Weakly supervised learning for image classification and potentially moving obstacles analysis - TEL - Thèses en ligne Accéder directement au contenu
Thèse Année : 2020

Weakly supervised learning for image classification and potentially moving obstacles analysis

Apprentissage faiblement supervisé pour la classification d'images et l'analyse des obstacles potentiellement mobiles

Résumé

In the context of autonomous vehicle perception, the interest of the research community for deep learning approaches has continuously grown since the last decade. This can be explained by the fact that deep learning techniques provide nowadays state-of-the-art prediction performances for several computer vision challenges. More specifically, deep learning techniques can provide rich semantic information concerning the complex visual patterns encountered in autonomous driving scenarios. However, such approaches require, as their name implies, to learn on data. In particular, state-of-the-art prediction performances on discriminative tasks often demand hand labeled data of the target application domain. Hand labeling has a significant cost, while, conversely, unlabeled data can be easily obtained in the autonomous driving context. It turns out that a category of learning strategies, referred to as weakly supervised learning, enables to exploit partially labeled data. Therefore, we aim in this thesis at reducing as much as possible the hand labeling requirement by proposing weakly supervised learning techniques.We start by presenting a type of learning methods which are self-supervised. They consist of substituting hand-labels by upstream techniques able to automatically generate exploitable training labels. Self-supervised learning (SSL) techniques have proven their usefulness in the past for offroad obstacles avoidance and path planning through changing environments. However, SSL techniques still leave the door open for detection, segmentation, and classification of static potentially moving obstacles.Consequently, we propose in this thesis three novel weakly supervised learning methods with the final goal to deal with such road users through an SSL framework. The first two proposed contributions of this work aim at dealing with partially labeled image classification datasets, such that the labeling effort can be only focused on our class of interest, the positive class. Then, we propose an approach which deals with training data containing a high fraction of wrong labels, referred to as noisy labels. Next, we demonstrate the potential of such weakly supervised strategies for detection and segmentation of potentially moving obstacles.
Dans le contexte des applications de perception pour le véhicule à conduite déléguée, l’intérêt pour les approches d’apprentissage automatique a continuellement augmenté pendant cette dernière décennie. Cependant, lorsque ces approches doivent être discriminatives, elle nécessitent généralement d’apprendre sur des données manuellement annotées. L’annotation manuelle a un coût non négligeable, tandis que les données non annotées peuvent être facilement obtenues dans le contexte d’un véhicule autonome équipé de capteurs. Il se trouve qu’une catégorie de stratégies d’apprentissage, dite d’apprentissage faiblement supervisé, permet d’exploiter des données partiellement labélisées. Ainsi, nous avons pour objectif dans cette thèse de réduire autant que possible le besoin de labélisation manuelle en proposant des techniques d’apprentissage faiblement supervisées.
Fichier principal
Vignette du fichier
98689_CHIARONI_2020_archivage.pdf (27.37 Mo) Télécharger le fichier
Origine : Version validée par le jury (STAR)
Loading...

Dates et versions

tel-02881904 , version 1 (26-06-2020)

Identifiants

  • HAL Id : tel-02881904 , version 1

Citer

Florent Chiaroni. Weakly supervised learning for image classification and potentially moving obstacles analysis. Signal and Image processing. Université Paris-Saclay, 2020. English. ⟨NNT : 2020UPASC006⟩. ⟨tel-02881904⟩
226 Consultations
40 Téléchargements

Partager

Gmail Facebook X LinkedIn More