Structuration en 3D de phases cristal-liquides pour la formation biomimétique de tissus osseux
Auteur / Autrice : | Elora Bessot |
Direction : | Nadine Nassif |
Type : | Thèse de doctorat |
Discipline(s) : | Chimie des matériaux |
Date : | Soutenance le 15/12/2020 |
Etablissement(s) : | Sorbonne université |
Ecole(s) doctorale(s) : | École doctorale Physique et chimie des matériaux (Paris ; 2000-....) |
Partenaire(s) de recherche : | Laboratoire : Chimie de la matière condensée de Paris (1997-....) |
Jury : | Président / Présidente : Laurent Bouteiller |
Examinateurs / Examinatrices : Peter Fratzl, Ali Abou-Hassan, Marie-Christine Durrieu | |
Rapporteurs / Rapporteuses : Jérôme Chevalier, Catherine Guedes-Moali |
Mots clés
Résumé
L’os est un matériau hybride qui associe une trame organique dense et organisée de fibrilles de collagène et un réseau minéral d’hydroxyapatite. La formation de ce matériau hiérarchisé a été souvent étudié biologiquement. Comment l'étudier d’un point de vue physico-chimique et ainsi pouvoir reproduire l’organisation à l’échelle suprafibrillaire ? Nous proposons d’identifier ces paramètres en appliquant in vitro des contraintes aux mésophases du collagène afin de contrôler l’arrangement spatial 3D des domaines orientés. Des chambres microfluidiques mimant l’os compact et des procédés d’émulsion mimant l’interaction os spongieux-moelle osseuse ont été utilisés. Ces modèles ont permis de mettre en évidence l’implication, notamment, du confinement, du flux en collagène et de la géométrie du réseau dans l’organisation fibrillaire résultante. Les techniques de microscopies révèlent que ces organisations biologiques sont issues de la texturisation des mésophases du collagène à l’échelle macroscopique grâce à l’observation de défauts inhérents à la géométrie des tissus. Cette étude ouvre des perspectives dans la compréhension des mécanismes physico-chimiques et l’organisation des domaines anisotropes in vivo intervenant dans la morphogénèse et la biominéralisation. Elle ouvre des perspectives pour l’ingénierie tissulaire afin de réparer de larges défauts et favoriser l’ostéoinduction.