Thèse soutenue

Transition de phase dissipative et dualité de la jonction Josephson

FR  |  
EN
Auteur / Autrice : Nicolas Bourlet
Direction : Philippe Joyez
Type : Thèse de doctorat
Discipline(s) : Physique
Date : Soutenance le 16/12/2020
Etablissement(s) : université Paris-Saclay
Ecole(s) doctorale(s) : École doctorale Physique en Île-de-France (Paris ; 2014-....)
Partenaire(s) de recherche : Laboratoire : Service de physique de l'état condensé (Gif-sur-Yvette, Essonne)
référent : Faculté des sciences d'Orsay
Jury : Président / Présidente : Denis Basko
Examinateurs / Examinatrices : Claude Chapelier, Max Hofheinz, Julien Basset, Julia Meyer
Rapporteurs / Rapporteuses : Claude Chapelier, Max Hofheinz

Résumé

FR  |  
EN

Plus d'un siècle après sa découverte, la supraconductivité est aujourd'hui utilisée dans de nombreuses applications. Une de ces applications est l'électronique supraconductrice, et un des blocs de base de celle-ci est la jonction Josephson. Cet élément a permis la réalisation de circuits électroniques dans le régime quantique et il a aidé à redéfinir la valeur du Volt dans le Système International d'unité à partir d'effets quantiques. Ces dernières années, beaucoup de temps et d'efforts sont dépensés pour améliorer ce composant et les circuits l'intégrant dans l'objectif de réaliser de meilleurs circuits à bit quantique pour l'informatique quantique. Il est donc normal de se demander si l'existence de ces circuits de pointe contenant des jonctions Josephson et des supraconducteurs conventionnels indique une maîtrise parfaite de ceux-ci. Dans ce travail de thèse, nous montrons que cela n'est pas entièrement le cas via l'exploration de deux circuits quantiques supraconducteurs pour lesquels des études plus approfondies sont nécessaires. Le premier concerne la jonction Josephson elle-même et son comportement lorsqu'elle est mise en présence d'un environnement électromagnétique. En effet, il a été prédit il y a presque 40 ans qu'une jonction Josephson deviendrait isolante lorsqu'elle est connectée à une résistance plus grande que Rq=h/4e²≈6.45 kΩ. Nous ne trouvons aucunes traces de cet état isolant dans nos expériences qui mesurent l'admittance de jonctions Josephson connectées en parallèle de résistance de valeur R>Rq. Le deuxième circuit explore le composant supposé dual de la jonction Josephson, la jonction à sauts de phase quantique, qui consiste en un nanofil de supraconducteur fortement inductif. Dans ces nanofils, des sauts de 2π de la phase supraconductrice sont censés produire les effets duals des paires de Cooper passant par effet tunnel dans la jonction Josephson. La maîtrise de ces effets duals permettrait la réalisation d'une nouvelle classe de circuits supraconducteurs quantiques. Nous avons fabriqué des résonateurs micro-ondes à partir de couches minces de supraconducteur fortement inductif. Nous ne trouvons aucune signature de l'effet des sauts de phase quantiques dans nos dispositifs. Cependant, nous mesurons un fort bruit basse fréquence causé par des systèmes à deux niveaux, et nous explorons ses implications dans ce type de résonateur.