Space Charge Doped p-n Junction : 2D Diode with Few-layer Indium Selenide - TEL - Thèses en ligne Accéder directement au contenu
Thèse Année : 2020

Space Charge Doped p-n Junction : 2D Diode with Few-layer Indium Selenide

Jonction p-n dopé par charge d'espace : diode 2D à partir de quelques couches de Séléniure d'Indium

Résumé

This work combines the singular properties of 2D materials with an innovative technique used for changing the electronic properties of ultra-thin films to propose a new technology for making the simplest bipolar electronic device, the diode. Firstly we identify semiconducting materials which can be fabricated in ultra-thin layers. Secondly, we use a proprietary technique called Space Charge Doping developed in our group for doping the material, either n or p. Finally, we obtain diode characteristics from the device. The manuscript begins with a review of different materials and properties. In the family of 2D materials, our choice was a III-VI layered semiconductor with a direct bandgap: InSe. We also chose a completely different kind of material, polycrystalline CdO, which is neither layered nor has a direct bandgap but is easy to fabricate in the ultra-thin film form and has high carrier mobility. After preliminary experiments, we chose InSe and fabricated devices of ultra-thin, few atomic layer InSe thin films. We chose to develop in parallel two different geometries for the p-n junction diode. We were able to obtain rectifying behavior for each geometry implying that our space charge doping approach was successful in producing microscopically, spatially differentiated doping in each device. We discuss the obtained I-V characteristics and the inherent limitations of the devices (local heating, hysteresis) and suggest improvements for future experiments and ways of obtaining more efficient and stable functioning and geometry as part of the perspectives of this thesis.
Ce travail allie les propriétés singulières des matériaux 2D à une technique innovante utilisée pour modifier les propriétés électroniques des films ultra-minces pour proposer une nouvelle technologie permettant de réaliser le dispositif électronique le plus simple, la diode. Tout d'abord, nous identifions les matériaux semi-conducteurs pouvant être fabriqué en couches ultra-minces. Deuxièmement, nous utilisons une technique appelée dopage par charge d'espace développée dans notre groupe pour le dopage n ou p des matériaux. Enfin, nous obtenons les caractéristiques de diode des dispositifs. Le manuscrit commence par une revue des matériaux. Dans la famille des matériaux 2D, notre choix s'est porté sur un semi-conducteur en couches III-VI avec une bande interdite directe : InSe. Nous avons aussi choisi un type de matériau très différent, le CdO polycristallin qui n'est pas lamellaire et n'a pas une bande interdite directe, mais qui est facile à fabriquer sous forme de film ultra-mince avec une grande mobilité de porteurs. Après des expériences préliminaires, nous avons choisi InSe et fabriqué des dispositifs de films ultra minces de InSe. Nous avons développé en parallèle deux géométries pour la diode p-n. Nous avons pu obtenir un redressement pour chaque géométrie, ce qui implique que notre approche de dopage par charge d'espace a réussi à produire un dopage différencié spatialement dans chaque dispositif. Nous discutons des caractéristiques I-V obtenues et les limitations inhérentes aux dispositifs (chauffage local, hystérèses) et suggérons des améliorations afin d'obtenir un fonctionnement plus efficace et stable dans le cadre des perspectives de cette thèse.
Fichier principal
Vignette du fichier
WU_Wenyi_2020.pdf (1.6 Mo) Télécharger le fichier
Origine : Version validée par le jury (STAR)

Dates et versions

tel-03719568 , version 1 (11-07-2022)

Identifiants

  • HAL Id : tel-03719568 , version 1

Citer

Wenyi Wu. Space Charge Doped p-n Junction : 2D Diode with Few-layer Indium Selenide. Other. Sorbonne Université, 2020. English. ⟨NNT : 2020SORUS449⟩. ⟨tel-03719568⟩
80 Consultations
129 Téléchargements

Partager

Gmail Facebook X LinkedIn More