Qualité prédictive des méta-modèles construits sur des espaces de Hilbert à noyau auto-reproduisant et analyse de sensibilité des modèles complexes.
Auteur / Autrice : | Halaleh Kamari |
Direction : | Marie-Luce Taupin, Sylvie Huet |
Type : | Thèse de doctorat |
Discipline(s) : | Mathématiques appliquées |
Date : | Soutenance le 06/07/2020 |
Etablissement(s) : | université Paris-Saclay |
Ecole(s) doctorale(s) : | École doctorale de mathématiques Hadamard (Orsay, Essonne ; 2015-....) |
Partenaire(s) de recherche : | Laboratoire : Laboratoire de Mathématiques et Modélisation d'Évry (Evry, Essonne) - Laboratoire de Mathématiques et Modélisation d'Evry / LaMME |
référent : Université d'Évry-Val-d'Essonne (1991-....) | |
Jury : | Président / Présidente : Agathe Guilloux |
Examinateurs / Examinatrices : Clémentine Prieur, Olivier Roustant, Béatrice Laurent | |
Rapporteurs / Rapporteuses : Clémentine Prieur, Olivier Roustant |
Mots clés
Résumé
Ce travail porte sur le problème de l'estimation d'un méta-modèle d'un modèle complexe, noté m. Le modèle m dépend de d variables d'entrées X1,...,Xd qui sont indépendantes et ont une loi connue. Le méta-modèle, noté f∗, approche la décomposition de Hoeffding de m et permet d'estimer ses indices de Sobol. Il appartient à un espace de Hilbert à noyau auto-reproduisant (RKHS), noté H, qui est construit comme une somme directe d'espaces de Hilbert (Durrande et al. (2013)). L'estimateur du méta-modèle, noté f^, est calculé en minimisant un critère des moindres carrés pénalisé par la somme de la norme de Hilbert et de la norme empirique L2 (Huet and Taupin (2017)). Cette procédure, appelée RKHS ridge groupe sparse, permet à la fois de sélectionner et d'estimer les termes de la décomposition de Hoeffding, et donc de sélectionner les indices de Sobol non-nuls et de les estimer. Il permet d'estimer les indices de Sobol même d'ordre élevé, un point connu pour être difficile à mettre en pratique.Ce travail se compose d'une partie théorique et d'une partie pratique. Dans la partie théorique, j'ai établi les majorations du risque empirique L2 et du risque quadratique de l'estimateur f^ d'un modèle de régression où l'erreur est non-gaussienne et non-bornée. Il s'agit des bornes supérieures par rapport à la norme empirique L2 et à la norme L2 pour la distance entre le modèle m et son estimation f^ dans le RKHS H. Dans la partie pratique, j'ai développé un package R appelé RKHSMetaMod, pour la mise en œuvre des méthodes d'estimation du méta-modèle f∗ de m. Ce package s'applique indifféremment dans le cas où le modèle m est calculable et le cas du modèle de régression. Afin d'optimiser le temps de calcul et la mémoire de stockage, toutes les fonctions de ce package ont été écrites en utilisant les bibliothèques GSL et Eigen de C++ à l'exception d'une fonction qui est écrite en R. Elles sont ensuite interfacées avec l'environnement R afin de proposer un package facilement exploitable aux utilisateurs. La performance des fonctions du package en termes de qualité prédictive de l'estimateur et de l'estimation des indices de Sobol, est validée par une étude de simulation.