Thèse soutenue

Contribution à l'étude des instabilités de combustion dans les moteurs-fusées cryotechniques : couplage entre modèles à interfaces diffuses et modèles cinétiques pour la simulation de l'atomisation primaire

FR  |  
EN
Auteur / Autrice : Pierre Cordesse
Direction : Marc Massot
Type : Thèse de doctorat
Discipline(s) : Mathématiques appliquées
Date : Soutenance le 23/06/2020
Etablissement(s) : université Paris-Saclay
Ecole(s) doctorale(s) : École doctorale de mathématiques Hadamard (Orsay, Essonne ; 2015-....)
Partenaire(s) de recherche : Laboratoire : Centre de mathématiques (Palaiseau, Essonne ; ....-2004)
Référent : CentraleSupélec (2015-....)
Jury : Président / Présidente : Pauline Lafitte-Godillon
Examinateurs / Examinatrices : Grétar Tryggvason, Nicolas Seguin, Marica Pelanti, Sergey Gavrilyuk, Grégoire Allaire, Angelo Murrone
Rapporteurs / Rapporteuses : Grétar Tryggvason, Nicolas Seguin

Résumé

FR  |  
EN

Gardiens de l’espace, les lanceurs de fusée font l’objet d’une amélioration continue et concurrentielle, grâce à des campagnes de tests expérimentaux et numériques. Les simulations prédictives sont devenues indispensables pour accroître notre compréhension de la physique. Ajustables, elles se prêtent parfaitement à la conception et l’optimisation, en particuliers de la chambre de combustion, pour garantir la sureté et maximiser l’efficacité. L’atomisation primaire est l’un des phénomènes déterminants de la combustion du combustible et de l’oxydant, pilotant à la fois la distribution de gouttes et les potentielles instabilités hautes-fréquences en conditions sous-critiques. Elle couvre un large spectre de topologies d’écoulement diphasique, depuis ceux de type phases séparées jusqu’à la phase dispersée, en passant par une région mixte caractérisée par la complexité de la physique à petites échelles et de la topologie de l’écoulement. Les modèles d’ordre réduit constituent de bons candidats pour réaliser des simulations numériques prédictives et relativement peu coûteuses en ressource de calcul sur des configurations industrielles. Cependant, jusqu’à présent ils ne décrivent correctement que la dynamique des grandes échelles et doivent donc être couplés à des modèles de phase dispersée nécessitant un réglage minutieux de paramètres pour prédire la formation du spray. Afin de décrire à la fois les régions mixte et dispersée, l’amélioration de la hiérarchie de modèles d’ordre réduit repose sur quelques principes clefs au cœur de la thèse ci-présente et fournit des problèmes interdisciplinaires faisant appel tant à l’analyse mathématique et la modélisation physique de ces systèmes d’EDP qu’à leur discrétisation numérique et leur implémentation dans des codes de CFD à des fins industriels. Grâce d’une part à l’extension de la théorie des équations de conservation supplémentaires à des systèmes impliquant des termes non-conservatifs et d’autre part à un formalisme de thermodynamique multi-fluide tenant compte des effets non-idéaux, nous proposons de nouvelles pistes pour définir une entropie de mélange strictement convexe et consistante avec le système d’équation et les lois de pression, dans le but de permettre la symmétrisation entropique des modèles diphasiques, de prouver leur hyperbolicité et d’obtenir des termes sources généraux. De plus, en rompant avec la vision géométrique de l’interface, nous proposons une description multi-échelle de l’interface pour décrire un mélange multi-fluide comportant une dynamique interfaciale complexe. Le Principe de Moindre Action a permis de dériver un modèle bifluide à une vitesse couplant grandes et petites échelles de l’écoulement. Nous avons ensuite développé une stratégie de séparation d’opérateurs basée sur la discrétisation par Volumes Finis, et nous avons implémenté le nouveau modèle dans le logiciel industriel multiphysique de CFD, CEDRE, de l’ONERA afin d’évaluer numériquement ce dernier. Enfin, nous avons construit et analysé les fondations d’une hiérarchie de cas tests accessibles à la DNS tout en étant au plus proche de configurations industrielles, dans le but d’évaluer les résultats de simulations du nouveau modèle ou de tout autre modèle à venir.