throttle pedal, the EMS sends torque

setpoints to the ICE and the EM to satisfy the power-request according to the optimal

powersplit. However, when the driver requests a brutal/important acceleration to the
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Figure 3.1: Pre-transmission (P0) parallel HEV. Blue lines represent electric connec-
tions and black lines for mechanical connections.

vehicle, the sudden high torque signal sent through the driveline may be high enough

to excite its torsional dynamics in such a way that it generates wheel speed oscillations.

These oscillations have a negative effect on the driveability and are mainly produced

by the sideshaft flexibility. This phenomenon is illustrated in Fig. 3.2 with signals

from a physical experiment recorded at the LAMIH UMR CNRS 8201 using a prototype

hybrid vehicle BELHYSYMA [2]: a pre-transmission (P0) HEV with a synchronous belt,

a 35kW electric machine, and a 12.5Ah-100V Li-ion battery pack. Driveshaft oscillations
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Figure 3.2: Results from a physical experiment recorded at the LAMIH UMR CNRS
8201 using a prototype hybrid vehicle BELHYSYMA [2]. Top: estimated driveshaft
torque. Bottom: driveline oscillations at the torsional speed. The torsional speed is
defined as the difference between the speed at the transmission output and the speed

at the wheels.

can be mitigated or damped without any hardware modification by adding a damping

torque to the setpoints from the EMS. The design of the controller providing the damping

torque signal should affect the energetic behavior of the powertrain as little as possible.

In other words, it is constrained to not modifying the setpoints provided by the EMS

in a significant way. Since the sideshaft torsion mode is in the 2-10Hz bandwidth, the

EM is chosen here as the actuator that provides the damping torque. As a consequence,

TEM (t), the EM torque setpoint, is defined as the sum of T ′EM (t), the torque setpoint
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from the EMS, and u(t) the damping controller:

TEM (t) = T ′EM (t) + u(t) (3.1)

The controller configuration is shown in Fig. 3.3, with TICE the ICE torque setpoint,

Σ the vehicle driveline, and y(t) the vector of measured powertrain signals. The model

derived for Σ will be detailed in the next section.

Figure 3.3: Configuration of the damping controller.

3.2.1 Model derivation

The driveline model considered in this work is based on Fig. 3.1. It assumes that

all the elements of the driveline except the sideshafts have ideal stiffness and that the

clutch is always engaged, i.e., there is no gearshifting. Under these assumptions, the

torsional dynamics can be computed using the simplified model shown in Fig. 3.4. It

consists of a rotational two-mass-spring-damper system whose stiffness is denoted by

k and its damping by c. Although simple, it has been widely used in the literature

since it can capture the phenomenon of interest, and hence it is suitable for control

design [85, 86]. JG = R(i)2 ·
(
JICE + ρ2 · JEM

)
, with JEM the electric machine intertia,

JICE the ICE inertia, R(i) the total transmission gear ratio, and ρ the electric machine

reductor gear ratio. The equivalent inertia at the wheels, Jw, is equal to Jw = m · r2,

with m the total vehicle mass (kg) and r (m) the wheel radius. Ttor = k ·∆θ + c ·∆θ̇.
Ttract = R(i) ·

(
ρ · ŤEM + ŤICE

)
with ∆θ = θG − θw, θG the angular position of JG and

θw the angular position of Jw. Applying Newton’s second law at JG, one gets:

JG · ω̇G = Ttract − Ttor,

JG · ω̇G = R(i) ·
(
ρ · ŤEM + ŤICE

)
− k ·∆θ + c ·∆θ̇,

⇐⇒ ω̇G =
1

JG
·
[
R(i) ·

[
ρ · ŤEM + ŤICE

)
− k ·∆θ + c ·∆θ̇

]
. (3.2)
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Applying Newton’s second law at inertia Jw, one gets:

Jw · ω̇w = Ttor − Tres,

Jw · ω̇w = k ·∆θ + c ·∆θ̇ − Tres,

⇐⇒ ω̇w =
1

Jw
·
[
k ·∆θ + c ·∆θ̇ − Tres

]
. (3.3)

Considering (3.2), (3.3), and ∆θ̈ = ω̇G − ω̇w:

Figure 3.4: Equivalent simplified driveline with flexible sideshaft.

∆θ̈ =

(
1

JG
·
[
R(i)·

[
ρ · ŤEM + ŤICE

)
− k ·∆θ + c ·∆θ̇

])
−
(

1

Jw
·
[
k ·∆θ + c ·∆θ̇ − Tres

])
,

∆θ̈ = −
(

1

JG
+

1

Jw

)
k ·∆θ −

(
1

JG
+

1

Jw

)
c ·∆θ̇ +

R(i)

JG
·
(
ρ · ŤEM + ŤICE

)
+

1

Jw
Tres,

(3.4)

Note that even though the system is actually a third-order system, as it requires 3

states to be completely defined, a second-order formulation (3.4) is sufficient to design

the controller. The dynamics of the EM together with its built-in controller are modeled

with a first-order linear system with time constant τem:

˙̌Tem(t) = − 1

τem
Ťem(t) + Tem(t− τ). (3.5)

Assuming zero initial conditions for Ťem(t) and considering that a time-delay is a linear

operator, yields the following:

˙̌T ′em(t) = − 1

τem
Ť ′em(t) + T ′em(t− τ), (3.6)

˙̌uem(t) = − 1

τem
ǔem(t) + u(t− τ), (3.7)
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with Ťem = Ť ′em + ǔem. Defining α =
(

1
JG

+ 1
Jw

)
, and defining β = ρ·R(i)

JG
, and consid-

ering (3.6), the state-space model is given by:
∆θ̇

∆θ̈

˙̌u

=


0 1 0

−α · k −α · c β
τem

0 0 − 1
τem


︸ ︷︷ ︸

A


∆θ

∆θ̇

ǔ

+


0

0

1


︸︷︷︸
B

u(t− τ)+


0

1

0


︸︷︷︸
H

(
R(i)

JG
·
(
ρ · Ť ′EM+ŤICE

)
+

1

Jw
Tres

)
︸ ︷︷ ︸

z

,

(3.8a)

y =

[
0 1 0

]
︸ ︷︷ ︸

C


∆θ

∆θ̇

ǔ

 , (3.8b)

3.3 Controller design

The control objective is to damp the sideshaft oscillations without interfering with the

EMS: in steady-state, we should get Tem = T ′em, which is equivalent to u being a

vanishing controller:

lim
∆θ̇→0

u(t) = 0. (3.9)

Defining L{·} as the Laplace transform operator, U(s) = L{u(t)}, Y (s) = L{y(t)}, and

Z(s) = L{z(t)}, the transfer function Y (s)/U(s) is given as follows:

Y (s)

U(s)
= C (s · I −A)−1 B · e−τs =

β · s · e−τs

(τem · s+ 1) (s2 + α c · s+ αk)
, (3.10)

and Y (s)/Z(s) is given as follows:

Y (s)

Z(s)
= C (s · I −A)−1 H =

s

s2 + α c · s+ α
. (3.11)

Considering the parameters of Table 3.1, the Bode plot of (3.11) is given in Fig. 3.5:

the resonant frequency occurs at 3.76 Hz. Given (3.10) and (3.11), Y (s) is given by:

Y (s) =
β · s · e−τs

s2 + α c · s+ αk
·
(
U ′(s) + β−1 eτs · Z(s)

)
, (3.12)

with U ′(s) = 1
τem·s+1U(s). The system will be discretized and an RST approach [101] will

be used to design the damping controller. Considering a sampling period Ts, τ = N · Ts
and a zero-order hold discretization method, the system transfer functions are written



Chapter 3: Energy management and active damping of the side-shaft oscillations 62

Symbol Value Units

rwheel 0.3108 (m)

Jice 0.0616 (kg·m2)

Jem 0.0045 (kg·m2)

c 23.53 (N·m·s/rad)

k 2.863·103 (N·m/rad)

ρ 1 (-)

R(i) {16.45, 8.89, 6.15, 4.54, 3.55} (-)

m 1742 (kg)

crr 0.0068 (-)

Af 2.3185 (m2)

cair 0.314 (-)

Ts 20 (ms)

Table 3.1: Nominal driveline model parameters.
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Figure 3.5: Open-loop Bode plot of (3.11) for the parameters of Table 3.1 with the
second gear engaged: R(i) = 8.89.

using the following polynomials:

A(z−1) = a0 + a1 · z−1 + a2 · z−2, (3.13)

B(z−1) = a0 · z−N + a1 · z−(N+1), (3.14)

bem(z−1) = bem,0, (3.15)

aem(z−1) = aem,0 + aem,1 · z−1, (3.16)
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with R(z−1) and S(z−1) the polynomials in z−1 to be designed. The control scheme

is depicted in Fig. 3.6. The closed-loop transfer function Y (z−1)/Yr(z
−1) is given as

follows:
Y (z−1)

Yr(z−1)
=

B′(z−1) ·R(z−1)

A′(z−1) · S(z−1) +B′(z−1) ·R(z−1)
, (3.17)

with A′ = A · aem, B′ = B · bem, and where R(z−1) and S(z−1) are to be designed such

that the system has a desired denominator C(z−1):

A(z−1)′ · S(z−1) +B′(z−1) ·R(z−1) = C(z−1). (3.18)

Given the desired closed-loop plant, there are infinite ways to compute the parameters for

an RST controller. In [102], the parameters are computed as a nonlinear optimization

problem which is solved through evolutionary algorithms (for example, backtracking

search optimization [103] or Particle Swarm Optimization [104]). A unique solution to

(3.18) exists if the following identities are satisfied:

deg(C) = max{deg(A′) + deg(S),deg(B′) + deg(R)}, (3.19)

deg(R) + deg(S) = deg(C)− 1, (3.20)

with deg(·) the degree of the polynomial (·). Given (3.9), R should contain the factor

1 − z−1 in order to obey Y (1)/Z(1) = 0, and thus achieve a vanishing controller. The

term
(
1 + z−1

)2
is another predefined term of R, it is required to filter out-high frequency

noise. R(z−1) =
(
1− z−1

)
·
(
1 + z−1

)2 ·R′(z−1):

A′(z−1) · S(z−1) +B′(z−1) ·
(
1− z−1

)
R′(z−1) = C(z−1), (3.21)

A′(z−1) · S(z−1) +B′′(z−1) ·R′(z−1) = C(z−1), (3.22)

Considering N = 3 and deg(A) = 3, then deg(B′′) = 9 and the identities above can

be satisfied by choosing deg(S) = deg(B′′) − 1 = 8, deg(R′) = deg(A′) − 1 = 2, and

deg(C) = deg(R) + deg(S) + 1 = 11:

R′(z−1) = r′0 + r′1 · z−1 + r′2 · z−2, (3.23)

S(z−1) = s0 + s1 · z−1 + . . .+ s8 · z−8. (3.24)

The desired closed loop polynomial is chosen as follows C =
(
z−1 − e−Ts·ωn

)2 ·(
z−1 − daux

)3 · z−6, with daux = e−2·Ts·ωn , and ωn =
√
α · k. The coefficients above
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can be computed from the following system of linear equations:

a′0 0 · · · 0 b′′0 0 · · · 0

a′1 a′0 · · · 0 b′′1 b′′0 · · · 0

...
...

...
...

...
...

...
...

a′3 a2 · · · 0 b′′9 b′′8 · · · b′′0

0 a3 · · · 0 0 b′′9 · · · b′′1
...

...
...

...
...

...
...

...

0 0 · · · a3 0 0 · · · b′′9





s0

s1

...

s8

r′0

r′1

r′2



=



c0

c1

...

c5

0

...

0



(3.25)

The poles of the closed-loop system are shown in Fig (3.7). The Bode plots of

Figure 3.6: RST controller structure.

Y (z−1)/Z(z−1) in closed and open loop are compared in Fig. 3.8. The closed-loop

effectively damps the resonant frequency. However, it still presents a magnitude peak.

In the following, in order to present a quantitative analysis of the controller performance,

the oscillations in the torsional speed (∆θ̇) will be assessed using its root mean square

(RMS) value:

RMS =

√
1

n
·
∑
i

∆θ̇[i]. (3.26)

3.3.1 Simulation test

The control law designed in the previous section will be tested in simulation. The control

law is given by:

U(z−1) =
R(z−1)

S(z−1)
. (3.27)

The parameters used for the simulation are those given in Table 3.1. These parameters

have been validated with real-time experiments. Considering the torque setpoint signals
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Figure 3.7: Closed-loop poles (red ×) and zeros (red ◦) for transfer function (3.17).
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Figure 3.8: Bode plot of Y (z−1)/Z(z−1) in closed-loop (red solid line) and open-loop
(blue solid line) with the parameters given in Table 3.1 and the second gear engaged

(R(i) = 8.89).

from the top subplot of Fig. 3.9, the response of the driveline torsional dynamics is given

in the middle top and bottom subplots of the same figure: the control law, see bottom

subplot of Fig. 3.9, effectively damps the oscillations: it provides a 24.35% reduction

according to the RMS assessment (3.26). Moreover, it vanishes in steady-state, condition

(3.9), as it is required for keeping it from interfering with the EMS. One can conclude

that the control law is successful. However, in this simulation it is assumed that the

system parameters are known exactly. This is is not the case for real control systems.

Robustness with respect to parametric uncertainty is studied in the next section.
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Figure 3.9: Torque setpoints Tice and Tem = T ′em + u (top); driveshaft torsion ∆θ
(middle up); driveshaft torsional speed ∆θ̇ (middle bottom); torsional control u(t)
(bottom). The RMS values, (3.26), of the open and closed-loop response are 0.409 and

0.309, respectively. Second gear engaged: R(i)=8.89.

