Thèse soutenue

Dynamique à fréquence finie de conducteurs quantiques corrélés

FR  |  
EN
Auteur / Autrice : Jonas Müller
Direction : Patrice Roche
Type : Thèse de doctorat
Discipline(s) : Physique
Date : Soutenance le 14/12/2020
Etablissement(s) : université Paris-Saclay
Ecole(s) doctorale(s) : École doctorale Physique en Île-de-France (Paris ; 2014-....)
Partenaire(s) de recherche : Laboratoire : Service de physique de l'état condensé (Gif-sur-Yvette, Essonne)
référent : Faculté des sciences d'Orsay
Jury : Président / Présidente : Hélène Bouchiat
Examinateurs / Examinatrices : Franck Balestro, Pascal Degiovanni, Sophie Djordjevic, Max Hofheinz
Rapporteurs / Rapporteuses : Franck Balestro, Pascal Degiovanni

Mots clés

FR  |  
EN

Résumé

FR  |  
EN

Dans ce travail, nous présentons les nouvelles méthodes expérimentales que nous avons développées afin d’étudier la physique fondamentale du transport électronique à travers des conducteurs mésoscopiques en se basant sur la mesure des fluctuations électriques. Dans la première partie de la thèse, nous présentons une nouvelle conception d’un détecteur quantique sans rétroaction pour mesurer séparément la densité spectrale de puissance des fluctuations de courant pour les fréquences positives (bruit d’absorption) et négatives (bruit d’émission). Nous extrayons le bruit d’absorption et d’émission d’une mesure de la puissance échangée entre un conducteur quantique et un résonateur linéaire à fréquence finie, testé pour une jonction SIS couplée à un filtre à cavité. Nos résultats soulignent la signification physique de la formule de Kubo qui, couplée à une description quantique du dispositif de mesure, fournit une version quantique du théorème de Joule. Dans la deuxième partie de la thèse, nous présentons la conception et la construction d’une plate-forme expérimentale pour les mesures RF dépendantes du temps dans les champs magnétiques élevés. L’objectif est de mesurer efficacement un conducteur quantique qui donne lieu à une contre-action de détection sur ses propriétés de transport, connue sous le nom de Blocage de Coulomb Dynamique (DCB). Nous souhaitons étudier de tels effets dans le cas élémentaire d’un canal de conduction unique, avec une transmission arbitraire, interagissant avec un mode électromagnétique unique. Le principal défi consiste à concevoir des résonateurs RF à haute impédance utilisés comme transformateur d’impédance pour coupler efficacement le canal unique à haute impédance (25,8 kΩ) à l’équipement de détection RF désadapté de 50 Ω. Pour notre installation, nous avons d’abord conçu et testé un résonateur tolérant aux champs magnétiques, une bobine métallique plane, qui fournit une impédance caractéristique de 1 kΩ à une fréquence de résonance de 5,4 GHz. En utilisant deux résonateurs en série, il est possible d’obtenir une impédance de détection efficace de 27 kΩ qui assure un couplage suffisant à un seul canal. Avec toutes les méthodologies développées dans cette thèse, il est maintenant possible de réaliser une série remarquable d’expériences diverses dans un futur proche.