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Résumé

L’essor récent des nouvelles technologies, comme la Communication par Champ Proche
(NFC), a permis l’apparition de nombreuses applications. Á titre d’exemples, nous pou-
vons mentionner les cartes d’accès de bâtiment, les clefs mains libres pour véhicules,
ou encore les cartes de paiement sans contact. En 2019, les transactions sans contact
représentaient près de la moitié des transactions effectuées en face-à-face 1. En raison de
la récente crise sanitaire du COVID-19, Mastercard a observé une adhésion accélérée à
ce nouveau mode de paiement permettant de limiter les risques de contaminations 2 et
cela devrait perdurer les années suivantes.

En raison du caractère personnel des données échangées lors des transactions, as-
surer la sécurité des paiements sans contact apparait d’une grande importance. Cela
parait d’autant plus nécessaire que le caractère "sans contact" des communications of-
fre une surface d’attaque d’autant plus grande comparée aux paiements avec contact,
i.e. requérant l’insertion de la carte dans le terminal de paiement. En effet, au-delà de
l’absence de code PIN à utiliser, un attaquant a la possibilité d’intercepter facilement
les messages échangés. Un scénario d’attaque spécifique au caractère sans contact des
transactions est alors l’attaque par relai (présenté en Figure 1) : un attaquant relaie, au
travers d’un réseau de communication extrêmement rapide (e.g. le Wi-Fi), les messages
échangés entre un terminal de paiement et une carte, située possiblement à plusieurs
dizaines de mètres. Bien que la technologie NFC ne permette l’échange de messages que
sur une courte distance, de tels scénarios ont été démontrés faisables en pratique dans
le cadre des paiements sans contacts [Han05, FHMM10, SC13, CGdR+15]. Ils permet-
traient donc à des personnes malhonnêtes d’abuser de personnes honnêtes pour effectuer
des paiements à leur place.

Afin de prévenir de telles attaques, des protocoles délimiteurs de distance ont été pro-
posés ; ces derniers ayant pour objectif d’assurer la proximité physique entre le terminal
de paiement et la carte au cours de la transaction. Dans ce manuscrit, nous proposerons
différentes approches permettant d’établir des preuves formelles de sécurité pour ces pro-
tocoles. De plus, nous nous attacherons à rendre ces preuves automatiques par le biais
de procédures et d’outils, afin de permettre l’analyse de nombreux protocoles.

1https://usa.visa.com/visa-everywhere/blog/bdp/2019/05/13/tap-to-pay-1557714409720.html
2https://mastercardcontentexchange.com/newsroom/press-releases/2020/april/mastercard-
study-shows-consumers-globally-make-the-move-to-contactless-payments-for-everyday-
purchases-seeking-touch-free-payment-experiences/
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Figure 1: Attaque par relai contre un protocole de paiement sans contact.

Les protocoles délimiteurs de distance
Le premier protocole délimiteur de distance a été proposé par Brands and Chaum en

1993 [BC93]. Depuis, de nombreux protocoles ont été proposés (plus de 40 entre 2005 et
aujourd’hui), mais ce n’est qu’en 2016 qu’un tel protocole est apparu dans la spécification
officielle pour les paiements sans contact [EMV16].

Afin de pouvoir analyser ces protocoles dans la suite de ce manuscrit, il est important
de noter qu’ils partagent tous une structure commune. En effet, comme présenté en
Figure 2, nous pouvons distinguer trois phases : une première phase permet l’initialisation
du protocole en échangeant des données propres à chaque session. Le cœur du protocole
peut ensuite avoir lieu : le vérifieur (e.g. le terminal de paiement) génère des challenges
qu’il envoie au prouveur (e.g. la carte) qui doit alors y répondre. Cet échange doit être
effectué aussi vite que possible car le temps écoulé sera utilisé pour estimer la distance
mutuelle des agents. En notant tout la date d’émission du challenge, tin la date de
réception de la réponse, tproc le temps de calcul requis par la carte, et c0 la vitesse
de communication des messages, nous pouvons dériver la formule suivante estimant la
distance :

Dist(V érifieur, Prouveur)  c0
2

⇥ (tin � tout � tproc).

Enfin, le protocole se termine par une phase de vérification durant laquelle le vérifieur
peut estimer la distance du prouveur grâce à la formule précédente, ainsi qu’échanger des
messages avec ce dernier pour, par exemple, assurer son authentification. Aucun temps
n’est mesuré durant la première et la troisième phase.

