Thèse soutenue

Métamodélisation à entrées fonctionnelles : une application à des systèmes d'alerte de submersion marine
FR  |  
EN
Accès à la thèse
Auteur / Autrice : José Betancourt
Direction : Thierry KleinFrançois Bachoc
Type : Thèse de doctorat
Discipline(s) : Mathématiques appliquées
Date : Soutenance le 08/06/2020
Etablissement(s) : Toulouse 3
Ecole(s) doctorale(s) : École doctorale Mathématiques, informatique et télécommunications (Toulouse)
Partenaire(s) de recherche : Laboratoire : Institut de mathématiques de Toulouse (2007-....)

Résumé

FR  |  
EN

Les inondations en général affectent plus de personnes que tout autre catastrophe. Au cours de la dernière décennie du 20ème siècle, plus de 1.5 milliard de personnes ont été affectées. Afin d'atténuer l'impact de ce type de catastrophe, un effort scientifique significatif a été consacré à la constitution de codes de simulation numériques pour la gestion des risques. Les codes disponibles permettent désormais de modéliser correctement les événements d'inondation côtière à une résolution assez élevée. Malheureusement, leur utilisation est fortement limitée pour l'alerte précoce, avec une simulation de quelques heures de dynamique maritime prenant plusieurs heures à plusieurs jours de temps de calcul. Cette thèse fait partie du projet ANR RISCOPE, qui vise à remédier cette limitation en construisant des métamodèles pour substituer les codes hydrodynamiques coûteux en temps de calcul. En tant qu'exigence particulière de cette application, le métamodèle doit être capable de traiter des entrées fonctionnelles correspondant à des conditions maritimes variant dans le temps. À cette fin, nous nous sommes concentrés sur les métamodèles de processus Gaussiens, développés à l'origine pour des entrées scalaires, mais maintenant disponibles aussi pour des entrées fonctionnelles. La nature des entrées a donné lieu à un certain nombre de questions sur la bonne façon de les représenter dans le métamodèle: (i) quelles entrées fonctionnelles méritent d'être conservées en tant que prédicteurs, (ii) quelle méthode de réduction de dimension (e.g., B-splines, PCA, PLS) est idéale, (iii) quelle est une dimension de projection appropriée, et (iv) quelle est une distance adéquate pour mesurer les similitudes entre les points d'entrée fonctionnels dans la fonction de covariance. Certaines de ces caractéristiques - appelées ici paramètres structurels - du modèle et d'autres telles que la famille de covariance (e.g., Gaussien, Matérn 5/2) sont souvent arbitrairement choisies a priori. Comme nous l'avons montré à travers des expériences, ces décisions peuvent avoir un fort impact sur la capacité de prédiction du métamodèle. Ainsi, sans perdre de vue notre but de contribuer à l'amélioration de l'alerte précoce des inondations côtières, nous avons entrepris la construction d'une méthodologie efficace pour définir les paramètres structurels du modèle. Comme première solution, nous avons proposé une approche d'exploration basée sur la Méthodologie de Surface de Réponse. Elle a été utilisé efficacement pour configurer le métamodèle requis pour une fonction de test analytique, ainsi que pour une version simplifiée du code étudié dans RISCOPE. Bien que relativement simple, la méthodologie proposée a pu trouver des configurations de métamodèles de capacité de prédiction élevée avec des économies allant jusqu'à 76.7% et 38.7% du temps de calcul utilisé par une approche d'exploration exhaustive dans les deux cas étudiés. [...]