3.4 Robustness with respect to parametric uncertainty

The robustness with respect to parametric uncertainty will be tested. The parameters

whose uncertainty is studied are the vehicle mass, m, the stiffness, k, and the damping

coefficient c. Considering a disturbance signal, denoted as P (z−1) at the output, the

transfer function U(z−1)/P (z−1) will be denoted as S(PU):

S(PU) =
−A′ ·R

A′ · S +B′ ·R
. (3.28)

Denoting the open-loop transfer function corresponding to the nominal system model

as G(z−1):

G(z−1) =
A′(z−1)

B′(z−1)
, (3.29)

and denoting as G′(z−1) the real plant to be controlled. Controller (3.27) stabilizes

G′(z−1) if the following condition is satisfied [101]:

G′(z−1)−G(z−1) ≤ 1

S(PU)
, (3.30)

Condition (3.30) is graphically interpreted in Fig. 3.10. Any plant G′(z−1), such that

G′(z−1) is inside the green area, will be stabilized when in closed-loop with (3.27).
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Figure 3.10: Nominal system gain G(z−1) (solid red line) and admissible region for
G′(z−1) to be stabilizable (green area) when in closed-loop with (3.27) in natural scale

(top) and dB scale (bottom).

3.4.1 Uncertainty in m

Let us assume that all the parameters except the total mass m of the nominal system

G(z−1) are equal to those of the real system G′(z−1), and that m′, the total mass of

G′(z−1), is an uncertain value bounded as follows m′ ∈ [0.5m, 1.5m]. This is equivalent

to a ±50% variation. The admissible region, (3.30), for G′(z−1) is displayed in Fig. 3.11.

It shows that the controller is highly robust with respect to mass variations.

3.4.2 Uncertainty in c

Let us assume that all the parameters except the total damping c of the nominal system

G(z−1) are equal to those of the real system G′(z−1), and that c′, the total damping of

G′(z−1), is an uncertain value bounded as follows c′ ∈ [0.75 c, 1.25 c]. This is equivalent
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Figure 3.11: Nominal system gain G(z−1) (solid red line), set of open-loop system
variations with m′ ∈ [0.5m, 1.5m] (blue area), and admissible region for G′(z−1) to be
stabilizable (green area) when in closed-loop with (3.27) in natural scale (top) and dB

scale (bottom).

to a ±25% variation. The admissible region, (3.30), for G′(z−1) is displayed in Fig.

3.12. Under the considered uncertainty levels, the set of open-loop system variations

induced by uncertainty in c remains in the admissible region, i.e., the set of systems

is stabilizable by the proposed controller. Different from the total mass, the damping

coefficient variation does have a noticeable effect on the open-loop system gain: it mainly

increases or decreases the resonant gain.

3.4.3 Uncertainty in k

Let us assume that all the parameters except the total damping k in the nominal system

G(z−1) are equal to those of the real system G′(z−1), and that k′, the total stiffness of

G′(z−1), is an uncertain value bounded as follows k′ ∈ [0.75 k, 1.25 k]. This is equivalent

to a ±25% variation. The admissible region, (3.30), for G′(z−1) is displayed in Fig. 3.13
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Figure 3.12: Nominal system gain G(z−1) (solid red line), set of open-loop system
variations with c′ ∈ [0.75 c, 1.25 c] (blue area), and admissible region for G′(z−1) to be
stabilizable (green area) when in closed-loop with (3.27) in natural scale (top) and dB

scale (bottom).

1. The set of open-loop system variations induced by a 25% of uncertainty in k remains

in the admissible region, i.e., the set of systems is stabilizable by the proposed controller.

Variations on the total stiffness have a noticeable effect on the open-loop system gain:

they push the nominal gain to the sides.

3.4.4 Simultaneous uncertainty in m, c, and k

At last, all three previous parameters will be considered simultaneously uncertain and

bounded as follows: m′ ∈ [0.5 k, 1.5m], c′ ∈ [0.75 c, 1.25 c], k′ ∈ [0.75 k, 1.25 k]. This is

equivalent to ±50%, ±25%, and ±25% variations, respectively. The admissible region,

(3.30), for G′(z−1) is displayed in Fig. 3.14. The set of open-loop system variations

1The driveline stiffness can change up to 25% over the total vehicle life cycle [92].
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Figure 3.13: Nominal system gain G(z−1) (solid red line), set of open-loop system
variations with k′ ∈ [0.75 k, 1.25 k] (blue area), and admissible region for G′(z−1) to be
stabilizable (green area) when in closed-loop with (3.27) in natural scale (top) and dB

scale (bottom).

induced by the uncertain parameters remains in the admissible region. Nevertheless,

there is little space left for further increasing the levels of uncertainty.

3.5 Effect on energy management

The effect on the EMS of the proposed control law is of crucial importance. A proper

EMS guarantees that the HEV is able to exploit the extra-degrees-of freedom in order

to reduce fuel consumption. Significantly interfering with the EMS is not acceptable for

a damping controller. The EMS is derived, as in Chapter 1, from a quasi-static model

[23] with a very low bandwidth (typically 0-2 Hz) whereas the oscillations of the side

shafts are located above 2 Hz. Coming back to Fig. 1 from Section 3.1. The model

parameters, Table 3.1, correspond to the BELHYSYMA prototype [2]. The vehicle uses
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Figure 3.14: Nominal system gain G(z−1) (solid red line), set of open-loop system
variations with m′ ∈ [0.5m, 1.5m], c′ ∈ [0.75 c, 1.25 c], and k′ ∈ [0.75 k, 1.25 k] (blue
area), and admissible region for G′(z−1) to be stabilizable (green area) when in closed-

loop with (3.27) in natural scale (top) and dB scale (bottom).

a 35kW electric machine powered by a 12.5Ah-100V Li-ion battery pack. The electric

machine is connected to the ICE in a P0 configuration via a synchronous belt system.

The gearbox and the belt system efficiency are assumed to be 1. The clutch control and

modeling being out of the scope of this study. The considered driving cycle is chosen to

be short and it does not include any gearshift event. This is nevertheless sufficient to

evaluate the energetic impact of the damping controller.

3.5.1 EMS formulation

The problem of designing an optimal EMS has been extensively studied over the last

decade [105]. The fuel consumption rate ṁf (Tice, ωice) (g/s) is computed from a lookup
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table. The objective functional to be minimized is given by the total fuel consumption:

J =

tf∫
0

ṁf (Tice (t) , ωice (t)) dt, (3.31)

wit tf (s) the driving cycle length. The battery state of charge dynamics is given by:

ẋ (t) = − 1

Q
Ib (Tem, ωem) , (3.32)

with Ib (Tem, ωem) (A) the battery current and Q the battery capacity (A·s). The EMS

is formulated as follows:

min J =

tf∫
0

ṁf (Tice (t) , ωice (t)) dt, (3.33a)

ẋ (t) = − 1

Q
Ib (Tem, ωem) , (3.33b)

Tice ∈
[
Tmin
ice (ωice), T

max
ice (ωice)

]
, (3.33c)

Tem ∈
[
Tmin
em (ωem), Tmax

em (ωem)
]
, (3.33d)

TG = R(i) · (Tice + ρ · Tem) , (3.33e)

ωG =
ωice

R(i) · ρ
=
ωem
ρ

(3.33f)

x(0) = x0, (3.33g)

x(tf ) = xf . (3.33h)

By solving the static inequalities above for Tice and ωice, respectively, one gets:

min J =

tf∫
0

ṁf (Tice (t) , ωice (t)) dt, (3.34a)

ẋ (t) = − 1

Q
Ib

(
1

ρ

(
1

R(i)
· TG − Tice

)
, R(i) ρ · ωG

)
, (3.34b)

Tice ∈
[
Tmin
ice (ωice), T

max
ice (ωice)

]
, (3.34c)

Tem ∈
[
Tmin
em (ωem), Tmax

em (ωem)
]
, (3.34d)

x(0) = x0, (3.34e)

x(tf ) = xf . (3.34f)

Defining the Hamiltonian associated with the optimal control problem above as follows:

H (Tice, λ, t) = ṁf (Tice, R(i) · ωG)− λ

Q
Ib

(
1

ρ

(
1

R(i)
· TG − Tice

)
, R(i) ρ · ωG

)
, (3.35)



Chapter 3: Energy management and active damping of the side-shaft oscillations 73

the solution can be computed via Pontryagin’s Minimum Principle as an equivalent

boundary value problem [64]:

ẋ (t) = − 1

Q
Ib

(
1

ρ

(
1

R(i)
· TG − Tice

)
, R(i) ρ · ωG

)
, (3.36a)

λ̇(t) = 0, (3.36b)

x(0) = x0, (3.36c)

x(tf ) = xf , (3.36d)

with

Tice = arg minH (Tice, λ, t) . (3.37)

The EMS responds to the torque requested by the driver through the throttle pedal.

Fig. 3.15 shows a synthetic driving mission (top) along with the torque at the output

of the transmission, TG, (bottom) required to complete such mission. In the following,

the following notation will be considered:

� A superscript 0 refers to a signal computed in the ideal case: k →∞ and c = 0.

� A superscript 1 refers to a signal computed with k and c as given in Table 3.1

where damping controller (3.27) is kept off during the whole driving mission.

� A superscript 2 refers to a signal computed with k and c as given in Table 3.1

where damping controller (3.27) is active.

0 20 40 60 80 100

20

40

60

0 20 40 60 80 100

-500

0

500

1000

Figure 3.15: Top: synthetic driving mission. Bottom: Transmission output shaft
torque TG required to follow the velocity profile under ideal stiffness.
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3.5.2 Ideal case

Solving EMS (3.35) under ideal stiffness for x0 = xf = 0.5 yields a total fuel consumption

of 10.3576 l/100km and a state variation of x(T )− x(0) = −6.32 · 10−4%. The state-of-

charge trajectory and the power split of this solution are shown in Fig. 3.16.
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Figure 3.16: EMS (3.35) under ideal stiffness. The total fuel consumption is 10.3576
l/100km.

3.5.3 Open-loop case

EMS (3.35) is solved again in open-loop under torsional dynamics for x0 = xf = 0.5,

yielding a total fuel consumption of 10.3657 l/100 km and a state variation of x(T ) −
x(0) = 7 · 10−3%. The state-of-charge trajectory and the power split are shown in Fig.

3.17.
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Figure 3.17: EMS (3.35) in open-loop and under torsional dynamics. The total fuel
consumption is 10.3657 l/100km. RMS value (3.26) equal to 0.734.
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3.5.4 Closed-loop case

Now EMS (3.35) is solved under torsional dynamics and the damping feedback controller

(3.27) for x0 = xf = 0.5, yielding a total fuel consumption of 10.3791 l/100 km. The

state-of-charge trajectory and the power split are shown in Fig. 3.18.
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Figure 3.18: EMS (3.35) under feedback control law (3.27) and torsional dynamics.
The total fuel consumption is 10.3791 l/100km. RMS value (3.26) equal to 0.356.

3.5.5 Fuel-optimal control with active damping

This subsection finds the optimal EMS that achieves the same damping performance

of the closed-loop solution. In order to compute this, T 2
G is used as the reference in a

open-loop setting and the optimal power split is found via (3.36a). The solution is given

in Fig. 3.19, with a total fuel consumption equal to 10.3757 l/100 km.
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Figure 3.19: EMS (3.35) in open-loop with T 2
G as the torque reference. The total fuel

consumption is 10.3757 l/100km. RMS value (3.26) equal to 0.356.
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3.5.6 Analysis

Ideal Open-loop Closed-loop Optimal

Torsional dynamics No Yes Yes Yes

Torque reference T 0
G T 0

G T 0
G T 2

G

Controller active No No Yes No

Fuel consumption (l/100km) 10.3576 10.3657 10.3791 10.3757

Variation with respect to ideal 0% 0.0786% 0.2611% 0.2278%

RMS (3.26) 0 0.734 (100%) 0.356 (48.42%) 0.356 (48.42%)

Table 3.2: Summary of the simulation results carried out to study the energetic effect
of the damping controller. All the simulations have the same initial and final state-of-

charge.

The results for the four previous cases are summarized in Table 3.2. The damping

control law significantly reduces the oscillations, up to 51.58%, at the cost of a small

fuel consumption increase, 0.26%. Moreover, the optimal EMS with identical damping

performance, which is not implementable in real-life, has an increase in total fuel con-

sumption of 0.23 %. It is worth noticing, that in addition to the control law having

an insignificant impact on the total fuel consumption, the considered driving mission

was been chosen to include several steep edges, 20, over a short period of time: 115s.

This is a pessimistic or worst case scenario setting since these conditions are unlikely

to happen in real life. In practice, the average fuel consumption increase could be even

more limited.