Scénarios d’attaque

Afin d’analyser la sécurité des protocoles délimiteurs de distance, il est important de
préciser la propriété de sécurité souhaitée. En effet, le scénario d’attaque par relai, bien
que le plus simple à mettre en place, n’est pas le seul que doit prévenir ces protocoles.
Par exemple, ils doivent également prévenir une personne malhonnête de s’authentifier
auprès d’un vérifier, si ces deux deux sont distants.

La littérature distingue habituellement quatre scénarios d’attaques :

• Distance fraud : un prouveur malhonnête essaie de s’authentifier auprès d’un véri-
fieur honnête éloigné (voir Figure 3a).
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Vérifieur Prouveur

Phase d’initialisation

ci

ri

Phase rapide � pour i = 1 à n

Phase de vérification

Figure 2: Structure usuelle d’un protocole délimiteur de distance.

• Distance hijacking : un prouveur malhonnête essaie de s’authentifier auprès d’un
vérifieur honnête éloigné en abusant, possiblement, un agent honnête proche du
vérifieur (voir Figure 3b).

• Mafia fraud (or MiM) : un attaquant situé entre un vérifieur et un prouveur, tous
les deux honnêtes mais éloignés, essaie de faire authentifier le prouveur auprès du
vérifieur (voir Figure 3c).

• Terrorist fraud : un prouveur malhonnête essaie de s’authentifier auprès d’un véri-
fieur honnête éloigné. Dans ce but, il accepte de conspirer avec d’autres attaquants,
sans pour autant leur fournir une aide les permettant de mener à bien de futures
attaques (voir Figure 3d).

À ce stade, il est important de noter que les scénarios sus cités ne fournissent que des
exemples relativement simplistes d’attaques. Pourquoi considérer un unique attaquant
dans une mafia fraud ? Pourquoi ne considérer qu’un unique agent honnête dans la
proximité du vérifier dans le cas d’une distance hijacking ? Afin de prouver la sécurité
des protocoles délimiteurs de distance, il est donc important de considérer ces scénarios
comme des exemples permettant de dériver différentes classes d’attaque ; ces dernières
contenant des scénarios mettant en jeu chacun un nombre arbitraire d’agents.
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(a) Distance fraud (b) Distance hijacking

(c) Mafia fraud (d) Terrorist fraud

Figure 3: Les quatres scénarios d’attaques communément définis dans la littérature.

Analyses de sécurité

De nombreux travaux ont été proposés pour analyser la sécurité des protocoles délim-
iteurs de distance. Originellement, ces analyses avaient pour seul objectif de prouver la
résistance du protocole contre des scénarios d’attaque très précis. Par exemple, en consid-
érant un attaquant qui anticipe l’envoie des réponses durant la phase rapide en essayant
de deviner la valeur des challenges. Ou encore, un attaquant commençant par jouer une
phase rapide avec un agent arbitraire afin d’essayer d’en tirer profit pour mener à bien
une attaque par la suite. Toutes ces analyses, bien que fournissant un premier gage de
sécurité, ne procurent qu’une confiance limitée en la sécurité du protocole en raison de
la spécificité des attaques qu’elles considèrent.

Plus récemment, des preuves de sécurité plus complètes ont été proposées dans des
modèles calculatoires [DFKO11, ABK+11] ; ces preuves permettant d’obtenir une forte
confiance en la sécurité des protocoles. En effet, ces modèles représentent très précisément
les différentes entités mises en jeu au cours du protocole : les messages sont représentés
par des chaines de bits, les différents rôles par des algorithmes, et les attaquants par des
machines de Turing probabilistes s’exécutant en temps polynomial. Cette modélisation
permet donc de considérer des scénarios d’attaque arbitraires (nombre d’agents, posi-
tions...), et d’obtenir des preuves de confiance. Une étude de cas comprenant près de
vingt protocoles a récemment été menée suivant cette approche. [ABB+18].

Malheureusement, la principale limitation de cette approche est l’expertise requise
pour analyser chaque protocole. En effet, chacune des analyses requiert une preuve
rédigée "à la main" et pouvant receler de nombreuses subtilités. Cette limitation semblant
inhérente à tout modèle calculatoire, nous développerons dans ce manuscrit différentes
approches basées sur des modèles symboliques, et permettant une analyse automatique
des différents protocoles délimiteurs de distance.
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Vérification symbolique de protocoles
La vérification symbolique de protocoles est une technique usuelle pour analyser la

sécurité des protocoles cryptographiques. En effet, sous l’hypothèse de quelques abstrac-
tions, cela permet l’utilisation de procédures automatiques de vérification.

