Thèse soutenue

Contribution au choix d'architecture 3D des systèmes mécatroniques sous contraintes multi-physiques : Application aux Interférences Electro-Magnétiques (IEM)

FR  |  
EN
Auteur / Autrice : Mouna Kharrat
Direction : Jean-Yves CholeyJamel Louati
Type : Thèse de doctorat
Discipline(s) : Ingéniérie des systèmes complexes
Date : Soutenance le 15/12/2020
Etablissement(s) : université Paris-Saclay en cotutelle avec Université de Sfax (Tunisie)
Ecole(s) doctorale(s) : École doctorale INTERFACES : approches interdisciplinaires, fondements, applications et innovation
Partenaire(s) de recherche : Laboratoire : Laboratoire Quartz (Saint-Ouen, Seine-Saint-Denis)
référent : CentraleSupélec (2015-....)
Jury : Président / Présidente : Marija Jankovic
Examinateurs / Examinatrices : Christine Prelle, Mnaouar Chouchane, Olivia Penas, Mohamed Haddar, Ali Akrout
Rapporteurs / Rapporteuses : Christine Prelle, Mnaouar Chouchane

Résumé

FR  |  
EN

L’intégration des systèmes mécatroniques génère de nombreuses perturbations multi-physiques (thermiques, électromagnétiques et dynamiques) rendant leur choix d’architecture complexe. En effet, l’introduction croissante de composants électroniques et électriques (E/E) dans la plupart des systèmes actuels, augmente le risque d’occurrence de nombreuses interférences électromagnétiques (IEM) pouvant dégrader fortement leur fonctionnement. Tandis que ces problèmes de compatibilité électromagnétique (CEM) sont généralement traités en phase de conception détaillée, où les possibilités de compromis se limitent à quelques ajustements de positionnement ou à des solutions de protection coûteuses, une solution consiste à proposer un cadre collaboratif pour l’évaluation, dès les premières phases de conception, d’architectures physiques de concept prenant en compte ces contraintes électromagnétiques (EM). En effet, il est important à cette étape, que l’ensemble des acteurs multidisciplinaires impliqués puissent définir, modifier/mettre à jour, ajouter leurs connaissances et contraintes et échanger leurs données tout en continuant à travailler dans leur environnement numérique habituel. Par ailleurs, ces activités d’ingénierie système doivent être outillées avec des approches d’« Ingénierie Système basée sur des modèles » (MBSE), pour supporter la continuité numérique, la cohérence et la traçabilité des modèles et des données nécessaires à ce processus d’évaluation.Pour répondre à ce besoin, cette thèse s’appuie sur l’approche collaborative MBSE SAMOS (Spatial Architecture based on Multi-physics and Organization of Systems) afin de supporter l'évaluation de l'architecture 3D de concept en phase amont sous contraintes électromagnétiques. Dans ce contexte, nous avons, dans un premier temps, développé une extension SysML appelée EMILE (ElectroMagnetic Interactions Layout Extension) pour formaliser et modéliser, au plus tôt, les contraintes EM dans le modèle système.Cette extension inclut notamment la définition des exigences EM, la description des modes de couplage électromagnétiques et la spécification des configurations de simulation permettant la vérification et la validation ultérieures des exigences, grâce au développement d’une interface homme-machine. Notre travail de recherche a ensuite porté sur une méthodologie d’évaluation combinant une approche topologique avec une modélisation EM., afin de supporter le processus d'évaluation qualitative et quantitative des interférences électromagnétiques (IEM). En effet, pour un type d’IEM donné, l'analyse topologique de l’architecture système permet d'identifier qualitativement l'existence des composants victimes et de leurs agresseurs potentiels associés. Une fois ces IEM potentielles identifiées, une évaluation quantitative peut alors être réalisée, par exemple en se basant sur les équations et lois physiques du couplage identifié, et sur les exigences électromagnétiques et géométriques prédéfinies avec EMILE. Cette approche permet ainsi de garantir le choix pertinent d’une architecture physique 3D de concept sous contraintes EM. Les approches proposées ont été illustrées sur une étude de cas d'une chaîne de traction du véhicule électrique, en s’appuyant sur plusieurs scénarios d’implémentation logicielle (SysML, Modelica, Matlab, FreeCAD) au sein de l’outil Sketcher 3D EM.