Inférence topologique à partir de mesures et de fibrés vectoriels

par Raphaël Tinarrage

Thèse de doctorat en Mathématiques appliquées

Sous la direction de Frédéric Chazal.

Le président du jury était Patrick Massot.

Le jury était composé de Simon Masnou, Shmuel Weinberger, Blanche Buet, Dominique Attali, Marc Glisse.

Les rapporteurs étaient Simon Masnou, Shmuel Weinberger.


  • Résumé

    Nous contribuons à l'inférence topologique, basée sur la théorie de l'homologie persistante, en proposant trois familles de filtrations.Nous établissons pour chacune d'elles des résultats de consistance---c'est-à-dire de qualité d'approximation d'un objet géométrique sous-jacent---, et de stabilité---c'est-à-dire que robustesse face à des erreurs de mesures initiales.Nous proposons des algorithmes concrets afin de pouvoir utiliser ces méthodes en pratique.La première famille, les filtrations-DTM, est une alternative robuste à la classique filtration de Cech lorsque le nuage de points est bruité ou contient des points aberrants.Elle repose sur la notion de distance à la mesure qui permet d'obtenir une stabilité au sens de la distance de Wasserstein.Deuxièmement, nous proposons les filtrations relevées, qui permettent d'estimer l'homologie des variétés immergées, même quand leur portée est nulle.Nous introduisons la notion de portée normale, et montrons qu'elle conduit à un contrôle quantitatif de la variété.Nous étudions l'estimation des espaces tangents par les matrices de covariance locale.En troisième lieu, nous développons un cadre pour les filtrations de fibrés vectoriels, et définissons les classes de Stiefel-Whitney persistantes.Nous montrons que les classes persistantes associées aux filtrations de fibrés de Cech sont consistantes et stables en distance de Hausdorff.Pour permettre leur mise en œuvre algorithmique, nous introduisons la notion de condition étoile faible.

  • Titre traduit

    Topological inference from measures and vector bundles


  • Résumé

    We contribute to the theory of topological inference, based on the theory of persistent homology, by proposing three families of filtrations.For each of them, we prove consistency results---that is, the quality of approximation of an underlying geometric object---, and stability results---that is, robustness against initial measurement errors.We propose concrete algorithms in order to use these methods in practice.The first family, the DTM-filtration, is a robust alternative to the classical Cech filtration when the point cloud is noisy or contains outliers.It is based on the notion of distance to measure, which allows to obtain stability in the sense of the Wasserstein distance.Secondly, we propose the lifted filtrations, which make it possible to estimate the homology of immersed manifolds, even when their reach is zero.We introduce the notion of normal reach, and show that it leads to a quantitative control of the manifold.We study the estimation of tangent spaces by local covariance matrices.Thirdly, we develop a framework for vector bundle filtrations, and define the persistent Stiefel-Whitney classes.We show that the persistent classes associated to the Cech bundle filtrations are Hausdorff-stable and consistent.To allow their algorithmic implementation, we introduce the notion of weak star condition.


Il est disponible au sein de la bibliothèque de l'établissement de soutenance.

Consulter en bibliothèque

La version de soutenance existe

Où se trouve cette thèse\u00a0?

  • Bibliothèque : Université Paris-Saclay. DiBISO. Bibliothèque électronique.
Voir dans le Sudoc, catalogue collectif des bibliothèques de l'enseignement supérieur et de la recherche.