3.6 Experimental results

Figure 3.20: BELHYSYMA prototype [2]. The HEV used for experimental validation.
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The controller design is now validated on real-time experiments carried out in the BEL-

HYSYMA prototype [2]. The vehicle is depicted in Fig. 3.20. Experimental results

are shown in Fig. 3.21 with the second gear engaged (R(i) = 8.89). The ICE and EM

torques are shown at the top. The measured torsional speed ∆θ̇ is displayed at the mid-

dle. The total EM torque setpoint, Tem, and the measured torque, Ťem, are displayed at

the bottom. The red and green backgrounds at the middle of the figure indicate when

the damping controller remained off and on, respectively. The RMS values, (3.26), are

0.44 and 0.634 with and without the damping controller: a 30.63% reduction. Design-

ing control law (3.27) for R(i) = 16.45 (first gear engaged), the experimental results

of the control law are displayed in Fig. 3.22. In this case Tem(t)′ is set to zero and

the torque variations are provided solely by Tice. The RMS values, (3.26), are 0.296

and 0.418 with and without the damping controller: a 29.33% reduction. Modifying

Figure 3.21: Top: ICE and EM torque setpoints. Middle: measured torsional speed
∆θ̇. Bottom: total EM torque setpoint, Tem, and the measured torque, Ťem. The RMS
values, (3.26), are 0.44 and 0.634 with and without the damping controller: a 30.63%
reduction. The experiment was carried out with the second gear engaged: R(i) = 8.89.
The red and green backgrounds at the middle of the figure indicate when the damping

controller remained off and on, respectively.

control law (3.27) to remove the low-pass filter and considering R(i) = 8.89 (second

gear engaged), the right subfigure in Fig. 3.23 shows the experimental results of the

control law and compares it to the original control law (left subfigure). Although both

control laws effectively damp the oscillations, the one without high-frequency noise at-

tenuation is negatively affected by noise: (1) it has a higher frequency and a larger

amplitude, this could unnecessarily accelerate the wear down of the EM; (2) it has a

worse damping performance: 25.86% against 30.63% achieved when a low-pass filter is

included in the controller. From all the experimental results, it can be concluded that

the damping controller effectively reduces the driveshaft oscillations and that it tends to

vanish when the torsional dynamics tends to its steady state. Therefore, the controller
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Figure 3.22: Top: ICE and EM torque setpoints. Middle: measured torsional speed
∆θ̇. Bottom: total EM torque setpoint, Tem, and the measured torque, Ťem. The RMS
values, (3.26), are 0.296 and 0.418 with and without the damping controller: a 29.33%
reduction. The experiment was carried out with the first gear engaged: R(i) = 16.45.
The red and green backgrounds at the middle of the figure indicate when the damping

controller remained off and on, respectively.

Figure 3.23: Left: experimental results with damping controller as designed in Section
3.3, (3.27). Right: experimental results with the damping controller modified such that
the low-pass filter is removed from its structure. The experiments were carried out with
the second gear engaged: R(i) = 8.89. The red and green backgrounds at the middle
of the figure indicate when the damping controller remained off and on, respectively.

successfully delivers on the control objectives established in Section 3.3. The difference

in performance between the experimental results and those obtained in simulation might

be due to several reasons, such as, unmodeled dynamics and the presence of noise and

quantization in the measured signals.



Chapter 3: Energy management and active damping of the side-shaft oscillations 79

3.7 Conclusions

A control law for driveshaft oscillations damping has been designed via a discrete RST

approach. The dynamics used for its design are based on a P0 parallel HEV and includes

time-delays induced by the CAN bus. The control law is shown to be robust with

respect to parametric uncertainty. Regarding the effect of this control law on the energy

management, it is found that its effect on the EMS is very limited: a +0.26% increase in

total fuel consumption. This is obtained for a synthetic driving mission designed to have

a high number of steep torque changes in a short period of time (an scenario unlikely to

occur in real-life). This is achieved by designing the control law with a vanishing behavior

whenever the system tends to steady-state. The control law is validated via experimental

results where up to 30% of oscillations reduction is achieved. Although these results

validate the ability of the designed controller to damp the drivelshaft oscillations, it

might be possible to further improve its performance if a more accurate model dynamics

is considered and/or if measurement quantization is taken into account. The effect of

quantization in the measured signals comes mainly from the measured speed at the

wheels since the sensor used for this signal has a very low resolution. By conceiving an

appropriate model of the clutch, another possible way to extend the present work is to

include oscillations induced during gearshifting.



Chapter 4

Powertrain system architecture

design

4.1 Introduction

The increasing interest on hybrid vehicle technology within the automotive sector has

lead researchers and engineers into seeking not only a methodical way to solve the energy

management strategy (EMS) but also a way to find the optimal powertrain configuration.

When designing hybrid electric vehicles, automakers have to conceive a powertrain con-

figuration able to meet a set of requirements. Among these requirements, there are:

� performance requirements, e.g., maximum acceleration, maximum speed, range,

� government regulation requirements such as fuel consumption, CO2 emission and

pollution,

� maximum cost requirements,

� manufacture requirements,

� technology requirements,

� specific design requirements, e.g., not to use a configuration/architecture patented

by a competitor, and

� time requirements.

All these restrictions are inherently linked to each other. Clearly, optimizing under that

many complex restrictions in order to compute the best powertrain configuration is a

80
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truly difficult problem. Several approaches have been proposed in the literature to help

solve this task.

In [5], a fixed library of 15 elements, with 8 unique components (see Table 4.1), is build

and each possible architecture is defined as an undirected graph (each component is

represented by a node and each connection is represented by an edge). The total number

of possible undirected graphs (architectures) is equal to 5.7 ·1045. However, this number

includes architectures that lack any practical meaning or that are simply not hybrid

powertrains. The problem of generating feasible hybrid topologies under this undirected

graph formulation is solved by imposing 57 constraints implemented via constraint logic

programming (CLP). A total of 4779 are obtained in this manner. By means of automatic

model generation, optimization over the set of feasible architectures is carried out via

nonlinear optimization algorithms, such as, SQP, Particle Swarm Optimization, and

Genetic Algorithms [106].

Number Name Number of instances

1 ICE 1

2 Electric machine 2

3 Gearbox 1

4 Planetary gear set 2

5 Differential/wheels 1

6 Clutch 3

7 Brake 3

8 Mechanical node 3

Table 4.1: Library of components considered in [5].

In [4], a similar graph representation and CLP, with a set of only 9 constraints, is applied

to generate feasible topologies from a library of 14 elements with 6 unique components

(see Table 4.2). One important difference between this approach and the one presented

in [5] is that instead of Planetary Gear Sets (PGS), synchronizer units (gearboxes)

are used to build series-parallel architectures as is done in [107]. Another important

difference is that once the set of architectures that satisfy the 9 constraints has been

solved via CLP, filtering steps are applied to further discard architectures that are either

functionally identical among each other or that do not comply with basic performance

constraints. These filtering steps are taken before analyzing the energetic performance

of the architectures and, thus, they provide the advantage of reducing the computation

time of the optimization routine but they can also reduce the effort of designing and

programming tens of constraints. The sizing of the ICE and the EMs is linearly scaled

from their reference models; this includes the minimum and maximum torques, the loss

maps and the weights. The inertia of the rotating components is computed by taking
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the scale factor to the power of 5/3. One limitation of this approach is that the bi-level

optimization (the optimization of the sizing and the EMS) of a single architecture takes

around 8-10 hours.

Number Name Number of instances

1 ICE 1

2 Electric machine 2

3 Final drive 1

4 Shaft 4

5 Clutch 3

6 Synchronizer unit 3

Table 4.2: Library of components considered in [4].

Yet another recent work that relies on fixing a library of components and imposing

restrictions via CLP to obtain feasible architectures can be found in [108]. There, 174

constraints are implemented in around 4,600 lines of code. Additional filtering steps

are also performed, allowing to reduce the total design space from 2.5 · 1027 to 635

topologies. The generation of the topologies using Prolog takes 5 hours. The filtering

steps needed to further reduce the design space down to 635 topologies takes 20 hours.

One important difference with respect to the previously discussed works is that the

transmission elements are belt continuously variable transmissions (CVTs).

The same tendency of analyzing the set of topologies directly on terms of its functionality

instead of their topological structure has been followed in other recent works. For

instance, in [57], the space design is reduced from 108 down to a 105 possible designs

by means of an approach that looks directly into the modes before building topologies.

In fact, there it is concluded that only 3476 unique modes can be obtained from the

library of components. The library includes, as fixed elements, 3 PGS, 1 ICE, and 2

EMs. The topology design problem consists in placing up to 3 clutches and up to 3

permanent connections among the sun and ring gears of the 3 PGS. In order to improve

the computation time of the approach, the EMS is computed by a sub-optimal technique

called PEARS [109]. No sizing or parametrization is included in the approach. After

15 hours of computation, the mode combination approach is able to find 173 topologies

that comply with a given set of performance requirements.
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At the cost of a reduced accuracy, convex models can be computed from the static maps.

With this, standard convex problem formulations of the EMS are possible, such as lin-

ear programming (LP), quadratic programming (QP), second-order cone programming

(SOC), or semi-definite programming (SDP). The advantages of a convex problem for-

mulation are a guarantee of global optimality and the existence of algorithms able to

solve the problem in polynomial time. The main disadvantage of their use for solving

the EMS is that the introduction of integer variables transforms them into mixed-integer

problems, which are non-convex NP-hard problems in general. Nonetheless, convex op-

timization has allowed computing the Complete Vehicle Energy Management (CVEM)

of a hybrid truck under a driving mission of 55795 seconds by means of a distributed

convex optimization approach [42]. There, the powertrain together with the auxiliaries

or hotel load components are seen as a power network whose components interact un-

der conservation of power principles, giving place to a 5-state EMS formulation. When

integer variables such as the on/off signal of the engine or the gearshifting are included

in the convex EMS formulation, one possible solution explored in the literature is to

consider a heuristic sub-optimal approach for the on/off command of the ICE [110].

The heuristic consists in solving the EMS with a relaxed binary signal and then to set

the binary signal to zero whenever the ICE output power is below a threshold value

(also done in [111] and [112], where it is shown to be optimal according to PMP). This

routine is embedded in a bisection algorithm that seeks the feasible EMS with the higher

threshold value, i.e., the aim is to maintain the ICE off as much as possible. The convex

formulation is based on linear programming. Another solution that, in addition to the

on/off signal, also optimizes the gearshifting signal was presented in [59]. Its proposal

consists in optimizing the discrete variables iteratively in an outer loop that has as input

the solution of the EMS with fixed discrete signals. One important remark on this work

is that the optimality of the discrete EMS can be established, at least with a certain

level of accuracy.

Moreover, convex optimization, SOCP, has been successfully used to compute the EMS

and the optimal sizing of the main components for different plug-in hybrid power-

train architectures, i.e., series [111, 113], parallel [45], and fuel-cell [114, 115]. The same

technique has been also applied to non plug-in HEVs [116, 117]. The germinal paper

that preceded these works only considered sizing the battery pack [113]. This was later

extended to including sizing of EMs, ICEs, APUs, supercapacitor stacks [116, 117], and

fuel-cells. For instance, in [115], the total ownership cost is minimized for a fuel-cell

plug-in HEV propelled by a single EM by assuming a given lifetime. All the latter

results rely on the assumption that the most relevant characteristics of the main pow-

ertrain components can be linearly scaled from their baseline models. Contrary to [4],

in these works, the moment of inertia is not scaled (it is neglected altogether).
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4.1.1 Motivation

The flexibility of the modeling framework presented in [42], together with the short

computation times achieved by state-of-the-art convex solvers, and the tendencies of

studying HEV architectures directly on terms of their functionality, as seen in [57] and

[4], have inspired us to conceive a convex architecture optimization approach that can

compute the optimal architecture and solve the EMS simultaneously. The approach is

based on Mixed-Integer Linear Programming (MILP). The main hypothesis taken when

formulating this approach is that cutting-edge Mixed-Integer solvers such as Mosek [118]

and Gurobi [119] are able to solve, relatively quickly, problem formulations big enough

to be of practical interest for architecture optimization of HEV.

4.1.2 Contribution

The topology optimization methodology presented here is a novel simultaneous approach

based on (1) the modeling framework from [42]: the objective function to be minimized

is the total power loss across the power network, the components have piecewise linear

loss models [43], the connection among the components is done through nodes that

are subject to power conservation constraints; (2) connectivity constraints based on

graph theory, similarly to [4, 5] , which determine how many edges (connections) each

component has: either it is present in the network and thus all its edges are connected

or it is not present and thus none of its edges is connected, and whether the edges can be

connected at the same node: electrical edges and mechanical edges cannot be connected

to the same node; and (3) linearization constraints which relax the product of binary

and continuous variables, as it is done in [58]. The contribution of the our proposal can

be summarized in the following two observations:

� By applying basic principles, the simultaneous approach is able to optimize over

the space design of functional topologies without requiring the expert knowledge

and the programming effort done in previous works such as [108], where up to 174

constraints were written in about 4,600 lines of code.

� Thanks to the capabilities of cutting-edge convex solvers, such as GUROBI and

Mosek, the methodology presented here is able to solve the simultaneous opti-

mization problem relatively quickly despite the constraint of having an NP-hard

problem formulation (MILP).

The developed technique can be applied or extended to other energy network design

problems as well (e.g. smart city grid network optimizing, local energy storage, and the
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connection of plug-in vehicles whose state dynamics vary while being connected to the

grid). This work is focused on HEVs as a proof of concept. As it has been previously

done in the literature, the first step taken was to define a library of components. In

this case, all the components are single-input single-output and have piecewise linear

loss models computed, for example, from the brake-specific fuel consumption (bsfc) for

the case of the ICE or from the efficiency maps for the case of the EM. The interaction

among the components of the network is carried out by nodes, which are constrained to

obey basic principles:

� the conservation of power : the sum of all the power signals going to a node is

equal to zero at all time instant.

� the separation of layers: a mechanical and a electrical edge cannot be connected

to the same edge, i.e., the interaction of power signals of different nature requires

the presence of a conversion component.

4.1.3 Organization

The rest of the chapter is organized as follows: Section Convex Models, details how the

piecewise linear models are computed for each of the components in the library; Section

Model Validation shows that the accuracy lost by using convex models is not consider-

able when compared to the original nonlinear maps; Section Simultaneous Optimization

Framework contains the main results of the chapter; Section Case Study presents an

application of the methodology; Section Conclusions closes the chapter with important

observations and possible future-work extensions on the proposed approach.