Tout d’abord, la vérification symbolique de protocole attrait à la recherche d’attaques
logiques ; ces attaques se basant uniquement sur la structure du protocole et des messages
échangés. Les primitives cryptographiques, comme les chiffrements ou signatures, sont
supposées parfaites, incassables. L’attaquant ne peut donc, par exemple, pas extraire
d’information d’un chiffré dont il ne connait pas la clé de déchiffrement. Contrairement
aux modèles calculatoires, les messages peuvent donc être abstraits par des termes, i.e.
des symboles de fonctions appliqués à des termes atomiques. La deuxième abstraction
des modèles symboliques porte sur l’attaquant. En effet, ces derniers modélisent un
attaquant de type Dolev-Yao [DY83] qui est supposé omniscient et omniprésent. Il peut
donc intercepter, créer, et envoyer des messages à tout moment et à tout agent impliqué
dans le protocole.

Même si la vérification automatique de protocoles reste un problème difficile, indécid-
able pour des classes de protocoles intéressantes [MSDL99], des procédures et des outils,
comme Proverif [Bla01] ou Tamarin [MSCB13], ont été développés pour tenter de ré-
soudre ce problème. Bien que ces outils soient imparfaits (le problème est indécidable, ils
peuvent donc ne pas terminer), ils ont prouvé leur efficacité pour analyser des protocoles
de la vie réelle. Ils ont par exemple permis d’établir des preuves de sécurité pour le pro-
tocole TLS 1.3 Draft 18 [BBK17] ou le protocole de vote électronique Belenios [CGG19].
Ils ont également permis de détecter des vulnérabilités dans le protocole Single-Sign-On
utilisé, par exemple, par Google Apps [ACC+08].

Application aux protocoles délimiteurs de distance

En essayant d’utiliser les outils existants pour analyser les protocoles délimiteurs de
distance, nous pouvons immédiatement nous rendre compte que le modèle d’attaquant
qu’ils implémentent, i.e. omniscient et omniprésent, est trop fort. En effet, un tel
attaquant est capable de transmettre instantanément un message entre deux agents.
Il est donc impossible de modéliser précisément le temps, donnée pourtant cruciale lors
de la phase rapide d’un protocole délimiteur de distance.

Afin de dépasser cette limitation, quelques travaux ont été menés. Les deux premiers,
proposés par Meadows et al. en 2007 [MPP+07] et par Basin et al. en 2011 [BCSS11],
proposent deux modèles symboliques représentant de manière fidèle le temps ainsi que les
positions des agents dans l’espace. Pour ce faire, ces deux modèles imposent une restric-
tion physique simple : suffisamment de temps doit s’être écoulé entre l’envoi et la récep-
tion d’un message afin que ce dernier ait eu le temps d’atteindre sa destination. Cette
restriction est appliquée aux messages émis par des agents honnêtes, mais également
aux attaquants. Bien que ces modèles soient une première approche pour la vérification
des protocoles délimiteur de distance, ils ne permettent pas une vérification automatique.
Des preuves manuelles (ou assistées par l’outils de preuve Isabelle/HOL [NPW02]) restent
nécessaires.
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Une nouvelle approche a récemment été proposée par Chothia et al. [CGdR+15] et
permet une analyse automatique des protocoles délimiteurs de distance. Cette dernière
consiste à encoder les topologies, i.e. les positions relatives des agents dans l’espace, dans
l’outils existant de vérification automatique Proverif. Cet encodage se servant astucieuse-
ment de la notion de phase que cet outil implémente. Malheureusement seules quelques
topologies relativement simples (i.e. au plus deux positions différentes) peuvent être en-
codées. Les preuves de sécurité obtenues ont donc une portée limitée. Cette approche,
bien que incomplète, sera la base de l’une des contribution présentée dans ce manuscrit.

Finalement, en parallèle des travaux présentés dans ce manuscrit, des résultats simi-
laires ont été proposés par Mauw et al. [MSTPTR18, MSTPTR19]. Ces travaux étendent
le modèle proposé par Basin et al. [BCSS11] de manière à permettre une vérification au-
tomatique des protocoles délimiteurs de distance. Tout au long de ce manuscrit nous
porterons donc une attention particulière à la comparaison entre les résultats présentés
et ceux introduits par ces derniers.

Contributions
Dans ce manuscrit, nous présenterons diverses approches permettant une analyse

automatique des protocoles délimiteurs de distance. Pour ce faire, nous commencerons
par développer un modèle symbolique permettant de représenter préciser les notions de
temps et position dans l’espace. Ensuite, nous proposerons deux approches : une première
considérant un nombre borné de sessions, et une seconde permettant une analyse dans
un contexte non borné. L’ensemble des résultats théoriques présentés au cours de ce
manuscrit, seront également implémentés et permettront l’analyse de sécurité d’un large
nombre de protocoles. Au cours de ces analyses, nous porterons un intérêt particulier
aux protocoles de paiement sans contact, et en particulier à deux nouveaux récemment
proposés par Chothia et al. [CBC19] devant assurer la proximité physique des agents et
ce, même dans des scénarios où le terminal de paiement est entièrement contrôlé par un
agent malhonnête.

