Optimisation de formes et hétérogénéité spatiale dans les équations de réaction-diffusion
Auteur / Autrice : | Idriss Mazari |
Direction : | Yannick Privat |
Type : | Thèse de doctorat |
Discipline(s) : | Mathématiques |
Date : | Soutenance le 06/07/2020 |
Etablissement(s) : | Sorbonne université |
Ecole(s) doctorale(s) : | École doctorale Sciences mathématiques de Paris centre (Paris ; 2000-....) |
Partenaire(s) de recherche : | Laboratoire : Laboratoire Jacques-Louis Lions (Paris ; 1997-....) |
Jury : | Président / Présidente : Jimmy Lamboley |
Examinateurs / Examinatrices : Benoît Perthame, Grégoire Nadin, Lorenzo Brasco, Elisa Davoli | |
Rapporteur / Rapporteuse : François Hamel, Aldo Pratelli |
Résumé
Cette thèse est dédiée à l'étude de problèmes d'optimisation de forme et de contrôle qui apparaissent naturellement en écologie spatiale. Considérant une population dont la densité dépend d'un terme de ressource à travers l'équation aux dérivées partielles de Fisher-KPP hétérogène en espace, on cherche à déterminer une répartition de ressources garantissant sa survie ou optimisant la taille de la population. Dans cette perspective, plusieurs approches reposant sur l'introduction et l'analyse de problèmes d'optimisation de forme et de contrôle mettant en jeu la solution de cette EDP et/ou une quantité spectrale dépendant du terme de ressource sont envisagés. L'analyse de ces problèmes nécessite : - le développement de méthodes asymptotiques pour étudier l'existence et certaines propriétés qualitatives (concentration et fragmentation des ressources) de formes optimales, ou encore la stabilité de certaines configurations de ressources ; - l'établissement d'une inégalité spectrale quantitative pour un opérateur de Schrödinger dans la boule ; - l'introduction d'une méthode perturbative pour étudier la contrôlabilité des équations de réaction-diffusion en milieu hétérogène.