4.2 Convex Modeling

The set of elements modeled in the proposed approach are ICEs, EMs, and battery packs.

They are modeled as single-input single-output power storage/conversion/transmission

elements subject to piecewise linear loss models. The rest of the components on the

powertrain are considered ideal: they allow the main powertrain components to operate

in their most efficient region.

4.2.1 Internal combustion engine

In a internal combustion engine, the efficiency depends on the torque and angular ve-

locity, (TICE , ωICE) pair. The efficiency map for an ICE is shown in figure 4.1.
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Figure 4.1: Contour curves for the efficiency map of an ICE.

In this research, we would like to focus in the analysis of power flows. Thus, we are not

interested in the torques and velocities of the ICE: an optimal efficiency model will be

used instead. The optimal efficiency model is computed by finding the best efficiency

achievable for each admissible output power, η∗ (Pice,out). Namely, it is computed as the

solution of the following optimization problem parametrized by Pice,out:

min
TICE ,ωICE

−η (TICE , ωICE) (4.1a)

subject to:

TICEωICE = Pice,out, (4.1b)

Tmin(ωICE) ≤ TICE ≤ TMax (ωICE) (4.1c)

ωminICE ≤ ωICE ≤ ωmaxICE (4.1d)

This is solved for several values of Pice,out ∈
[
Pminice,outP

max
ice,out

]
. Once η∗(Pice,out) has been

computed, an affine approximation of Pice,inp-Pice,out can be computed:

Pice,out = η∗(Pice,out) · Pice,inp ≈ aICEPice,inp + bICE . (4.2)

The affine approximation and the measured values for Pice,inp-Pice,out are shown in figure

4.2. A more detailed perspective on the accuracy of the approximation can be obtained

by plotting the Pice,inp-η
∗ curve. The approximation of η∗ can be computed from (4.2):

η∗(Pice,out) ≈
aICEPice,inp + bICE

Pice,out
= aICE + bICE/Pice,inp (4.3)

The Pice,inp-η
∗ curve is shown in figure 4.3. The approximation fails to predict an

efficiency peak after Pice,out = 60 (kW). The convex region used to model the ICE losses

is shown in Fig. 4.4.
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Figure 4.2: Optimal Pice, inp-Pice, out curve; its affine approximation, (4.2), with
aICE = 0.3264 (-), bICE = −1.2364 · 103 (W); and the ideal curve.
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Figure 4.3: Optimal curve Pice, inp − η∗ and its affine approximation.

4.2.2 Electric machine

The efficiency of an electric machine depends on its torque and angular speed,

(TEM , ωEM ) pair. The efficiency map of an electric machine is shown in figure 4.5.

As it was done for the ICE, an optimal efficiency model will be computed via solving

the following optimization problem parametrized by PEM, out:

min
TEM ,ωEM

−η (TEM , ωEM ) (4.4a)

subject to:

TEMωEM = PEM, out, (4.4b)

0 ≤ TEM ≤ TMax (ωEM ) , (4.4c)

ωmin ≤ ωEM ≤ ωMax. (4.4d)
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Figure 4.5: Contour curves for the efficiency map of an EM (ηEM (TEM , ωEM )).

This is solve for several values of PEM, out ∈
[
PminEM, out, P

max
EM, out

]
. The opti-

mal PEM, inp-PEM, out relationship can be approximated on the interval P+
EM, out =[

0, Pmax
EM, inp

]
with an affine function as follows:

PEM, out = η∗(PEM,out) · PEM,inp ≈ aEMPEM, inp + bEM . (4.5)

For the EM studied above, the measured optimal efficiency relation PEM, inp − PEM, out

is shown in figure 4.6. The affine approximation of the optimal PEM, inp−PEM, out, (4.5),

curve is shown in the same figure. More details about the approximation are noticeable

if we look at the PEM, inp − η∗ curve: from the efficiency map, described as follows:

η∗ (PEM, out) ≈
aEMPEM, inp + bEM

PEM, inp
= aEM + bEM/PEM, inp. (4.6)

The optimal PEM, inp−η∗ curve and its linear approximation are displayed in figure 4.7.

The approximation is close to the measured data curve. However, it does not capture
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Figure 4.6: Optimal PEM, inp-PEM, out curve for PEM, inp ≥ 0; its affine approxima-
tion, (4.5), with aEM = 0.892, bEM = −46.7012; and the ideal curve.

the fact that the efficiency starts to drop when the input power goes beyond 25 kW.

Although (4.6) is only fitted for PEM, inp ∈ P+
EM, inp, the symmetry of η∗(PEM, out) can

be used to build an affine piecewise approximation for PEM, out on its whole range as

follows:

PEM, out =

aEM PEM, inp + bEM , PEM, inp ≥ 0

1
aEM

PEM, inp + bEM/aEM PEM, inp < 0
(4.7)

Piecewise affine model (4.7) has a discontinuity at PEM, inp = 0 and is not convex. If
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Figure 4.7: Optimal curve PEM, inp−η∗ and its affine approximation for PEM, inp ≥ 0.

affine approximation (4.5) on PEM, inp ∈ P+
EM, inp is replaced by a linear approximation:

PEM, out = η∗ (PEM, out) · PEM, inp ≈ aEMPEM, inp, (4.8)
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a piecewise linear approximation can be computed for the whole range of PEM, inp as

follows:

PEM, out =

aEM PEM, inp, PEM, inp ≥ 0

1
aEM

PEM, inp PEM, inp < 0
(4.9)

(4.9) is convex. Therefore, it can be used in a convex optimization approach with

inequality constraint relaxations. Nevertheless, a more accurate model is sought. Let us

consider the minimum loss curve, computed as:

Loss∗EM = PEM,inp − PEM,out = PEM,inp − η∗ (PEM,out) · PEM,inp. (4.10)

The minimum loss curve is shown in Fig. 4.8a (blue dashed line) along with its quadratic

approximation computed as (green solid line):

Loss∗EM = PEM,inp−η∗ (PEM,out)·PEM,inp ≈ a′EM ·P 2
EM,inp+b

′
EM ·PEM,inp+c

′
EM , (4.11)

then defining:

LossEM = PEM,inp − PEM,out = a′EM · P 2
EM,inp + b′EM · PEM,inp + c′EM , (4.12)

we get the following:

PEM,out = aEM · P 2
EM,inp + bEM · PEM,inp + cEM , (4.13)

with aEM = −a′EM , bEM = 1 − b′EM , and cEM = −c′EM . The expression above can be

relaxed to an inequality in order to include the EM model in an SOCP. Alternatively,

piecewise affine functions can be used to approximate the original quadratic convex

function with an arbitrary accuracy, see red solid line in Fig. 4.8a. The convex region

contained below the affine piecewise model is given as follows:

PEM,out ≤ aiPEM,inp + bi, i ∈ {1, 2, . . . , n} (4.14)

For the EM considered in this section, the convex region enclosed by (4.14) is shown in

Fig. 4.8b with n = 4.

4.2.3 Battery pack

Let us consider the zero-order equivalent circuit battery model displayed in Fig. 4.9,

with E (V) the open-circuit voltage, R (Ω) the equivalent internal series resistor, and

Ubatt (V) the actual voltage at the battery terminals. The battery is discharging when

Ibatt flows in a clockwise sense and is charging when Ibatt flows in the opposite sense,



Chapter 4: Powertrain system architecture design 91

-20 -10 0 10 20 30

P
EM,inp

 (kW) 

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

L
o
s
s
 (

k
W

)

Minimal loss

Quadratic approximation

Piecewise affine approximation

(a)

-20 -10 0 10 20 30

P
EM,inp

 (kW)

-30

-20

-10

0

10

20

30

P
E

M
,o

u
t (

k
W

)

Convex region

Piecewise affine loss

Lossless curve

(b)

Figure 4.8: A: Minimal loss (4.11) (blue dashed line), quadratic approximation (4.13)
(green solid line), and piecewise affine approximation with n = 4 affine models (red
solid line). B: Piecewise model (4.9) (black solid curve); convex region described by

(4.14) with n = 4 (red dots); the lossless curve (blue dashed line).

thus, we have the following convention:

Pbatt,out ≥ 0 (when the battery is discharging),

Pbatt,out < 0 (when the battery is charging),

with Pbatt,out = Ibatt ·Ubatt, and where Ibatt is positive when it goes in a clockwise sense.

Applying Kirchhoff’s voltage law in a clockwise sense on the battery circuit we have:

−E +R · Ibatt + Ubatt = 0,

multiplying both sides of the equation by Ibatt one gets:

−Ibatt · E +R · I2
batt + Ibatt · Ubatt = 0,

defining Pbatt,inp = Ibatt · E:

−Pbatt,inp +

(
R

E2

)(
E2 · I2

batt

)
+ Pbatt,out = 0,

−Pbatt,inp +
R

E2
P 2
batt,inp + Pbatt,inp = 0,

thus:

Pbatt,out = Pbatt,inp −
R

E2
P 2
batt,inp, (4.15)
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The convex region enclosed by

Pbatt,out ≤ Pbatt,inp −
R

E2
P 2
batt,inp, (4.16)

is displayed on Fig. 4.10 (left). This quadratic convex region is approximated by they

region below a set of n piecewise affine functions,

Pbatt,out ≤ aiPbatt,inp + bi, i ∈ {1, 2, . . . , n}, (4.17)

as it is shown in Fig. 4.10 (right). Using the piecewise affine functions, it is possible to

approximate the original quadratic convex region with arbitrary accuracy, see Fig. 4.11.

Figure 4.9: Diagram of the zero-order equivalent circuit model of the battery pack.
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Figure 4.10: Quadratic (left) and piecewise (right) input-output models for the bat-
tery pack (black lines); the convex regions (red dots); the lossless input-output curve

(dashed blue line).
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(a) n = 2: maximum loss difference equal
to 1800 W, maximum relative error equal

to 26.633 %.
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(b) n = 4 : maximum loss difference
equal to 449.28 W, maximum relative er-

ror equal to 11.576 %.
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(c) n = 6 : maximum loss difference equal
to 200 W, maximum relative error equal

to 7.556 %.
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(d) n = 8 : maximum loss difference
equal to 112.32 W, maximum relative er-

ror equal to 5.546 %.

Figure 4.11: Piecewise approximations for the battery loss model.

4.3 Main Results

This section presents the mathematical framework of the power network modeling. A

validation of these modeling by comparing it a more common speed and torque tradi-

tional approach in Section 4.3.2 and the main result: a simultaneous EMS and topology

optimization approach via MILP in Section 4.3.3.

4.3.1 Mathematical framework

The mathematical framework for the convex optimization problems to be solved will be

defined and after that the convex modeling will be validated by comparing it against the

DP solution based on the original nonlinear static maps. In order to model the vehicle’s

powertrain as a power network, let us consider the following assumptions:

Assumption 1. All the electrical and mechanical power transmission elements that are

not modeled in the problem formulation are replaced by ideal power transmission ele-

ments. We define an ideal power transmission element as a device that
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1. transmits power in a lossless way and that

2. allows all the elements that are connected to it to operate in their optimal efficiency

regions regardless of their voltage, current, torque, and speed values.

The assumption above allow us to focus on the energetic behavior of the components and

to ignore the relation between the efficiency and the speed, torque, current, and voltage.

Moreover, the assumption above means that the optimal solution that we compute in

this work will be a lower ultimate bound on the optimal energetic performance that can

be obtained in the real HEV. Other than the vehicle’s ideal power transmission elements,

the network is composed of the following elements:

1. an ICE engine (modeled as a power source element),

2. a battery pack (modeled as a power sink/source element),

3. an electric machine (modeled as a electric/mechanical power converter element),

4. the gearbox (modeled as a mechanical element with a constant efficiency),

5. the wheels (modeled as a power sink/source element) that provides the power

demand signal to the network.

In the following, the ideal transmission elements will be referred to as nodes.

The objective is operate the network in order to satisfy the power demand (exogenous

signal) introduced to the network by the wheels element while minimizing the power

losses on the whole network. The objective function takes the following form:

J =

n∑
j=1

Nf−1∑
k=1

Pmj ,inp(k)− Pmj ,out(k) (4.18)

with n the number of elements, Nf the length of the power demand signal, j =

{1, 2, . . . , n}, and mj the name of the j − th component of the network. In our case,

n = 3, mj ∈ {ice, batt, em, T}. The components are modeled using piecewise loss

models of the form:

Pmj ,out(k) = min{amj ,1·Pmj ,inp(k)+bmj ,1, amj ,2·Pmj ,inp(k)+bmj ,2, . . . , amj ,qj ·Pmj ,inp(k)+bmj ,qj},
(4.19)

with qj the number of piecewise linear equations used to model the losses of the j-th

element. The convex region enclosed by the convex function above is described by:

Pmj ,out(k) ≤ amj ,i · Pmj ,inp(k) + bmj ,i, i ∈ {1, 2, . . . , qj}. (4.20)
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for all k ∈ {1, 2, . . . , Nf}, whenever qj > 1 1. This relaxation is necessary in order

to integrate the pieceiwise affine losses in the convex optimization problem. Although

these inequalities include values outside of the loss models, in the optimal solution they

are guaranteed to satisfy the inequality constraints since going below these constraints

would lead to extra power waste. Inequality constraints are also used to constraint the

inputs or outputs of each component:

Pmin
mj ,t ≤ Pmj ,t(k) ≤ Pmax

mj ,t (4.21)

with t ∈ {inp, out}, for all k ∈ {1, 2, . . . , Nf}. Equality constraints represent the con-

nection of the components at a given node. All the nodes observe conservation of power.