1. Un modèle symbolique avec temps et positions dans l’espace

Au cours de ce manuscrit, nous développerons un modèle symbolique permettant
l’analyse des protocoles délimiteurs de distance. Ce modèle, basé sur le Pi-calcul ap-
pliqué [AF01], modélisera de manière fidèle le temps et les positions des agents au cours
de l’exécution du protocole. Pour ce faire, les communications seront soumises à la con-
trainte physique précédemment citée, i.e. un message ne peut être reçu par un agent que
si suffisamment de temps s’est écoulé depuis son émission afin qu’il puisse atteindre sa
destination. Cette contrainte concernera évidemment les communications entre agents
honnêtes, mais également celles impliquant des malhonnêtes. Dans le Chapitre 6 de ce
manuscrit, nous étendrons ce modèle de communication afin de modéliser le caractère
mobile des agents, i.e. la position d’un agent peut évoluer au cours d’une exécution
du protocole. Cette extension permettra d’établir, pour la première fois, des preuves
de sécurité pour des protocoles délimiteurs de distance prenant en compte le caractère
mobile des participants.
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Une fois le modèle de communication présenté, nous proposerons trois propriétés de
sécurité qu’un protocole délimiteur de distance doit satisfaire : mafia fraud résistance,
distance hijacking résistance, et terrorist fraud résistance. Chacune d’elles propose une
définition formelle des différentes classes d’attaques présentées en Figure 3. Nous pouvons
noter que nous ne ferons pas de distinction entre distance fraud et distance hijacking.
En effet, nos définitions considérant un nombre arbitraire d’agents, tous situés à des po-
sitions arbitraires, la distance fraud n’apparait que comme un cas particulier de distance
hijacking. Concernant la mafia fraud résistance, nous étendrons cette dernière dans le
cadre des protocoles de paiement sans contact (voir Chapitre 6) afin de prouver la sécurité
des protocoles dans le cadre de terminaux de paiement malicieux.

2. Vérification pour un nombre borné de sessions

Le première approche développée dans ce manuscrit consistera en une nouvelle procé-
dure de vérification permettant l’analyse des protocoles délimiteurs de distance dans le
cadre d’un nombre borné de sessions. Cette procédure étend celle déjà existante et
implémentée dans l’outil Akiss [CCCK16]. Si cette dernière a été initialement dévelop-
pée pour vérifier des propriétés d’équivalence, nous l’adapterons pour des propriétés
d’atteignabilité, comme le sont distance hijacking, mafia, et terrorist fraud résistance.

Nous établirons formellement sa correction et sa complétude. Si la correction de la
procédure originelle permettra de déduire aisément celle de la nouvelle, la complétude sera
plus complexe à établir. En effet, la contrainte physique imposée aux communications
rendront incomplètes certaines optimisations présentées dans la procédure originelle. Ces
dernières étant cruciales pour la terminaison, et donc l’utilisation en pratique, de la
procédure, nous développerons des solutions théoriques afin de palier à cette limitation.

Finalement, cette nouvelle procédure sera appliquée dans le but d’analyser divers
protocoles délimiteurs de distance. Nous présenterons et détaillerons donc différents
aspects liés à son implémentations, avant de présenter l’étude de cas qui aura été menée.

3. Vérification pour un nombre non borné de sessions

Concernant la l’analyse des protocoles délimiteurs de distance dans le contexte d’un
nombre non borné de sessions, nous développerons, dans ce manuscrit, deux approches
différentes : la première établissant des résultats de réduction, la second étendant, dans
un modèle plus riche, un résultat de causalité obtenu par Mauw et al. [MSTPTR18].
Ces deux approches permettant l’utilisation d’outils existants comme Proverif [Bla01] ou
Tamarin [MSCB13].

Résultats de réduction
Cette première approche consiste à simplifier les analyses grâce à différents résultats

de réductions. Tout d’abord, nous prouverons qu’il n’est pas nécessaire de considérer un
nombre infini de topologies pour chaque classe d’attaque, comment mentionné précédem-
ment. En effet, pour chacune d’elles, nous montrerons qu’il existe une unique topologie
permettant de capturer l’ensemble des attaques existantes. Ces dernières, présentées en
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Figure 4 3, ne mettant en jeu que (au plus) quatre agents à des position pré-définies.
Ensuite, concernant la terrorist fraud resistance, nous montrerons que, sous certaines
hypothèses, il existe une stratégie de conspiration optimale pour mener à bien une telle
attaque. L’analyse de sécurité pourra donc se focaliser sur cette unique stratégie.

