De l’interrelation mathématico-transcendantale à l’interrelation historico-idéelle : Grothendieck et la géométrie métaphilosophique
Auteur / Autrice : | Mohamed Ben Mustapha |
Direction : | Jean-Jacques Szczeciniarz, Franck Jedrzejewski |
Type : | Thèse de doctorat |
Discipline(s) : | Philosophie, épistemologie. Histoire et philosophie des mathématiques |
Date : | Soutenance le 06/11/2020 |
Etablissement(s) : | Université Paris Cité |
Ecole(s) doctorale(s) : | École doctorale Savoir, sciences, éducation (Paris ; 2019-....) |
Partenaire(s) de recherche : | Laboratoire : Laboratoire Sciences philosophie histoire (Paris ; 2009-....) |
Jury : | Président / Présidente : Jean-Michel Salanskis |
Examinateurs / Examinatrices : Jean-Michel Salanskis, Fausto Fraisopi, Athanase Papadopoulos, Tristan Garcia, Malgorzata Grygielewicz | |
Rapporteur / Rapporteuse : Jean-Michel Salanskis |
Résumé
Le telos de ce travail consiste à cloner le problème philosophique du schématisme kantien afin de le transmuter en problème fondateur de la métaphilosophie. Nous proposerons une solution à la question de l’inaccessibilité des Idées dans la Dialectique transcendantale à travers une refonte de l’Esthétique transcendantale. Nous soutenons que la transsubstantiation de l’espace euclido-newtonien de la première Critique en topos de Grothendieck – présentant l’eidétique même de la spatialité – est à même non seulement de revitaliser le néo-kantisme mais surtout de fonder une théorie formelle de la philosophie en tant que telle que nous désignerons par « système d’idééelisme hyperschématique », s’inscrivant métaphilosophiquement dans le projet dianoématique gueroultien d’une philosophie de l’histoire de la philosophie...Autrement dit, nous pratiquons une métaphilosophie des signifiants purs par réduction des signifiés inhérents à la philosophie substantielle. Nous tenterons ainsi un recommencement en tant que commencement non forclos d’une nouvelle métaphysique post-métaphysique où nous levons deux oublis : i) celui de la question de l’être ; ii) celui de l’inéluctable conditionnement mathématique de la philosophie. Dès lors, dans la dialectique entre la philosophie formelle triadique (métaphilosophie – hyperschématisme – philosophia universalis) et la philosophie substantielle dyadique (dialectique de l’immanence et de la transcendance) se dessine une résolution ultime de la question (Ψ) : Qu’est-ce que la philosophie ?