For instance, the connection between the battery pack and the electric machine at node

3, n3, will be enforced through the following constraint:

Pbatt,inp(k)− Pem,inp(k) = 0, (4.22)

for all k ∈ {1, 2, . . . , Nf}, under the convention that Pem,inp is extracting power from n3

and that Pbatt,inp is providing that power; the presence of a power demand signal or an

input or output variable P(·) at the i− th node is

〈i〉 1 if P(·) provides power to the i− th node whenever P(·) > 0,

〈ii〉 −1 if P(·) extracts power from the node whenever P(·) > 0, and

〈iii〉 0 if P(·) has no relation with the node.

In general, for a network with r nodes, the latter is represented by the following equality

constraints:

n∑
j=1

[
Pmj ,out(k) ·Rmj ,out − Pmj ,inp(k) ·Rmj ,inp

]
+

p∑
l=1

Pwl
(k) ·Rwl

= 0. (4.23)

with Rmj ,t, Rw1 ∈ Rr×1, p the total number of power demand signals in the network,

and where the i− th entry of Rmj ,t (respectively Rw1) is equal to 1 if and only if Pmj ,t

(respectively Pwl
) is present at the i− th node and zero otherwise; the rest of its entries

are equal to zero. In our case, the network only has 3 nodes, r = 3, and one power

1If qj = 1, the inequality relaxation is not required since a single line is a convex region.
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demand signal, p = 1, thus, Rmj ,t and Rwl
are given as follows:

Rice,inp =


0

0

0

 , Rem,inp =


0

0

1

 , Rbatt,inp =


0

0

0

 , Rw1 =


0

1

0

 ,

Rice,out =


1

0

0

 , Rem,out =


0

1

0

 , Rbatt,out =


0

0

1

 ,

In addition to input and output power variables, the elements with buffer capabilities

have linear dynamics to determine their state-of-energy. The linear dynamics is given

as follows:

xms(k + 1) = (∆t ·Ams + 1)xms(k) + ∆t ·Bms,inpPms,inp(k) + ∆t ·Bms,outPms,out(k),

(4.24)

with ms the name of the s− th element in the network which posses buffer capabilities,

s ⊆ j. The states of energy can be subject to path:

xmin
ms

(k) ≤ xms(k) ≤ xmax
ms

(k), (4.25)

and boundary constraints:

xms(1) = x0
ms

(4.26a)

xms(Nf ) = x
Nf
ms . (4.26b)
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Finally, the optimal control problem for the HEV is formulated as the following Linear

Programming (LP) problem:

min
Pmj,t

J = ∆t ·
∑
j

∑
k

Pmj ,inp(k)−Pmj ,out(k), (4.27a)

subject to:

Pice,out(k) ≤ aice,i ·Pice,inp(k) + bice,i, i ∈ {1, 2, . . . , q1} (4.27b)

Pem,out(k) ≤ aem,i ·Pem,inp(k) + bem,i, i ∈ {1, 2, . . . , q2} (4.27c)

Pbatt,out(k) ≤ abatt,i ·Pbatt,inp(k) + bbatt,i, i ∈ {1, 2, . . . , q3} (4.27d)

PT,out(k) ≤ aT,i ·PT,inp(k) + bT,i, i ∈ {1, 2, . . . , q4} (4.27e)

Pmin
ice,out ≤ Pice,out(k) ≤ Pmax

ice,out, (4.27f)

Pmin
em,out ≤ Pbatt,out(k) ≤ Pmax

batt,out, (4.27g)

Pmin
batt,out ≤ Pbatt,out(k) ≤ Pmax

batt,out, (4.27h)

n∑
j=1

[
Pmj ,out(k) ·Rmj ,out − Pmj ,inp(k) ·Rmj ,inp

]
+

p∑
l=1

Pwl
(k) ·Rwl

= 0, (4.27i)

xbatt(k + 1) = (∆t ·Abatt + 1) xbatt(k) + ∆t ·Bbatt,inpPbatt,inp(k) + ∆t ·Bbatt,outPbatt,out(k),

(4.27j)

xmin
batt(k) ≤ xbatt(k) ≤ xmax

batt (k), (4.27k)

xbatt(1) = x0
batt, (4.27l)

xbatt(Nf ) = x
Nf

batt. (4.27m)

for all k ∈ {1, 2, . . . , Nf−1}, n = 4, j = {1, 2, 3, 4}, s ⊆ j = {3}, mj ∈ {ice, em, batt, T},
ms ∈ {batt}, t ∈ {inp, out}, with ∆t = 1, Abatt = 0, Bbatt,inp = 0, Bbatt,out = −1/Q · E.

Remark 4.1. An idea of the computational complexity of (4.27) can be obtained from the

number of variables and constraints in the problem formulation; it has (2n+ S)·(Nf − 1)

continuous variables;
(

2n+
∑n

j=1 qj + 2S
)
·(Nf − 1) inequality constraints (2n (Nf − 1)

from the constraints on the power variables,
∑n

j=1 qj · (Nf − 1) from the piecewise affine

loss models, and 2S ·(Nf − 1) from the state path constraints); and (r + S)·(Nf − 1)+S

equality constraints (r ·(Nf − 1) from the conservation of power constraints, S ·(Nf − 1)

from the state dynamics constraints, and S from the final value constraints). With

Nf = 1023, n = 4, qj = {1, 2, 8, 2}, S = 1, r = 3, we have 9198 continuous variables,

23506 inequality constraints, and 4089 equality constraints.

4.3.2 Model validation

The topology optimization is performed using power signal whereas the component mod-

els depend on speed and torque signals. In order to assess the validity of such models, a
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comparison is carried out using DP, which guarantees a globally optimal solution. This

approach requires the quantization of all the variables in the problem formulation: the

independent variable, all the inputs, all the state variables, and all the power demand

variables.

Assumption 2. (DP) The EMS formulation explored here will take a step further in

the modeling of the mechanical transmission elements. That is, the assumption on the

ideal (mechanical and electrical) power transmission element will be strengthen for the

mechanical power transmission elements. Namely, the following three elements: (i) the

final drive, (ii) the gearbox, and (iii) the reduction gear. These three elements will

remain lossless and will be modeled only through their gear ratios: γFG, γGB(iGB(k)),

and γEM , respectively.

The EMS considered for the DP approach replaces the power demand signal at the

wheels by the following corresponding torque demand signal:

Tw(iGB(k) | av(k)) = (mv(iGB(k)) · av(k) + Frr + Fslope + Fair) · r (4.28)

mv = m+ Iv(iGB(k))/r2, (4.29)

Iv(iGB(k)) =
(
IEM · γ2

EM + IICE · γ2
GB (i)

)
· γ2

FG.

The equation enforcing the conservation of mechanical power will be replaced by a

conservation of torque equation applied at the main shaft:

γGB(iGB(k)) · Tice + γEM · Tem −
1

γFG
· Tw(iGB(k) | av(k)) = 0 (4.30)

The objective function will be replaced by the following speed-dependent one:

Jfuel = ∆t ·
∑
k

ṁf (Tice(k), wice(uGB(k))) , (4.31)

with ṁf (.) (g/s) the fuel consumption rate, and Tice (N) the engine torque. Adapting

the notation of the previous subsection, the DP problem formulation is described as
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follows:

min
Tice(k) , uGB(k)

Jfuel = ∆t ·
∑
k

ṁf (Tice(k), wice(uGB(k))) , (4.32a)

subject to:

Pem,inp(k) = Tem(k) · ωem(k) · η−sign(Tem(k)) (Tem(k) | ωem(k)) (4.32b)

Pbatt,inp(k) =
E2

2R

[
1−

√
1− 4

R

E2
Pbatt,out

]
(4.32c)

Tmin
ice (ωice(k)) ≤ Tice(k) ≤ Tmax

ice (ωice(k)), (4.32d)

Tmin
em (ωem(k)) ≤ Tem(k) ≤ Tmax

em (ωem(k)), (4.32e)

Pmin
batt,out ≤ Pbatt,out(k) ≤ Pmax

batt,out, (4.32f)

uGB(k) ∈ {−1, 0, 1}, (4.32g)

ωice(k) =
v(k)

r
· γFG · γGB(iGB(k)) (4.32h)

ωem(k) =
v(k)

r
· γFG · γEM (4.32i)

ωmin
ice ≤ ωice(k) ≤ ωmax

ice , (4.32j)

ωmin
em ≤ ωem(k) ≤ ωmax

em , (4.32k)

Pbatt,out(k)− Pem,inp(k) = 0, (4.32l)

γGB(iGB(k)) · Tice(k) + γEM · Tem(k)− 1

γFG
· Tw(iGB(k) | av(k)) = 0, (4.32m)

xbatt(k + 1) = (∆t ·Abatt + 1)xbatt(k) + ∆t ·Bbatt,inpPbatt,inp(k), (4.32n)

iGB(k + 1) = iGB(k) + uGB(k), (4.32o)

iGB(k) ∈ {1, 2, . . . , 5}, (4.32p)

xmin
batt ≤ xbatt(k) ≤ xmax

batt , (4.32q)

xbatt(1) = x0
batt (4.32r)

xbatt(Nf ) = x
Nf

batt, (4.32s)
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with Abatt = 0, and Bbatt,inp = −1/Q · E. The problem can be simplified by combining

(4.32b), (4.32c), and (4.32l) as follows:

min
Tice(k) , uGB(k)

Jfuel = ∆t ·
∑
k

ṁf (Tice(k), wice(uGB(k))) , (4.33a)

subject to:

Pbatt,inp(k) =
E2

2R

[
1−

√
1− 4

R

E2

(
Tem(k) · ωem(k) · η−sign(Tem(k)) (Tem(k) | ωem(k))

)]
(4.33b)

Tmin
ice (ωice(k)) ≤ Tice(k) ≤ Tmax

ice (ωice(k)), (4.33c)

Tmin
em (ωem(k)) ≤ Tem(k) ≤ Tmax

em (ωem(k)), (4.33d)

Pmin
batt,out ≤ Pbatt,out(k) ≤ Pmax

batt,out, (4.33e)

uGB(k) ∈ {−1, 0, 1}, (4.33f)

ωice(k) =
v(k)

r
· γFG · γGB(iGB(k)) (4.33g)

ωem(k) =
v(k)

r
· γFG · γEM (4.33h)

ωmin
ice ≤ ωice(k) ≤ ωmax

ice , (4.33i)

ωmin
em ≤ ωem(k) ≤ ωmax

em , (4.33j)

γGB(iGB(k)) · Tice(k) + γEM · Tem(k)− 1

γFG
· Tw(iGB(k) | av(k)) = 0, (4.33k)

xbatt(k + 1) = (∆t ·Abatt + 1)xbatt(k) + ∆t ·Bbatt,inpPbatt,inp(k), (4.33l)

iGB(k + 1) = iGB(k) + uGB(k), (4.33m)

iGB(k) ∈ {1, 2, . . . , 5}, (4.33n)

xmin
batt ≤ xbatt(k) ≤ xmax

batt , (4.33o)

xbatt(1) = x0
batt (4.33p)

xbatt(Nf ) = x
Nf

batt. (4.33q)

At last, if we solve the conservation of torque equation for Tem,

Tem(k) =
1

γEM

(
1

γFG
· Tw(iGB(k) | av(k))− γGB(iGB(k)) · Tice(k)

)
, (4.34)

and replace this expression in the rest of the problem formulation we can simplify the

problem to one having one continuous input variable Tice(k), one discrete input variable

uGB(k), one continuous state xbatt(k), and one discrete state iGB(k). Additionally,
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quantization constraints should be added to the continuous input and state variables:

Tice(k) ∈ Uice,grid,

xbatt(k) ∈ Xbatt,grid,

For the sake of completeness, the convex (solved via LP) and the non-convex (solved via

DP) techniques will be compared in three different cases:

(a) Fixed total moment of inertia: For this first comparison, the total moment of

inertia will be fixed to the following average value:

Iv,avg =
1

5

5∑
i=1

(
IEM · γ2

EM + IICE · γ2
GB (i)

)
· γ2

FG. (4.35)

Although a constant moment of inertia is used to compute the power demand, gear

shifting is kept as a control variable for the DP formulation and thus optimized.

Fixing the total moment of inertia is done with the aim of having the same power

demand signal in both, the speed dependent and the speed independent formulation.

The power signals computed for the speed-dependent DP problem formulation and

the speed-independent LP formulation are displayed on Fig. 4.12. Their difference

in relative fuel consumption is summarized on Table 4.3. As expected, the LP speed-

independent approach achieves a lower fuel consumption. This was expected since

that formulation is based on more idealistic assumptions: compare Assumption 1

against Assumption 2. One can even argue that the fuel consumption computed

with the LP speed-independent approach is not as small as expected. A possible

explanation could be the fact that the speed-independent model of the EM has

significant losses (around 800 W) even when it is not being used (Pem,out(k) = 0).

(b) Varying total moment of inertia: This time Iv will depend on gearshifting, iGB

(4.30). In other words, the equivalent mass can be optimized in the DP formulation

through uGB, which could lead to a better fuel consumption. Once the DP formula-

tion has been computed, the total moment of inertia signal is used to compute the

power demand signal for the LP formulation. The relevant signals computed from

both approaches are displayed on Fig. 4.13. As can be seen in the first subplot, the

power demand is higher than for a fixed total moment of inertia when Pw(k) > 0,

reducing the effort required by the engine, and a higher absolute value for Pw < 0,

increasing the amount of regenerative braking power.

