Thèse soutenue

Interférométrie de Mach Zehnder et manipulation cohérente de la vallée dans une jonction pn dans une monocouche de graphène

FR  |  
EN
Auteur / Autrice : Paul Brasseur
Direction : Patrice Roche
Type : Thèse de doctorat
Discipline(s) : Physique
Date : Soutenance le 28/09/2020
Etablissement(s) : université Paris-Saclay
Ecole(s) doctorale(s) : École doctorale Physique en Île-de-France (Paris ; 2014-....)
Partenaire(s) de recherche : Laboratoire : Service de physique de l'état condensé (Gif-sur-Yvette, Essonne)
Référent : Faculté des sciences d'Orsay
Jury : Président / Présidente : Mark Oliver Goerbig
Examinateurs / Examinatrices : Dmitri Efetov, Romain Danneau, Rebeca Ribeiro-Palau, Benoît Hackens, Clément Faugeras
Rapporteur / Rapporteuse : Dmitri Efetov, Romain Danneau

Résumé

FR  |  
EN

L’optique quantique électronique, i.e. la réalisation de l’analogue électronique d’expériences d’optique quantique, constitue un champ de recherche récent, en plein développement, et offrant des perspectives intéressantes pour l’informatique quantique. Dans ce cadre, l’un des enjeux est la réalisation de bits quantiques en utilisant des états électroniques, ainsi que la formation d’états électroniques intriqués, éléments de bases pour réaliser des calculs quantiques plus élaborés. Les expériences menées jusqu’à présent dans des hétérostructures semi-conductrices de GaAs/AlGaAs ont mis en évidence la possibilité d’encoder l’information dans la charge ou le spin d’un électron, mais la décohérence importante de ces systèmes induit une grande fragilité de ces états quantiques, qui ne peuvent exister qu’en-dessous de 100mK et pour des tensions résiduelles inférieures à 40μV. Cette fragilité rend difficile la fabrication d’états intriqués, et est limitante pour le développement de calculs quantiques complexes. En 2005, la découverte d’un matériau novateur, le graphène, a ouvert de nouvelles perspectives avec la prédiction d’une cohérence de phase plus grande, et, d’autre part, l’existence en plus du spin d’un nouveau degré de liberté, la vallée, donnant accès à de nouvelles possibilités pour encoder l’information. Dans un premier temps, ce travail de thèse porte sur la manipulation cohérente de la vallée, nécessaire à la réalisation d’un bit quantique de vallée dans le graphène. Pour cela est utilisée, en régime Hall quantique, une jonction pn, formée à l’aide de grilles déposées sur un échantillon de graphène encapsulé dans du nitrure de Bohr. Afin d’obtenir un contrôle électrostatique sur la polarisation en vallée des électrons incidents, des grilles locales ont été déposées, à l’intersection de la jonction pn avec le bord physique du graphène. En alliant ce contrôle électrostatique à celui de la phase Aharanov-Bohm, il nous est possible de manipuler de manière cohérente la vallée d’un électron sur l’ensemble de la sphère de Bloch représentant la polarisation en vallée. Dans la suite, la cohérence des états quantiques formés est étudiée grâce à un interféromètre de Mach Zehnder, via l’observation de la dépendance des interférences en fonction de la tension appliquée sur les électrons incidents, et de la température du système. Les états quantiques obtenus sont exceptionnellement résistants, ils persistent au-delà de 1.5K et de 1mV, soit à des énergies près de 20 fois supérieures à celles observées dans le GaAs/AlGaAs.Puis, ce manuscrit décrit l’étude de la longueur de cohérence, correspondant à la distance sur laquelle un électron peut se propager en gardant sa cohérence de phase, ce qui n’avait encore jamais été mesuré dans le graphène. Pour ce faire, la dépendance des interférences vis-à-vis de la température a été mesurée sur trois jonctions pn de longueurs différentes. Une longueur de cohérence a ainsi été extraite pour les deux régimes de décohérence observés ; dont une record, pour le régime à basses températures, de plus de 374μm à 20mK. Pour finir, est investigué un des mécanismes causant la décohérence dans le système : les ondes de spin, se propageant lorsque le cœur du graphène est magnétique. Ainsi, au cours de ce projet, nous avons mis en évidence la possibilité d’encoder de l’information dans la vallée, ouvrant la voie vers un nouveau domaine : la vallée-tronique. D’autre part, la cohérence du système est exceptionnelle, permettant d’envisager la réalisation d’états intriqués grâce à une géométrie de double Mach Zehnder. Cela offre des perspectives prometteuses du point de vue de l’informatique quantique, mais aussi d’un point de vue fondamental avec la possibilité de démontrer pour la première fois, avec des fermions, la validité des prédictions de l’interprétation de Copenhague de la physique quantique dans le cadre du paradoxe EPR.