Thèse soutenue

Algorithmes distribués et méthodes de modélisation avancées pour une construction rapide et efficace d'objets avec un robot modulaire auto-reconfigurable

FR  |  
EN
Auteur / Autrice : Pierre Thalamy
Direction : Julien BourgeoisBenoît Piranda
Type : Thèse de doctorat
Discipline(s) : Informatique
Date : Soutenance le 09/10/2020
Etablissement(s) : Bourgogne Franche-Comté
Ecole(s) doctorale(s) : École doctorale Sciences pour l'ingénieur et microtechniques (Besançon ; 1991-....)
Partenaire(s) de recherche : Laboratoire : FEMTO-ST : Franche-Comté Electronique Mécanique Thermique et Optique - Sciences et Technologies (Besançon) - Franche-Comté Électronique Mécanique- Thermique et Optique - Sciences et Technologies (UMR 6174) / FEMTO-ST
Site de préparation : Université de Franche-Comté (1971-....)
Jury : Président / Présidente : Nicolas Andreff
Examinateurs / Examinatrices : Julien Bourgeois, Benoît Piranda, Nicolas Andreff, Kasper Stoy, Heiko Hamann, Alcherio Martinoli
Rapporteurs / Rapporteuses : Kasper Stoy, Heiko Hamann

Résumé

FR  |  
EN

Les humains ont de tout temps cherché à contrôler leur environnement. Mais avec l'arrivée de l'ère numérique, une technologie émergente promet de devenir l'outil ultime de cette quête : la matière programmable. Bien que toute forme de matière pouvant être programmée pour réagir de façon autonome à un stimulus puisse prétendre à cette dénomination, son substrat le plus prometteur réside dans les systèmes robotiques modulaires. Ces systèmes robotiques sont composés de modules interconnectés, autonomes, et aux ressources limitées, devant se coordonner par leurs communications et leurs mouvements afin d'accomplir des tâches complexes.La matière programmable pourrait être utilisée pour réaliser les systèmes de représentation de demain: des affichages tangibles et interactifs en 3D, qui promettent de révolutionner la façon dont nous interagissons avec le monde virtuel. Des ensembles de robots modulaires composés de plusieurs milliers de modules peuvent s'organiser pour former des objets tangibles capables de se transformer à l'infini sur demande. D'un point de vue algorithmique, cependant, ce processus d'autoreconfiguration représente un défi considérable à cause des contraintes cinématiques, temporelles, de contrôle, et de communication, auxquelles sont soumis les modules.Nous défendons dans cette thèse qu'il existe des moyens d'accélérer la reconfiguration des systèmes de matière programmable, et qu'une nouvelle classe de méthodes de reconfiguration plus rapide et mieux adaptée aux systèmes de représentation tangibles doit voir le jour. Nous soutenons qu'il est possible de parvenir à de telles méthodes en proposant une nouvelle façon de représenter les objets faits de matière programmable, et en utilisant une plateforme d'assistance dédiée à l'autoreconfiguration.Par conséquent, nous proposons un cadre pour réaliser cette approche innovante sur des ensembles de modules quasi-sphériques arrangés en structures cristallines cubiques à faces centrées, et présentons des algorithmes permettant d'implémenter l'autoreconfiguration dans ce contexte. Nous analysons ces algorithmes et les évaluons sur des cas de construction de formes de complexité croissante, afin de montrer que notre méthode permet d'arriver à des durées de reconfiguration jusqu'ici inatteignables.