(c) Varying total moment of inertia as function of a rule-based gearshifting

strategy: Consider the gearshifting strategy shown in Fig. 4.14. It is a ruled-based
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strategy that solely depends on the speed. This gearshifting strategy will be used to

compute the total moment of inertia for both the LP speed-independent approach

and the DP-speed dependent approach. The power signal results are displayed on

Fig. 4.15. The fuel consumption is presented on Table 4.3: there is an important

increase in fuel consumption for the DP speed-dependent approach and a very small

increase for the LP speed-independent approach despite both approaches having

the same power demand signal. This highlights the importance of the gearshifting

strategy and shows that the proposed one, based only on the longitudinal speed, may

lead to poor fuel consumption results. Previous works have found that optimizing

over a set of architectures with different sub-optimal EMS might lead to different

optimal architectures. Moreover, as it is illustrated in Appendix B, using a poor

sub-optimal EMS may lead a designer to underestimate the potential of the optimal

solution with respect to other candidate architectures.

Case Approach Fuel consumption Units Computation time (s)

(a) LP speed-independent 4.181 l/100km 2.295

DP speed-dependent 4.423 l/100km 4.680·103

(b) LP speed-independent 3.121 l/100km 1.866

DP speed-dependent 3.294 l/100km 4.817·103

(c) LP speed-independent 3.472 l/100km 1.659

DP speed-dependent 6.356 l/100km 2.410·103

Table 4.3: Fuel consumption comparison for the convex modeling validation.

Based on the results obtained in the comparisons above, it can be concluded that the LP

convex formulation of the EMS does not imply a considerable loss of accuracy: for cases

(a) and (b), it provides a tight lower bound for the optimal fuel consumption. When the

optimality is not guaranteed, significant differences may arise, see case (c). Nonetheless,

when optimality is indeed guaranteed, the main limitation seems to be given by the total

moment of inertia: since the LP convex approach is based on a power network modeling,

the moment of inertia is neglected. The assumption of a negligible moment of inertia

has been taken in several previous convex modeling works [41, 113]. Moreover, as it

will be shown later, in this work, under these assumptions we will be able to perform a

simultaneous computation of the optimal architecture and EMS.
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Figure 4.12: Comparison between the DP speed-dependent approach and the LP
speed-independent approach. Iv(k) has been fixed as (4.35). The final state-of-energy

is identical for both methods.

4.3.3 Simultaneous architecture design

Before presenting the MILP formulation of the architecture design, let us recall that the

topological structure of the power network is defined by the following equation:

n∑
j=1

[
Pmj ,out(k) ·Rmj ,out − Pmj ,inp(k) ·Rmj ,inp

]
+

p∑
l=1

Pwl
(k) ·Rwl

= 0. (4.36)

with r the total number of nodes, Rmj ,t, Rw1 ∈ Rr×1, p the total number of power

demand signals in the network, and where the i − th entry of Rmj ,t (respectively Rw1)

is equal to 1 if and only if Pmj ,t (respectively Pwl
) is present at the i − th node and

zero otherwise; the rest of its entries are equal to zero. For the parallel HEV studied in

Subsection Model Validation 4.3.2, the network only has 3 nodes, r = 3, and one power
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Figure 4.13: Comparison between the DP speed-dependent approach and the LP
speed-independent approach. A varying total moment of inertia, Iv(k), is considered
and computed by optimizing gearshifting. The final state-of-energy is identical for both

methods.

demand signal, p = 1, thus, Rmj ,t and Rwl
are given as follows:

Rice,inp =


0

0

0

 , Rem,inp =


0

0

1

 , Rbatt,inp =


0

0

0

 , Rw1 =


0

1

0

 ,

Rice,out =


1

0

0

 , Rem,out =


0

1

0

 , Rbatt,out =


0

0

1

 ,

Therefore, if we would like to include the architecture design as a part of the optimization

problem, it should suffice to replace the parameter vectors Rmj ,t by vectors of binary

variables Rmj ,t ∈ Br. Additionally, we would like to let the program optimizing the

element connections also decide which elements should be part of the topology and

which ones should be discarded. To this end, let us define zmj ∈ B as the binary

variable that is equal to one only if the mj has been chosen to be connected to the
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Figure 4.14: Top: velocity profile; bottom: rule-based gearshifting strategy.

network. If zmj = 1, then the input and the output (respectively, only the input if the

element is a sink/source, e.g., an ICE or a battery pack) should be connected to the

network, i.e., Rmj ,inp and Rmj ,out (respectively, only Rmj ,out) must have one entry equal

to 1. If zmj = 0, all the entries of Rmj ,out and Rmj ,out must be equal to zero. The latter

can be imposed through the following equality constraints:RTmj ,inp

RTmj ,out

 Ir = Imjzmj , (4.37)

with Ir = [1] ∈ Rr an Imj = [1] ∈ R2 if mj is a transmission element, and through[
RTmj ,inp

]
Ir = Imj

, zmj or

[
RTmj ,out

]
Imj = I1, zmj (4.38)

with Imj = [1] ∈ R1 if mj is a source/sink element. Note that an additional constraint

has to be imposed on Rmj ,t to avoid having power variables of different nature (electrical

and mechanical) interacting at the same node. The convention that will be followed in

this work is that the mechanical nodes of the network will be represented by the first

rmech entries of Rmj ,t and the electrical nodes will correspond to the last relect entries

of Rmj ,t. If Rmj ,out (Rmj ,inp) corresponds to a mechanical power variable, then the

last relect elements of Rmj ,out (Rmj ,inp) will be forced to zero. Conversely, If Rmj ,out

(Rmj ,inp) corresponds to an electrical power variable, then the first rmech elements of

Rmj ,out (Rmj ,inp) will be forced to zero. For instance, let us consider a network with

r = 3 nodes, where rmech, the number of mechanical nodes, is equal to 2, and relect the

number of electric nodes, is equal to 1. (4.37) for a mechanical transmission element
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Figure 4.15: Comparison between the DP speed-dependent approach and the LP
speed-independent approach subject to the gearshifting strategy shown in Fig. 4.14.

The final state-of-energy is identical for both methods

will be equal to:

r(1)
T,inp r

(2)
T,inp r

(3)
T,inp

r
(1)
T,out r

(2)
T,out r

(3)
T,out




1

1

1

 =

1

1

 zT ,

but since the third node is an electrical node r
(3)
T,inp and r

(3)
T,out are equal to zero, thus:

r
(1)
T,inp + r

(2)
T,inp = zT ,

r
(1)
T,out + r

(2)
T,out = zT .
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Defining Rmj =

RTmj ,inp

RTmj ,out

, Rmj =

[
RTmj ,inp

]
or Rmj =

[
RTmj ,out

]
, if mj is a transmis-

sion element, if mj is sink/source element, and R =



Rm1

Rm2

...

Rmn


, (4.37) and (4.38) can be

expressed in the following more compact form:

R Ir = Im z (4.39)

with

Im = diag[Imj ] =



Im1 0
Im2

0 .. .

Imn


, and z =



zm1

zm2

...

zmn


.

By adding (4.39) to the previous problem formulation, (4.27), we can finally obtain

a simultaneous architecture design and EMS mixed-integer programming formulation.

However, note the conservation of power constraint, includes the nonlinear term Pmj ,t ·
Rmj ,t, which corresponds to the product of a continuous variable and a binary variable.

Fortunately, this product can be linearized by replacing it by an additional continuous

variable, thus, obtaining the sought MILP formulation. The variable replacing the

product Pmj ,t · Rmj ,t will be denoted as Ymj ,t ∈ Rr. To ensure that Ymj ,t is equal to

the product Pmj ,t ·Rmj ,t, the following four inequality constraints are imposed for each

triple
{
Ymj ,t, Rmj ,t, Pmj ,t

}
[58]:

Ymj ,t − Pmj ,t − Pmin
mj ,t ·Rmj ,t � −Ir · Pmin

mj ,t, (4.40a)

−Ymj ,t + Pmj ,t + Pmax
mj ,t ·Rmj ,t � Ir · Pmax

mj ,t , (4.40b)

Ymj ,t − Pmax
mj ,t ·Rmj ,t � 0, (4.40c)

−Ymj ,t + Pmin
mj ,t ·Rmj ,t � 0, (4.40d)

with � denoting an element-wise inequality. In order to show that the four constraints

above actually impose Ymj ,t = Pmj ,t · Rmj ,t, we will use an scalar version of them.

Namely, we will analyze the product Pmj ,t · r
(1)
mj ,t

and its equivalence to y
(1)
mj ,t

:
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� Case 1: r
(1)
mj ,t

= 0: regardless of the value taken by Pmj ,t, the last two constraints

imposed the following

y
(1)
mj ,t
≤ 0,

y
(1)
mj ,t
≥ 0,

which can only be simultaneously satisfied if y
(1)
mj ,t

= 0, validating that y
(1)
mj ,t

=

Pmj ,t · r
(1)
mj ,t

= 0 when r
(1)
mj ,t

= 0.

� Case 2: r
(1)
mj ,t

= 1 and Pmj ,t = 0: the first two constrains imposed the following

y1
mj ,t ≤ 0,

y1
mj ,t ≥ 0,

which can only be simultaneously satisfied if y
(1)
mj ,t

= 0, validating that y
(1)
mj ,t

=

Pmj ,t · r
(1)
mj ,t

= 0 when Pmj ,t = 0.

� Case 3: r
(1)
mj ,t

= 1 and Pmj ,t 6= 0: the first two constraints take the following form

y1
mj ,t ≤ Pmj ,t,

y1
mj ,t ≥ Pmj ,t,

which can only be simultaneously satisfied if y
(1)
mj ,t

= Pmj ,t, proving that y
(1)
mj ,t

=

Pmj ,t · r
(1)
mj ,t

= Pmj ,t when r
(1)
mj ,t

= 1.

Remark 4.2. For an EMS with Ns source/sink elements, NT transmission elements and

r nodes, linearization constraints (4.40) add (Ns + 2 ·NT ) ·r ·Nf continuous variables to

the convex problem formulation. For instance, for the simple parallel topology studied

in Subsection Model validation, Ns = 2, NT = 2, r = 2 and Nf = 1100. Therefore,

(Ns + 2 ·NT ) · r · Nf = (2 + 2 · 2) · 3 · 1100 = 19800 extra variables would be required.

As for the discrete variables, connectivity constraints (4.39) require (Ns + 2 ·Ns) · r +

(Ns + 2 ·Ns) = (2 + 2 · 2) · 3 + (2 + 2) = 20 binary variables.

Once the linearization constraints have been imposed, the nonlinear terms have replaced

by Ymj ,t(k) in the conservation of power equation:

n∑
j=1

[
Ymj ,out(k)−Ymj ,inp(k)

]
+

p∑
l=1

Pwl
(k) ·Rwl

= 0, (4.41)
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Finally, the simultaneous architecture optimization and EMS is formulated as the fol-

lowing MILP:

min
Pmj,t

J = ∆t ·
∑
j

∑
k

Pmj ,inp(k)−Pmj ,out(k), (4.42a)

subject to:

Pmj ,out(k) ≤ amj ,i ·Pmj ,inp(k) + bmj ,i, i ∈ {1, 2, . . . , qj} (4.42b)

Pmin
mj ,out ≤ Pmj ,out(k) ≤ Pmax

mj ,out, (4.42c)

n∑
j=1

[
Ymj ,out(k)−Ymj ,inp(k)

]
+

p∑
l=1

Pwl
(k) ·Rwl

= 0, (4.42d)

xms(k + 1) = (∆t ·Ams + 1) xms(k) + ∆t ·Bms,inpPms,inp(k) + ∆t ·Bms,outPms,out(k),

(4.42e)

xmin
ms

(k) ≤ xms(k) ≤ xmax
ms

(k), (4.42f)

xms(1) = x0
ms

(4.42g)

xms(Nf ) = x
Nf
ms , (4.42h)

R(Rmj ,t) Ir = Im z, (4.42i)

Ymj ,t(k)−Pmj ,t(k)− Pmin
mj ,t ·Rmj ,t � −Ir · Pmin

mj ,t, (4.42j)

−Ymj ,t(k) + Pmj ,t(k) + Pmax
mj ,t ·Rmj ,t � Ir · Pmax

mj ,t , (4.42k)

Ymj ,t(k)− Pmax
mj ,t ·Rmj ,t � 0, (4.42l)

−Ymj ,t(k) + Pmin
mj ,t ·Rmj ,t � 0, (4.42m)

for all k ∈ {1, 2, . . . , Nf − 1}, j = {1, 2, . . . , n}, s ⊆ j, mj , ms ∈ {batt}, t ∈ {inp, out},
with ∆t = 1.

Remark 4.3. Note that for the definition of J given above, if there is an element that

has non-zero losses at the minimum value of its loss model, even if the element is not in

the topology, it will affect the value of J . To correct this modeling error, we will modify

the objective functional as follows:

J ′ = J − (Nf − 1) · cmf
·
(
1− zmj

)
, (4.43)

with cmj > 0 the minimum loss value for the loss model of the mj component.

