Chiralité et dynamique non-linéaire dans les microcavités à polaritons
Auteur / Autrice : | Nicola Carlon Zambon |
Direction : | Jacqueline Bloch |
Type : | Thèse de doctorat |
Discipline(s) : | Optique et photonique |
Date : | Soutenance le 12/03/2020 |
Etablissement(s) : | université Paris-Saclay |
Ecole(s) doctorale(s) : | École doctorale Ondes et matière (Orsay, Essonne ; 2015-....) |
Partenaire(s) de recherche : | Laboratoire : Centre de nanosciences et de nanotechnologies (Palaiseau, Essonne ; 2016-....) |
Référent : Université Paris-Saclay. Faculté des sciences d’Orsay (Essonne ; 2020-....) | |
Jury : | Président / Présidente : Jean-Jacques Greffet |
Examinateurs / Examinatrices : Ivan Favero, Natalia G. Berloff, Atac Imamoglu, Alessandro Tredicucci | |
Rapporteurs / Rapporteuses : Ivan Favero, Natalia G. Berloff |
Mots clés
Résumé
Les microcavités en semiconducteurs, définis par une cavité Fabry Pérot planaire contenant un puits quantique, permettent de confiner fortement à la fois la lumière et les excitations électroniques. Dans ces hétérostructures, la lumière et la matière interagissent si fortement que les excitations fondamentales du système sont décrites par des quasi-particules hybrides lumière-matière appelées polaritons excitoniques. Les polaritons héritent les propriétés de leurs deux constituants élémentaires : la partie photonique peut être structurée spatialement en sculptant à l’échelle micrométrique l’indice de réfraction du matériau par lithographie et gravure ; la composante excitonique donne au système une très forte non-linéarité Kerr. Dans cette thèse, nous avons utilisé ces deux propriétés pour réaliser une ingénierie du mode photonique grâce à des micropiliers couplés, et sonder plusieurs facettes de leurs propriétés non-linéaires. Dans une première partie du travail, nous étudions des microcavités couplées disposées en anneau. Tirant profit d’un couplage spin-orbite synthétique et de la possibilité de polariser en spin le gain optique, nous avons démontré une émission laser dans des modes présentant un moment orbital angulaire (OAM) fini, dont la chiralité peut être contrôlée optiquement. De plus, nous mettons en évidence un comportement bistable original du microlaser, qui implique des modes présentant des valeurs différentes du OAM ainsi que des textures de polarisation différentes. Dans la deuxième partie de la thèse, nous explorons la dynamique non-linéaire du système sous pompage cohérent. Nous déclenchons une instabilité paramétrique dans des résonateurs couplés, et analysons en détails le mécanisme physique sous-jacent. Dans le régime instable, nous observons l’établissement d’oscillations paramétriques qui donnent lieu à des bandes latérales très brillantes et contrastées dans le spectre d’émission. Enfin dans la dernière partie du travail, nous étudions un régime de métastabilité optique dans un résonateur fortement non-linéaire. Ce régime se manifeste par l’apparition de sauts aléatoires entre deux valeurs du nombre moyen de photons dans le résonateur. Pour certaines conditions de pompage, nous observons un ralentissement critique de la dynamique métastable, signature d’une transition de phase dissipative. Par des expériences d’hystérésis dynamique, nous évaluons les exposants critiques de cette transition de phase. Finalement, nous proposons une correspondance (“mapping”) entre la dynamique métastable d’un résonateur Kerr, et les renversements aléatoires dans le temps d’un bit logique. Nous pouvons alors définir et mesurer la production d’entropie lors d’une trajectoire unique d’une expérience d’hystérésis dynamique. Ces mesures nous ont permis de valider, dans le cadre de cette correspondance, le théorème intégral de fluctuations pour la production d’entropie hors équilibre. Ce travail couvre une grande variété de sujets, d’aspects les plus fondamentaux de la dynamique non linéaire dans un système photonique, à des idées innovantes pour réaliser des dispositifs photoniques, qui pourraient dans le futur être optimisés pour un fonctionnement à température ambiante.