Thèse soutenue

Amélioration du modèle reconstruction des sections efficaces dans un code de calcul de neutronique à l’échelle cœur

FR  |  
EN
Auteur / Autrice : Esteban Alejandro Szames
Direction : Jean-Marc Martinez
Type : Thèse de doctorat
Discipline(s) : Énergie nucléaire
Date : Soutenance le 03/07/2020
Etablissement(s) : université Paris-Saclay
Ecole(s) doctorale(s) : École doctorale Particules, hadrons, énergie et noyau : instrumentation, imagerie, cosmos et simulation (Orsay, Essonne ; 2015-....)
Partenaire(s) de recherche : Laboratoire : Service d'études des réacteurs et de mathématiques appliquées (Gif-sur-Yvette, Essonne)
Référent : Université Paris-Saclay. Faculté des sciences d’Orsay (Essonne ; 2020-....)
Jury : Président / Présidente : Pierre Désesquelles
Examinateurs / Examinatrices : Paolo Vinai, Bertrand Bouriquet, Mathilde Mougeot, Alberto Previti
Rapporteur / Rapporteuse : Paolo Vinai, Bertrand Bouriquet

Résumé

FR  |  
EN

Pour estimer la répartition de la puissance au sein d’un réacteur nucléaire, il est nécessaire de coupler des modélisations neutroniques et thermohydrauliques. De telles simulations doivent disposer des valeurs sections efficaces homogénéisées à peu de groupes d’énergies qui décrivent les interactions entre les neutrons et la matière. Cette thèse est consacrée à la modélisation des sections efficaces par des techniques académiques innovantes basées sur l’apprentissage machine. Les premières méthodes utilisent les modèles à noyaux du type RKHS (Reproducing Kernel Hilbert Space) et les secondes par réseaux de neurones. La performance d’un modèle est principalement définie par le nombre de coefficients qui le caractérisent (c’est-à-dire l’espace mémoire nécessaire pour le stocker), la vitesse d’évaluation, la précision, la robustesse au bruit numérique, la complexité, etc. Dans cette thèse, un assemblage standard de combustible UOX REP est analysé avec trois variables d’état : le burnup, la température du combustible et la concentration en bore. La taille de stockage des bibliothèques est optimisée en cherchant à maximiser la vitesse et la précision de l’évaluation, tout en cherchant à réduire l’erreur de reconstruction des sections efficaces microscopiques, macroscopiques et du facteur de multiplication infini. Trois techniques d’approximation sont étudiées. Les méthodes de noyaux, qui utilisent le cadre général d’apprentissage machine, sont capables de proposer, dans un espace vectoriel normalisé, une grande variété de modèles de régression ou de classification. Les méthodes à noyaux peuvent reproduire différents espaces de fonctions en utilisant un support non structuré, qui est optimisé avec des techniques d’apprentissage actif. Les approximations sont trouvées grâce à un processus d’optimisation convexe facilité par ''l’astuce du noyau”. Le caractère modulaire intrinsèque de la méthode facilite la séparation des phases de modélisation : sélection de l’espace de fonctions, application de routines numériques, et optimisation du support par apprentissage actif. Les réseaux de neurones sont des méthodes d’approximation universelles capables d’approcher de façon arbitraire des fonctions continues sans formuler de relations explicites entre les variables. Une fois formés avec des paramètres d’apprentissage adéquats, les réseaux à sorties multiples (intrinsèquement parallélisables) réduisent au minimum les besoins de stockage tout en offrant une vitesse d’évaluation élevée. Les stratégies que nous proposons sont comparées entre elles et à l’interpolation multilinéaire sur une grille cartésienne qui est la méthode utilisée usuellement dans l’industrie. L’ensemble des données, des outils, et des scripts développés sont disponibles librement sous licence MIT.