4.3.4 Architectures as graphs

As done in several other works [4, 5], the representation of the architectures as power

networks used here can be seen from a graph theory perspective. More concretely, the

network representation is equivalent to a bipartite graph (see Fig. 4.16), since all the
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connections between the components are done through the nodes of the network. In

this bipartite graph, the transmission elements are represented by two vertexes (input

and output power connection) and the sinks/sources are represented by only one vertex

(input or output power connection). Representing the topology as a directed graph, we

get the following adjacency matrix:



ICE

EM

T

Batt

n1

n2

n3



[
ICE EM T Batt n1 n2 n3

]
.︷ ︸︸ ︷



0 0 0 0 r
(1)
ice,out r

(2)
ice,out r

(3)
ice,out

0 0 0 0 r
(1)
em,out r

(2)
em,out r

(3)
em,out

0 0 0 0 r
(1)
T,out r

(2)
T,out r

(3)
T,out

0 0 0 0 r
(1)
batt,out r

(2)
batt,out r

(3)
batt,out

r
(1)
ice,inp r

(1)
em,inp r

(1)
T,inp r

(1)
batt,inp 0 0 0

r
(2)
ice,inp r

(2)
em,inp r

(2)
T,inp r

(2)
batt,inp 0 0 0

r
(3)
ice,inp r

(3)
em,inp r

(3)
T,inp r

(3)
batt,inp 0 0 0


(4.44)

For the particular case of Fig. 4.16 we have:



ICE

EM

T

Batt

n1

n2

n3



[
ICE EM T Batt n1 n2 n3

]
︷ ︸︸ ︷



0 0 0 0 1 0 0

0 0 0 0 1 0 0

0 0 0 0 0 0 1

0 0 0 0 0 1 0

0 0 1 0 0 0 0

0 1 0 0 0 0 0

0 0 0 0 0 0 0


. (4.45)

4.4 Case Study: topology and control optimization

In order to illustrate the the approach, let us consider a network with 2 mechanical nodes,

1 electric node, 1 ICE, 2 identical EMs, a battery pack and 1 mechanical transmission.

The ICE will be fixed at node 1 and the power demand will be placed at node 2. The

rest of the components are free, see Fig. 4.17. (4.42) takes the following form:
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Figure 4.16: Bipartite arrangement of a pre-transmission parallel HEV represented
as a power network.

Figure 4.17: Topology design corresponding to simultaneous MILP (4.46).

min
Pmj,t

J = ∆t ·
∑
j

∑
k

Pmj ,inp(k)−Pmj ,out(k), (4.46a)

subject to:

Pice,out(k) = aice,1 ·Pice,inp(k) + bice,1, (4.46b)

Pem1,out(k) ≤ aem1,i ·Pem1,inp(k) + bem1,i, i ∈ {1, 2, . . . , 16} (4.46c)

Pem2,out(k) ≤ aem2,i ·Pem2,inp(k) + bem2,i, i ∈ {1, 2, . . . , 16} (4.46d)

Pbatt,out(k) ≤ abatt,i ·Pbatt,inp(k) + bbatt,i, i ∈ {1, 2, . . . , 16} (4.46e)

PT,out(k) ≤ aT,i ·PT,inp(k) + bT,i, i ∈ {1, 2} (4.46f)

Pmin
ice,out ≤ Pice,out(k) ≤ Pmax

ice,out, (4.46g)

Pmin
em1,out ≤ Pem1,out(k) ≤ Pmax

em1,out, (4.46h)

Pmin
em2,out ≤ Pem2,out(k) ≤ Pmax

em2,out, (4.46i)

Pmin
batt,out ≤ Pbatt,out(k) ≤ Pmax

batt,out, (4.46j)

n∑
j=1

[
Ymj ,out(k)−Ymj ,inp(k)

]
+

p∑
l=1

Pwl
(k) ·Rwl

= 0, (4.46k)

xbatt(k + 1) = xbatt(k) + ∆t ·Bbatt,inpPbatt,inp(k), (4.46l)

xmin
batt(k) ≤ xbatt(k) ≤ xmax

batt (k), (4.46m)

xbatt(1) = 0 (4.46n)
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R(Rmj ,t) Ir = Im z, (4.46o)

Ymj ,t(k)−Pmj ,t(k)− Pmin
mj ,t ·Rmj ,t � −Ir · Pmin

mj ,t, (4.46p)

−Ymj ,t(k) + Pmj ,t(k) + Pmax
mj ,t ·Rmj ,t � Ir · Pmax

mj ,t , (4.46q)

Ymj ,t(k)− Pmax
mj ,t ·Rmj ,t � 0, (4.46r)

−Ymj ,t(k) + Pmin
mj ,t ·Rmj ,t � 0, (4.46s)

for all k ∈ {1, 2, . . . , Nf − 1}, j = {1, 2, . . . , n}, s ⊆ j, mj , ms ∈ {batt}, t ∈ {inp, out},
with ∆t = 1, and Bbatt,inp = −1/Q·E. The battery pack and the EMs use 16 affine mod-

els, the ICE uses one, and the transmission uses 2 (it is based on a constant efficiency of

95%). The battery is empty at the beginning of the driving cycle. Given the parameters

of Table C.1, using the WLTC-C1 as driving mission, and assuming that the moment

of the inertia of the rotating parts can be neglected, the optimal topology found by the

approach is given in Fig. 4.18, the EMS in Fig. 4.19, and the fuel consumption and

computation time in Table 4.4. The optimal topology is a parallel post-transmission

topology. As expected, the program was able to figure out that connecting a buffer

would be advantageous, even if the buffer is initially empty.

Figure 4.18: Topology design computed as solution to simultaneous MILP (4.46).

Case Approach Fuel consumption Units Computation time (s)

- MILP 4.515 l/100km 279.031

Table 4.4: Fuel consumption and computation time for simultaneous MILP approach
(4.46).

4.5 Limitations and possible extensions

The assumptions considered in the presented MILP simultaneous approach have im-

portant limitations when studying the design of HEV powertrains. Being an approach

based on a power network modeling, the importance of the transmission components is

underestimated. Moreover, since most HEV powertrains have only one ICE, at most two

electric machines and at most 2 storage systems, the design space of this methodology
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Figure 4.19: EMS computed solution to (4.46).

is limited. In fact, the richness of the topology design problems studied in the literature

comes from the presence of mechanical transmission elements, such as PGS [5, 57] or

sycrhonizer units [4, 107].

Nevertheless, beyond the systems usually encountered in the automotive sector, in the

maritime industry hybrid powertrains may possess several ICEs, EMs, and storage sys-

tems. For instance, let us consider the hybrid maritime power system shown in Fig. 4.20:

it includes 3 generator sets (thus, 3 ICEs and 3 EM used as generators), 3 EMs used as

traction motors/generators, 1 storage system, and 2 power demand signals, resulting in

a more complex power network than what can be found in typical HEVs.

Figure 4.20: Example of a maritime hybrid powertrain [3].



Chapter 4: Powertrain system architecture design 114

4.5.1 Possible extension 1: optimal convex models

Using affine piecewise functions one can go beyond approximating a quadratic loss model

with arbitrary accuracy. Given a set of d data points
(
P

(i)
inp, L

(i)
)

representing the

original nonlinear and nonconvex loss model, we can compute the optimal affine piecewise

approximation as a quadratic programming problem [120]:

min
∥∥∥L− L̂

∥∥∥2
, (4.47a)

L̂
(j) ≥ L̂

(i)
+ gi ·

(
P

(j)
inp − P

(i)
inp

)
, i, j ∈ {1, 2, . . . , d}, (4.47b)

where the affine models are recovered as ai = gi and bi = L̂−gi ·P
(i)
inp, i ∈ {1, 2, . . . , d−1}.

Considering the EM minimal loss data from Fig. 4.14, the piecewise convex model

computed via (4.47a) is shown in Fig. 4.21. The model shown there is a more accurate

representation of the original data points than the quadratic model. In this approach the

number of piecewise affine functions of the convex model cannot be chosen beforehand

and it could go up to d − 1. Alternatively, we can fix the number of piecewise models
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Figure 4.21: Optimal affine piecewise convex model computed from d data points(
P

(i)
inp, L

(i)
)

with d− 1 linear functions (left) and with q = 4 models (right), computed

via (4.47a) and (4.48), respectively.

equatl to q and find the optimal fitting by solving the following MILP problem [121]:

min
∥∥∥L− L̂

∥∥∥2
, (4.48a)

L̂
(i) ≥ aj · P iinp + bj , i ∈ {1, 2, . . . , d}, j ∈ {1, 2, . . . , q} (4.48b)

L̂
(i) ≤ aj · P iinp + bj +M · (1− zij) , i ∈ {1, 2, . . . , d}, j ∈ {1, 2, . . . , q} (4.48c)∑
j

zij = 1, i ∈ {1, 2, . . . , d}, (4.48d)

zij ∈ {0, 1}, i ∈ {1, 2, . . . , d}, j ∈ {1, 2, . . . , q}, (4.48e)
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with M a constant large enough to make constraint (4.48c) innocuous. Considering

q = 4, M = 3 · 106, and the EM minimal loss data from Fig. 4.14, the piecewise convex

model computed via (4.48) is shown in Fig. 4.21 (right).

4.5.2 Possible extension 2: main components parametrization

Convex optimization has been used to compute the optimal sizing or parametriza-

tion of the main powertrain components and the EMS simultaneously [41, 113]. The

parametrization is based on the assumption that the main characteristics of the power

losses models can be linearly scaled by a continuous scalar s. For instance, for EMs and

ICEs, s scales the torque. For battery packs, s scales the number of cells connected in

series or parallel. This sizing methodology can be adapted to our affine piecewise models

as follows. Given a base loss model Pout = f(Pinp) with Pout ∈
[
Pminout , P

max
out

]
, the model

can be linearly scaled by a factor s as follows:

P̌out = s · f (Pinp) , (4.49)

P̌out ∈ s ·
[
Pminout , P

max
out

]
, (4.50)

with P̌inp = s · Pinp, which yields:

P̌out = s · f
(
P̌inp
s

)
, (4.51)

P̌out ∈ s ·
[
Pminout , P

max
out

]
. (4.52)

Since in this case f (Pinp) = ai · Pinp + bi, i ∈ {1, 2, . . . , q}:

P̌out = ai · Pinp + s · bi, i ∈ {1, 2, . . . , q}, (4.53)

P̌out ∈ s ·
[
Pminout , P

max
out

]
. (4.54)

One important limitation of the existing convex approaches with able to optimize the

size of the components is that moment of inertia of the rotational parts is neglected. This

limitation can be lifted/overcome with the piecewise affine modeling and the assumption

that the base rotational inertia of the main components can be scaled by s5/3. This

assumption is presented in [4]. Since s5/3 is a convex function, we can approximate

it with arbitrary accuracy, see Fig. 4.22, and thus extend the results of [41, 113] to

include the moment of inertia of the main components with rotating parts in the problem

formulation.
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Figure 4.22: Nonlinear convex moment of inertia scale [4] and its piecewise affine
approximation with 4 line segments.

4.6 Conclusions

A simultaneous approach for architecture design and EMS of HEV has been presented.

The problem formulation is based on MILP. The main assumption taken is that despite

the NP-hard nature of MILP, cutting-edge solvers are capable of solving big enough

problems to be of practical use in a relatively short time. One of the main limitations

is that it underestimates the importance of the transmission components. There are

several possible ways of extending the presented results. One of them is to extend the

results to the design of maritime hybrid powertrains where the number of energy storage

and energy converter components is bigger than in a HEV. Another possible extension

is to consider optimally fitted piecewise loss models in order to improve the accuracy

of the approach. Piecewise affine models could also be exploited to extend the results

of [41, 113] to no longer neglect the moment of inertia of the main components. The

semidefinite programming convex formulation of a power-split HEV recently presented in

[122] might also be approximated by a LP formulation in order to optimally parametrize

its main components. Having a LP formulation is more convenient than a SOCP or a

SDP formulation due to the fact that LP is a more mature technology and as such its

solvers are expected to be more widely available, to be faster, and to produce more

reliable solutions.





Chapter 5

Conclusions

More than two decades after it began to be widely studied, hybrid vehicle technology is

still a highly active field of research. Three important topics inside this field of research

have been considered in this work:

� Regarding EMS, a methodology based on the Pontryagin minimum principle,

penalty functions, and an implicit Hamiltonian representation has been proposed

in order to compute the offline EMS under mixed input-state constraints. The

methodology is illustrated via two application examples. This approach might

be extended to conceive a real-time EMS. The most straightforward way to do

so is to conceive a model predictive control (MPC) approach [84]. Nevertheless,

an approach similar to ECMS would be more convenient as it requires much less

computation resources to be implemented.

� Regarding how to use the extra degrees-of-freedom in the powertrain beyond the

EMS, a damping control law has been designed and implemented to mitigate the

driveline oscillations. The control law achieves the objective of not interfering with

the EMS in a significant way: it is found that it increases fuel consumption only in

a +0.26% for a synthetic driving mission designed to have a high number of steep

torque changes in a short period of time (an scenario unlikely to occur in real-life).

This is achieved by designing the control law with a vanishing behavior whenever

the system tends to steady-state. The dynamics used for its design are based on

a P0 parallel HEV and it includes (CAN bus induced) time-delays. A robustness

analysis with respect to parametric uncertainty is presented. The control law is

validated via experimental results achieving up to a 30% of oscillations reduction.

Future work on this topic will include a model of the clutch in the control problem

formulation. By doing this, gearshifting phases could be taken into account, further

increasing the usefulness of the control law.
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� At last, regarding how to optimally conceive a powertrain architecture, a simul-

taneous approach for architecture design and EMS of HEVs is presented. The

problem formulation is based on MILP. The main assumption taken is that de-

spite the NP-hard nature of MILP, cutting-edge solvers are capable of solving big

enough problems to be of practical use in a relatively short period of time. One

of the main limitations of the approach is that it underestimates the importance

of the transmission components. There are several possible ways of extending the

presented results. One of them is to extend the results to the design of maritime

hybrid powertrains, where the number of energy storage and energy converter

components is bigger than in a HEV. Another possible extension is to consider

optimally fitted piecewise loss models in order to improve the accuracy of the

approach. Piecewise affine models could also be exploited to extend the results

of [41, 113] to no longer neglect the moment of inertia of the main components.

