Étude de transfert d’énergie par des excitations de surface
Auteur / Autrice : | Sobhi Hamyeh |
Direction : | Pierre-Michel Adam, Rabih Tauk |
Type : | Thèse de doctorat |
Discipline(s) : | Matériaux, Mécanique, Optique et Nanotechnologie |
Date : | Soutenance le 30/09/2020 |
Etablissement(s) : | Troyes en cotutelle avec Université Libanaise |
Ecole(s) doctorale(s) : | École doctorale Sciences pour l'Ingénieur (Troyes, Aube) |
Partenaire(s) de recherche : | Laboratoire : Institut Charles Delaunay / ICD |
Jury : | Président / Présidente : Jihane Jabbour |
Examinateurs / Examinatrices : Pierre-Michel Adam, Rabih Tauk, Jihane Jabbour, Stefan Dilhaire, Maher Soueidan, Yannick De Wilde | |
Rapporteur / Rapporteuse : Stefan Dilhaire, Maher Soueidan |
Mots clés
Résumé
La taille des composants électroniques a récemment été réduite à quelques dizaines de nanomètres. Cette diminution perpétuelle de la taille des composants électroniques modernes et l’augmentation de leurs vitesses et fréquences de fonctionnement conduisent inévitablement à des points chauds, qui sont des dangers entrainant une défaillance du système s’ils sont laissés longtemps. Le premier objectif de cette thèse est d’optimiser des techniques efficaces et pratiques pour évacuer la chaleur des nano-composants électronique. Le deuxième objectif de cette thèse est de présenter des moyens pour contrôler le flux énergétique, afin de répondre à ces besoins scientifiques et industriels. Nous étudions le transport par les phonon-polariton de surface (PhPS), qui sont des ondes électromagnétiques résultant du couplage entre un champ électrique dans le moyen infrarouge et des phonons optiques. Nous étudions également les mécanismes de transport par un gaz d’électrons bidimensionnel (2DEG) confiné dans un puits quantique formé à des hétéro-interfaces. Nous démontrons que l’excitation des modes PhPS dans des couches polaires de quelques nanomètres d’épaisseur déposées sur des semi-conducteurs classiques peut améliorer le flux énergétique d’une manière considérable, et par la suite dissiper la chaleur accumulée dans des nano-composants. Nous démontrons aussi que la contrainte dans la couche d'AlN a un effet très important sur les propriétés de transport du gaz d'électrons bidimensionnel confiné dans le puits quantique AlN/ GaN.