Score de propension en grande dimension et régression pénalisée pour la détection automatisée de signaux en pharmacovigilance
Auteur / Autrice : | Émeline Courtois |
Direction : | Pascale Tubert-Bitter |
Type : | Thèse de doctorat |
Discipline(s) : | Santé publique - biostatistiques |
Date : | Soutenance le 14/12/2020 |
Etablissement(s) : | université Paris-Saclay |
Ecole(s) doctorale(s) : | École doctorale Santé Publique (Le Kremlin-Bicêtre, Val-de-Marne ; 2015-...) |
Partenaire(s) de recherche : | Laboratoire : Centre de recherche en épidémiologie et santé des populations (Villejuif, Val-de-Marne ; 2010-....) |
Référent : Université de Versailles-Saint-Quentin-en-Yvelines (1991-....) | |
Jury : | Président / Présidente : Christophe Ambroise |
Examinateurs / Examinatrices : Marc Cuggia, Vivian Viallon, Ismaïl Ahmed, Niklas Norén | |
Rapporteur / Rapporteuse : Marc Cuggia, Vivian Viallon |
Mots clés
Mots clés contrôlés
Résumé
La pharmacovigilance a pour but de détecter le plus précocement possible les effets indésirables des médicaments commercialisés. Elle repose sur l’exploitation de grandes bases de données de notifications spontanées, c’est-à-dire de cas rapportés par des professionnels de santé d’évènements indésirables soupçonnées d’être d’origine médicamenteuse. L’exploitation automatique de ces données pour l’identification de signaux statistiques repose classiquement sur des méthodes de disproportionnalité qui s’appuient sur la forme agrégée des données. Plus récemment, des méthodes basées sur des régressions multiples ont été proposées pour prendre en compte les poly-expositions médicamenteuses. Dans le chapitre 2, nous proposons une méthode basée sur le score de propension en grande dimension (HDPS). Une étude empirique, conduite sur la base de pharmacovigilance française et basée sur un ensemble de référence relatif aux atteintes hépatiques aigues (DILIrank), est réalisée pour comparer les performances de cette méthode (déclinée en 12 modalités) à des méthodes basées sur des régressions pénalisées lasso. Dans ce travail, l’influence de la méthode d’estimation des scores est minime, contrairement à la méthode d’intégration des scores. En particulier, la pondération sur l’HDPS avec des poids matching weights montre de bonnes performances, comparables à celles des méthodes basées sur le lasso. Dans le chapitre 3, nous proposons une méthode basée sur extension du lasso: le lasso adaptatif qui permet d’introduire des pénalités propres à chaque variable via des poids. Nous proposons deux nouveaux poids adaptés aux données de notifications, ainsi que l’utilisation du BIC pour le choix de la valeur de pénalité. Une vaste étude de simulations est réalisée pour comparer les performances de nos propositions à d’autres implémentations du lasso adaptatif, une méthode de disproportionnalité, des méthodes basées sur le lasso et sur l’HDPS. Les méthodes proposées montrent globalement de meilleurs résultats en termes de fausses découvertes et de sensibilité que les méthodes concurrentes. Une étude empirique analogue à celle du chapitre 2 vient compléter l’évaluation. Toutes les méthodes présentées sont implémentées dans le package R « adapt4pv » disponible sur le CRAN. En parallèle des développements méthodologiques sur les notifications spontanées, un intérêt croissant s’est porté autour de l’utilisation des bases médico-administratives pour la détection de signaux en pharmacovigilance. Les efforts de recherche méthodologique dans ce domaine en sont encore à leurs débuts. Dans le chapitre 4, nous explorons des stratégies de détection exploitant les notifications spontanées et l’Echantillon Généraliste des Bénéficiaires (EGB). Nous évaluons tout d’abord les performances d'une détection sur l'EGB à partir de DILIrank. Puis, nous considérons une détection conduite sur les notifications spontanées basée sur un lasso adaptatif intégrant, au travers de ses poids, l’information relative à l’exposition médicamenteuse d’individus contrôles mesurée dans l'EGB. Dans les deux cas, l’apport des données médico-administratives est difficile à évaluer du fait de la relative faible taille des données de l’EGB.