Thèse soutenue

Laser ultra intense sur plasmas denses : dynamiques périodiques vers chaotiques

FR  |  
EN
Auteur / Autrice : Guillaume Blaclard
Direction : Guy Bonnaud
Type : Thèse de doctorat
Discipline(s) : Physique
Date : Soutenance le 02/07/2020
Etablissement(s) : université Paris-Saclay
Ecole(s) doctorale(s) : École doctorale Ondes et matière (Orsay, Essonne ; 2015-....)
Partenaire(s) de recherche : Laboratoire : Laboratoire Interactions, dynamiques et lasers (Gif-sur-Yvette, Essonne ; 2015-....) - Lawrence Berkeley laboratory (San Francisco, Calif.)
référent : Faculté des sciences d'Orsay
Jury : Président / Présidente : Jean-Marcel Rax
Examinateurs / Examinatrices : Jean-Marcel Rax, Paul Gibbon, Jérôme Faure, Julia Mikhailova, Laurent Yvan André Gremillet
Rapporteurs / Rapporteuses : Paul Gibbon, Jérôme Faure

Résumé

FR  |  
EN

L'émergence des lasers ultra-brefs et ultra-intenses a permis le développement d'une nouvelle branche de la physique encore largement inexplorée : la physique UHI (pour Ultra-High Intensity). Lors de la réflexion d'un tel laser sur une cible solide, l'intensité au foyer I₀ peut atteindre des valeurs aussi importantes que 10¹⁸⁻²⁰ W.cm⁻², suffisamment pour ioniser complétement la matière. Le plasma ainsi formé se détend sur une longueur caractéristique Lg, nommée longueur de gradient. Quand Lg <<λ₀ (longueur d'onde du laser), le plasma dense se comporte comme un miroir de qualité optique capable de réfléchir spéculairement la lumière incidente : c'est un miroir plasma. Ce système physique remarquable peut être utilisé dans de multiples applications principalement comme source compacte de faisceaux de particules à hautes charges et hautes énergies ou de lumière intense, principalement ultraviolet ou X, grâce à un phénomène de génération d'harmoniques d'ordres élevés. Le bon contrôle de ces sources nécessite de clairement identifier les différents mécanismes de couplage entre lumière et matière en jeu lors de l'interaction. Dans ce manuscrit, cela est rendu possible grâce à de précises simulations de type Particle-In-Cell (PIC) réalisées avec le code WARP+PXR. Ce nouveau code emploie un solveur pseudo-spectral pour résoudre les équations de Maxwell. Celui-ci améliore grandement la précision des simulations et notamment des émissions harmoniques et électroniques, que les solveurs plus standards ne parviennent à décrire, même à hautes résolutions. Grâce à des simulations WARP+PXR, nous avons étudié l'influence de Lg sur les observables expérimentales que sont les émissions de lumière et de particules, quand un laser de puissance (I₀ = 10¹⁹ W.cm⁻²) se réfléchit sur un plasma dense. Notre étude révèle une claire transition entre un mécanisme périodique en temps et un processus chaotique quand l'interface devient plus lisse. Nous nous sommes principalement concentrés sur le deuxième mécanisme, appelé chauffage stochastique pour lequel des études en profondeur vont être menées en fonction de différents paramètres d'interaction. Dans ce régime, les électrons de la partie sous-dense du plasma subissent une dynamique chaotique dans l'onde stationnaire formée par la superposition des ondes incidente et réfléchie, ce qui leur permet d'absorber une importante part de l'énergie laser. La nature fondamentale de la dynamique en jeu est révélée grâce aux équations du mouvement au sein des deux ondes que l'on peut réduire en équations de pendules forcés (comme celui de Kapitza), systèmes bien connus comme chaotiques. Cette correspondance apporte une intuition physique profonde sur le comportement des électrons pour différentes configurations laser. Ceci nous permet in fine de prédire les principaux aspects du chauffage stochastique.