The semidefinite programming (SDP) convex formulation of a power-split HEV

recently presented in [122] might also be approximated by a LP formulation in

order to include optimal parametrization of its main components. Having a LP

formulation is more convenient than a SOCP or a SDP formulation due to the fact

that LP is a more mature technology and as such its solvers are expected to be

more widely available, faster, and produce more reliable solutions.



Appendix A

A.1 Function extension with multiple variables

Let us consider fi ∈ Xi ⊂ Rni , where Xi is a convex region and fi is C∞. The Taylor

series expansion of fi around of x̃ is defined as follows:

fi(x) =fi(x̃) + (x− x̃)T ∇fi(x̃)+

+
1

2
(x− x̃)T ∇2fi(x̃) (x− x̃) + . . .

With ∇fi and ∇2fi defined as the gradient and Hessian matrix of fi, respectively. Given

x̃ ∈ ∂Xi, and y 6∈ X, the domain of fi is extended outside Xi by the following function:

gi(y) = fi(x̃) + (y − x̃)T ∇fi(x̃) +
1

2
(y − x̃)T ∇2fi(x̃) (y − x̃) , (A.1)

where x̃ is defined as the closest point on the boundary of Xi, ∂Xi, with respect to y.

A.2 Piecewise polynomial approximation of the the power

demand and the On/Off signal command

The time derivatives of the power demand, ẇ(t), and the On/Off command of the APU,

ϑ̇(t), are necessary to compute the optimal control dynamics u̇∗(t), see (2.32). Since

these signals are not available, a monotone piecewise cubic interpolation [123] is applied

to w(t) and ϑ(t) in order to approximate them. The interpolating polynomials of w(t)

and ϑ(t), denoted as pw(t) and pϑ(t), respectively, are guaranteed to be at least once

continuously differential. The difference between the signals and its piecewise cubic

approximations can be arbitrarily reduced by increasing the number of interpolating

points at the cost of a greater computational effort.
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The computation of the interpolating polynomials is carried out using a predefined

Matlab function: pchip. Once pw(t) and pϑ(t) have been computed, ṗw(t) and ṗϑ(t) are

used to approximate ẇ(t) and ϑ̇(t), respectively.

A.3 Efficiency and BSFC maps

The APU model computed using a static efficiency map for the generator and a BSFC

map for the engine [80, 124], see Fig. A.1. The traction motor is modeled using a static

efficiency map ηtm(Ttm, ωtm), see Fig. A.2.
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Figure A.1: Efficiency map of the generator (left). Brake specific fuel consumption
(BSFC) map (g/kWh) of the ICE (right).
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Fuel consumption model (2.47) is computed using a quadratic fitting for a set of op-

timal pairs
{
ṁk
f (T kice, ω

k
ice), u

k
}

, where T kice and ωkice are the ICE operating conditions

necessary to generate uk electric power with minimum fuel consumption. The optimal

pairs correspond to the APU operating conditions shown in Fig. A.1. ṁk
f is computed
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by solving the following optimization problem for each uk:

min
Tice,ωice

ṁf (Tice, ωice), (A.2)

subject to: (A.3)

ηgen(Tgen, ωgen) · Tgen · ωgen = uk, (A.4)

Tice = Tgen · ρ, (A.5)

ωice =
ωice
ρ
, (A.6)

ωgen ≥ ωgen(t) ≥ ω̄gen, (A.7)

ωice ≥ ωice(t) ≥ ω̄ice, (A.8)

T gen(ωgen(t)) ≥ Tgen(t) ≥ T̄gen(ωgen(t)), (A.9)

T ice(ωice(t)) ≥ Tice(t) ≥ T̄ice(ωice(t)), (A.10)

(A.11)

with Tgen and ωgen the torque and speed of the generator, respectively, and ρ the gear

ratio between the ICE and the generator.



Appendix B

Optimal vs suboptimal EMS

architecture design

Consider the pre- vs post-transmission architecture design problem for a parallel HEV

shown in Fig. B.1. The fuel consumption of both topologies will be compared using an

optimal and a sub-optimal rule-based gearshifting strategy:

(a) Sub-optimal EMS: Considering the driving mission and gearshifting strategy of

Fig. B.2 the EMS for both architectures are compared in Fig. B.3. Their total fuel

consumption values achieved are compared in Table B.1.

(b) Optimal EMS: Optimizing the gearshifting signal and considering the velocity

profile of Fig. B.2, the EMS for both topologies is shown in Fig. B.4. The total

fuel consumption values achieved are compared in Table B.1.

Case Architecture Fuel consumption Difference Computation time

(a) Pre-transmission 6.382 l/100km - 59.563 seconds

Post-transmission 6.356 l/100km -0.407 % 59.218 seconds

(b) Pre-transmission 4.505 l/100km - 2.481·103 seconds

Post-transmission 3.294 l/100km -26.881 % 2.338·103 seconds

Table B.1: Fuel consumption comparison for both cases and both architectures.

In both cases it can be concluded that the post-transmission architecture is the best

topology. However, when a sub-optimal EMS is considered, the difference in total fuel

consumption is less than 0.5 %, whereas, when a optimal EMS is used, the difference

goes up to 26.881 %. Therefore, using suboptimals EMS could lead to the designer
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underestimating the true potential of the optimal architecture with respect to the rest

of the candidates.

Figure B.1: Diagram explaining the architecture design problem.
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Figure B.2: Top: velocity profile; bottom: rule-based gearshifting strategy.
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Figure B.3: Comparison between architecture (1) and architecture (2) subject to the
gearshifting strategy shown in Fig. B.2.
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Figure B.4: Comparison between EMS for architecture (1) and architecture (2) with
an optimized gearshifting.
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Parameters of the case study

problem

The table below contains the parameters considered in the case study from Chapter 4.

Component Parameter Value Units

ICE

aice 0.3264 1/W

bice −1.238 · 103 (W)

Pmin
ice,out 0 W

Pmax
ice,out 2.9786 · 104 W

EM1

aem1,i {0.985, 0.956, 0.927, 0.898

0.869, 0.839, 0.810, 0.781

1.185, 1.160, 1.136, 1.111

1.086, 1.062, 1.037, 1.012}

1/W

bem1,i {−0.745,−0.573,−0.279, 0.137

0.674, 1.332, 2.112, 3.014

1.342, 0.776, 0.297,−0.094

−0.399,−0.617,−0.748,−0.792}

(kW)

Pmin
em1,out −3.0438 · 104 W

Pmax
em1,out 3.0438 · 104 W

EM2

aem2,i {0.985, 0.956, 0.927, 0.898

0.869, 0.839, 0.810, 0.781

1.185, 1.160, 1.136, 1.111

1.086, 1.062, 1.037, 1.012}

1/W
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bem2,i {−0.745,−0.573,−0.279, 0.137

0.674, 1.332, 2.112, 3.014

1.342, 0.776, 0.297,−0.094

−0.399,−0.617,−0.748,−0.792}

(kW)

Pmin
em1,out −3.0438 · 104 W

Pmax
em1,out 3.0438 · 104 W

Batt

abatt,i {0.985, 0.955, 0.925, 0.895

0.865, 0.835, 0.805, 0.775

1.225, 1.195, 1.165, 1.135

1.105, 1.075, 1.045, 1.015}

1/W

bbatti {0.0, 56.25, 168.75, 337.5

562.5, 843.75, 1181.25, 1575.0

1575.0, 1181.25, 843.75, 562.5

337.5, 168.75, 56.25, 0.0}

(W)

Pmin
batt,out −15 · 103 W

Pmax
batt,out 15 · 103 W

Abatt 0 (-)

Bbatt,inp −1/E ·Q 1/J

R 0.5 (Ω)

E 250 (V)

Q 3 · 104 (A·s)

T
aT,i {0.95, 1.526} 1/W

bT,i {0, 0} (kW)

Table C.1: Parameter values for the parallel HEV powertrain power network.
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[101] Ioan Doré Landau and Gianluca Zito. Digital control systems: design, identifica-

tion and implementation. Springer Science & Business Media, 2007.

[102] Aman Jacknoon, Mohamed Hassan, and Sami El Ferik. Design of rst controllers

based on intelligent optimization algorithms. In 2016 Conference of Basic Sciences

and Engineering Studies (SGCAC), pages 177–182. IEEE, 2016.

[103] Pinar Civicioglu. Backtracking search optimization algorithm for numerical op-

timization problems. Applied Mathematics and computation, 219(15):8121–8144,

2013.

[104] Riadh Madiouni, Soufiene Bouallegue, Joseph Haggege, and Patrick Siarry. Parti-

cle swarm optimization-based design of polynomial rst controllers. In 10th Inter-

national Multi-Conferences on Systems, Signals & Devices 2013 (SSD13), pages

1–7. IEEE, 2013.

[105] Bram De Jager, Thijs Van Keulen, and John Kessels. Optimal control of hybrid

vehicles. Springer, 2013.

[106] E. Silvas. Integrated optimal design for hybrid electric vehicles. PhD thesis, De-

partment of Mechanical Engineering, November 2015. Proefschrift.

[107] Steven Masfaraud, Fabrice Danes, Pierre-Emmanuel Dumouchel, Florian

De Vuyst, and Nicolas Vayatis. Automatized gearbox architecture design explo-

ration by exhaustive graph generation. In WCCM XII 2016, 2016.

[108] Jan Wijkniet and Theo Hofman. Modified computational design synthesis us-

ing simulation-based evaluation and constraint consistency for vehicle powertrain

systems. IEEE Transactions on Vehicular Technology, 67(9):8065–8076, 2018.



Bibliography 138

[109] Xiaowu Zhang, Huei Peng, and Jing Sun. A near-optimal power management

strategy for rapid component sizing of multimode power split hybrid vehicles.

IEEE Transactions on Control Systems Technology, 23(2):609–618, 2014.
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Hybrid vehicle design and control

This work is concerned with the development of hybrid electric vehicle technologies. It is split into

three main topics: • By taking advantage of the extra degrees of freedom present in a hybrid vehicle,

the energetic supervisory control,satisfies the power demand from the driver such that the total fuel

consumption is minimized. This supervisory control can be cast as an optimal control problem. The

contribution of this work is an approach based on Pontryagin’s minimum principle, penalty functions,

and an implicit Hamiltonian minimization that allows computing the offline energy management under

multiple states subject to path constraints. The proposed approach is shown to be up to 46 times faster

than dynamic programming. �In a gear-based transmission, undesired drive-shaft oscillations are mainly

noticeable at low gears (and therefore low speeds) when the torsional dynamics of the driveshaft are

excited with large torque values. The contribution of this work is the design and implementation of a

damping controller able to significantly reduce the undesired oscillations. The controller is implemented

by adding a damping torque signal to the reference torque of the electric machine commanded by the

energetic supervisory control (energy management strategy). No additional actuators are required for

the implementation of the controller. Moreover, the damping controller is effective without significantly

interfering with the energetic supervisory control. �The complex task of automatically computing the

optimal powertrain architecture design subsumes several other important tasks such as the optimization

of the supervisory control, the technology of the powertrain components, and the parametrization of

such components. In this work, building upon existing results, the powertrain components are fitted

into piecewise affine convex models. In this convex formulation, the hybrid powertrain is seen as a power

network. The main contribution is the formulation of the energy management and the architecture

design in a simultaneous framework via mixed-integer linear programming.

Conception et commande de véhicules hybrides

La thèse s’intéresse au développement des technologies de véhicules hybrides. Elle comprend trois

thèmes principaux : �En portant des degrés de liberté supplémentaires du véhicule hybride, la stratégie

de gestion énergétique répond aux demandes de puissance du conducteur de telle manière que la con-

sommation totale d’essence soit minimisée. La contribution sur ce sujet est une méthodologie basée

sur le principe du minimum de Pontryagin, des fonctions de pénalité, et la minimisation implicite du

Hamiltonien. La méthodologie proposée est capable de calculer la stratégie de gestion énergétique, avec

plusieurs contraintes sur les états. La méthodologie est illustrée avec deux exemples. Il est montré

que la méthodologie proposée est jusqu’à 46 fois plus rapide que la programmation dynamique. �Dans

un véhicule avec une bôıte de vitesses, la présence des oscillations dans la transmission, qui est plus

notable quand le véhicule roule avec le 1er ou 2nd rapport engagé (et donc aux bas vitesses), arrive

lorsque la dynamique de torsion de la transmission est excitée par des couples qui changent soudaine-

ment et qui atteignent des valeurs considérables. Notre contribution sur ce sujet est la conception et

l’implémentation d’une loi de commande réduisant ces oscillations qui diminuent l’agrément de con-

duite. La commande est mise en œuvre en ajoutant un signal de commande à la consigne de couple de

la machine électrique demandée par le superviseur énergétique. La loi de commande ne requiert aucun

actionneur supplémentaire. En outre, elle n’interfère pas avec la stratégie de gestion énergétique, et par

conséquent, son effet sur la consommation d’essence est négligeable. �Le calcul de l’architecture opti-

male d’un véhicule hybride est un problème considérablement complexe qui englobe l’optimisation de la

stratégie de gestion énergétique, le choix de la technologie des composants du groupe motopropulseur

(GMP), et les paramètres de ces composants. Dans ce travail, en s’appuyant sur des résultats exis-

tants, le comportement énergétique des composants du groupe motopropulseur est modélisé par des

modèles convexes. Avec ces modèles convexes, le GMP hybride est considéré comme un réseau de puis-

sance. La contribution principale est la formulation de la stratégie de gestion énergétique et du choix

de l’architecture optimales via un problème de programmation linéaire mixte en nombres entiers.
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