Thèse soutenue

Les défauts dans le silicium : revisiter les modèles théoriques pour guider les calculs ab initio

FR  |  
EN
Auteur / Autrice : Gabriela Herrero Saboya
Direction : Anne HemeryckNicolas Richard
Type : Thèse de doctorat
Discipline(s) : MicroNano Systèmes
Date : Soutenance le 19/11/2020
Etablissement(s) : Toulouse 3
Ecole(s) doctorale(s) : École doctorale Génie électrique, électronique, télécommunications et santé : du système au nanosystème (Toulouse)
Partenaire(s) de recherche : Laboratoire : Laboratoire d'Analyse et d'Architecture des Systèmes (Toulouse ; 1968-....)

Mots clés

FR  |  
EN

Mots clés contrôlés

Résumé

FR  |  
EN

Dans cette thèse, nous décrivons l'effet des défauts localisés sur les propriétés électroniques du silicium. Après 60 ans de production industrielle de dispositifs à base de silicium, on pourrait s'attendre à ce que tous les caractéristiques de ce matériau soient parfaitement comprises, surtout si l'on considère que la fabrication des transistors actuels à l'échelle du nanomètre nécessite une précision quasi atomique. Cependant, en conséquence directe de cette miniaturisation extrême, la création accidentelle d'un seul défaut peut suffire à modifier les propriétés électroniques souhaitées de l'échantillon, devenant ainsi l'un des phénomènes les plus redoutés de l'industrie. Historiquement, l'identification de ces centres a été possible grâce au développement et à l'amélioration des techniques de caractérisation, capables de cibler des propriétés de défaut spécifiques, par exemple, liées à la position des états induits par le centre dans la bande interdite du semi-conducteur (absorption optique infrarouge, spectroscopie DLTS) ou aux distorsions atomiques déclenchées par la forme de la densité électronique localisée (spectroscopie EPR). Une telle quantité de données expérimentales a motivé le développement de modèles simples basés sur la symétrie, reproduisant qualitativement les caractéristiques fondamentales des défauts. Plus récemment l'augmentation exponentielle de la puissance de calcul a fait des calculs ab initio le modèle théorique parfait pour fournir une représentation quantitatif des défauts ponctuels dans les semi-conducteurs. Les simulations numériques à l'échelle atomique dans le silicium, basées sur la théorie de la fonctionnelle de la densité, ciblent cependant généralement des propriétés spécifiques des défauts, ne donnant pas une image théorique complète du système, et négligeant souvent les modèles précédents et les preuves expérimentales. Dans cette thèse, nous apportons une nouvelle vision sur les défauts emblématiques du silicium par la quantification de modèles identifiés de longue date, en établissant un lien explicite avec les techniques de caractérisation. Notre exploration détaillée de la surface d'énergie potentielle du "E-center" du silicium, guidée par un modèle simple de Jahn-Teller, a confirmé la dynamique des défauts observée à différents régimes de température, nous permettant de relier la présence d'un tel défaut ponctuel à un bruit électronique dans les capteurs d'images. De plus, nous étudions l'hypothèse d'une amélioration de l'absorption des photons dans les cellules solaires en silicium dopé au titane en décrivant les effets à plusieurs corps à l'aide de l'approximation GW. De cette manière, on attribue les excitations électroniques chargées aux transitions entre les états du titane, précédemment décrits par un modèle phénoménologique pour les métaux de transition dans le silicium. Nous proposons également une généralisation des toy-models préexistants pour aborder les centres complexes, pour lesquels une controverse notoire au sein de la communauté ab initio existe toujours, montrant explicitement les limites des approches de champ moyen lorsqu'elles ciblent des densités électroniques hautement localisées. Nous concluons par une brève revue critique de la caractérisation théorique de l'activité électronique des défauts, et en particulier de la section efficace de capture des transitions non radiatives.