Modèles de diffusion non-conventionnelle en écologie et biologie évolutive impliquant des environnements fragmentés

par Alexis Léculier

Thèse de doctorat en Mathématiques appliquées

Sous la direction de Sepideh Mirrahimi et de Jean-Michel Roquejoffre.


  • Résumé

    Dans cette thèse nous nous intéressons à une étude mathématique qualitative de problèmes issus d’écologie et de biologie évolutive. Nous étudions l’influence d’une dispersion non-locale pour une espèce biologique vivant dans un environnement fragmenté. Plus précisément, dans une première partie, nous établissons un critère de survie pour une espèce biologique dont la dynamique est régie par une équation de Fisher-KPP fractionnaire dans un domaine fragmenté avec des conditions extérieures de Dirichlet. Ce critère repose sur le signe de la valeur propre principale de sous-ensembles inclus dans le domaine. De plus, nous démontrons un résultat d’existence et d’unicité de la solution stationnaire d’une équation de Fisher-KPP dans des domaines fragmentés généraux appartenant à la classe des solutions positives, bornées et non-triviales. Dans le cas particulier d’un domaine périodique et fragmenté, nous établissons l’existence d’un phénomène d’invasion à vitesse exponentielle. Enfin, dans une seconde partie, nous considérons un modèle traitant d’une espèce biologique organisée phénotypiquement vivant dans un environnement fragmenté. Cette espèce est sujette à des mutations à petits effets phénotypiques ainsi qu’à une dispersion spatiale à la fois locale et non-locale. Nous démontrons l’émergence de traits phénotypiques dominants lorsque les mutations ont de petits effets.

  • Titre traduit

    Unconventional diffusion models in ecology and evolutionary biology involving fragmented environments


  • Résumé

    In this thesis, we are interested in a qualitative mathematical study of problems from ecology and evolutionary biology. We study the influence of a non-local dispersion for a biological species living in a patchy environment. More precisely, we first establish a criterion whose ensures the survival of a biological species which dynamics are driven by a fractional Fisher-KPP equation in a fragmented domain with Dirichlet exterior conditions. This criterion relies on the sign of the principal eigenvalue of subsets included in the fragmented domain. Moreover, we demonstrate an existence and uniqueness result of the stationary state of a Fisher-KPP equation in general patchy domains belonging to the class of non-negative, bounded and non-trivial solutions. In the particular case of a periodic and patchy domain, we establish the existence of invasion phenomena with exponential speed. Finally, we consider a model dealing with a phenotypically structured biological species living in a patchy environment. This species is subject to small mutations of the phenotype and to local and non-local spatial dispersion. We demonstrate the emergence of phenotypical dominant traits as the mutations become small.


Il est disponible au sein de la bibliothèque de l'établissement de soutenance.

Autre version

Cette thèse a donné lieu à une publication en 2020 par Université Toulouse 3 à Toulouse

Modèles de diffusion non-conventionnelle en écologie et biologie évolutive impliquant des environnements fragmentés


Consulter en bibliothèque

La version de soutenance existe

Où se trouve cette thèse\u00a0?

  • Bibliothèque : Université Paul Sabatier. Bibliothèque électronique.
Voir dans le Sudoc, catalogue collectif des bibliothèques de l'enseignement supérieur et de la recherche.

Consulter en bibliothèque

Cette thèse a donné lieu à une publication en 2020 par Université Toulouse 3 à Toulouse

Informations

  • Sous le titre : Modèles de diffusion non-conventionnelle en écologie et biologie évolutive impliquant des environnements fragmentés
  • Détails : 1 vol. (157 p.)
La version de soutenance de cette thèse existe aussi sous forme papier.

Où se trouve cette thèse\u00a0?

Voir dans le Sudoc, catalogue collectif des bibliothèques de l'enseignement supérieur et de la recherche.