Study of positively metrized line bundles over a non-Archimedean field via holomorphic convexity

par Yanbo Fang

Thèse de doctorat en Mathématiques

Sous la direction de Huayi Chen.

  • Titre traduit

    Etudes de fibrés en droites semipositivement metrisés sur un corps non-archimédien via la convexité holomorphe


  • Résumé

    Ce mémoire de thèse est consacré à l'étude de fibré en droites semipositif en géométrie analytique non-Archimédienne, par un point de vue d'analyse fonctionnelle sur un corps ultramétrique en exploitant la géométrie de la convexité holomorphe. Le premier chapitre recueille quelques préliminaires pour l'algèbre de Banach sur un corps ultramétrique et la géométrie de son spectre au sens de Berkovich, le cadre dans lequel l'étude est effectuée. Le deuxième chapitre présente la construction de base, qui encode la géométrie intervenante dans certaines algèbres de Banach. On associe une algèbre normée de section à un fibré en droites métrisé. On décrit son spectre, en le reliant avec le fibré en disques unités duals de ce fibré en droites muni de la métrique enveloppante. On encode alors la positivité métrique par la convexité holomorphe. Le troisième chapitre consiste en deux approches indépendantes pour le problème d'extension métrique de sections restreintes sur une sous-variété fermée. On obtient une borne supérieure pour la distorsion métrique asymptotique, qui est uniforme par rapport aux choix de sections restreintes. On utilise une propriété particulière aux normes affinoïdes pour obtenir cette inégalité. Le quatrième chapitre traite le problème de la régularité de métrique enveloppante. Avec un nouveau regard venant d'analyse holomorphe à plusieurs variables, on vise à montrer que, quand le fibré en droites est ample, la métrique enveloppante est continue si la métrique de départ l’est. On suggère une méthode tentative reposant sur un analogue non archimédien spéculatif d'un résultat sur la convexité holomorphe due à Cartan et Thullen.


  • Résumé

    This thesis is devoted to the study of semi-positively metrized line bundles in non-Archimedean analytic geometry, with the point of view of functional analysis over an ultra-metric field exploiting the geometry related to holomorphic convexity. The first chapter gathers some preliminaries about Banach algebras over ultra-metric fields and the geometry of their spectrum in the sense of V. Berkovich, which is the framework of our study. The second chapter present the basic construction, which encodes the related geometric information into some Banach algebra. We associate the normed algebra of sections of a metrized line bundle. We describe its spectrum, relating it with the dual unit disc bundle of this line bundle with respect to the envelope metric. We thus encode the metric positivity into the holomorphic convexity of the spectrum. The third chapter consists of two independent for the normed extension problem for restricted sections on a sub-variety. We obtain an upper bound for the asymptotic norm distorsion between the restricted section and the extended one, which is uniform with respect to the choice of restricted sections. We use a particular property of affinoid algebras to obtain this inequality. The fourth chapter treat the problem of regularity of the envelope metric. With a new look from the holomorphic analysis of several variables, we aime at showing that on ample line bundles, the envelop metric is continuous once the original metric is. We suggest a tentative approach based on a speculative analogue of Cartan-Thullen’s result in the non-Archimedean setting.


Il est disponible au sein de la bibliothèque de l'établissement de soutenance.

Consulter en bibliothèque

La version de soutenance existe

Où se trouve cette thèse\u00a0?

  • Bibliothèque : Université Paris Diderot - Paris 7. Service commun de la documentation. Bibliothèque électronique.
Voir dans le Sudoc, catalogue collectif des bibliothèques de l'enseignement supérieur et de la recherche.