L’ensemble de ces résultats de réduction permettra de mener à bien une large étude de
cas de plus de 25 protocoles. En effet, les topologies réduites pourront être encodées dans
un outil de vérification automatique existant, Proverif, au travers de la notion de phase
proposée par cet outil. Cet encodage sera inspiré de [CGdR+15] mais, dans une volonté
de rigueur, nous prouverons formellement la correction de ce dernier. Finalement, les
résultats obtenus permettront de confirmer des résultats déjà connus, mais aussi d’établir
de nouvelles preuves de sécurité. Ils permettront également de détecter des vulnérabilités
encore inconnues.

agent malhonnête
agent honnête

v0 p0

i1 i2

t0
v0

e0

p0
t0

Figure 4: Topologies réduites où t0 représente le seuil de proximité acceptée (gauche : topologie pour
mafia fraud et terrorist fraud resistance, droite : topologie pour distance hiacking reistance).

Résultat de causalité
Comme nous le verrons au cours de ce manuscrit, la première approche, basée sur

les résultats de réduction, ne permettra pas l’analyse des deux nouveaux protocoles de
paiement sans contact récemment proposés par Chothia et al. [CBC19]. En effet, le mod-
èle sous-jacent se révèlera trop restrictif ; tout comme l’ensemble des résultats existants
dans la littérature.

Afin de dépasser cette limitation, nous étendrons le modèle symbolique précédemment
introduit : nous permettrons l’échange de messages horodatés et étendrons la définition
de mafia fraud résistance dans le cadre de vérifieurs malhonnêtes. Nous étendrons ensuite
le résultat de causalité obtenu par Mauw et al. [MSTPTR18] à ce nouveau modèle. Ce
résultat établit une équivalence entre la propriété de sécurité souhaitée pour les protocoles
délimiteurs de distance (et donc exprimée dans un modèle avec temps et positions) et
une propriété seulement basée sur l’ordre des actions exécutées au cours du protocole (et
donc pouvant être exprimée dans une modèle sans temps et positions).

Cette nouvelle propriété, faisant abstraction du temps et des positions des agents,
pourra alors être vérifiée par l’intermédiaire d’outils de vérification automatique exis-
tants comme Proverif [Bla01] ou Tamarin [MSCB13]. Cela nous permettra de présenter
la première preuve formelle de sécurité pour ces deux nouveau protocoles.

L’ensemble des contributions présentées au cours de ce manuscrit ont été publiées
dans des conférences internationales du domaine [DDW18, DD19, DDW19, BCDD20].
3Suivant les définitions présentées en Chapitre 2, nous obtiendrons la même topologie réduite pour mafia
fraud et terrorist fraud resistance.
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Introduction 1
Companies continuously look for new features that may improve the user experi-

ence for their customers. The development of contactless technologies like Wi-Fi, Radio
Frequency Identification (RFID) or Near Field Communication (NFC) since the begin-
ning of the 21st century has led to the birth of many innovations that are now used
every day. A non-exhaustive list of such innovations includes e-passports, keyless entry
systems, in-store self-checkout, transport-ticketing, tap-to-pay transactions... and many
other applications. This list should keep growing in the next years thanks to the recent
introduction of NFC chips in cars, smartphones and watches which provides even larger
areas for innovations.

Looking at tap-to-pay transactions only, recent reports said that the global contactless
market size was valued at USD 1.06 trillion in 2019 1. According to Visa, nearly half
of all face-to-face Visa transactions around the world (excluding the USA) occur with a
tap, i.e. contactlessly 2. When considering Europe only, this rate grows up to two-thirds
and is expected to keep on increasing in the next years. Recently, due to the COVID-19
crisis, Mastercard reported a 40% growth in contactless transactions worldwide in the
first quarter of 2020 3.

This quick adoption by sellers and customers is explained by the convenience and
efficiency it brings. Typing a PIN code is fastidious, requires to remember it, and takes
more time than a simple tap. With the tap-to-pay feature, transactions become easier and
quicker. Moreover, the rise of tap-to-pay compatible checkout terminal enables people
to get rid of their usual credit/debit card and wallet to solely use their smart watch or
smartphone (which include an NFC interface today) for everyday purchases.

However, all these advantages for contactless technologies should not conceal new
threats that are coming up. An important security concern of all these applications
is to ensure the physical proximity of the tag and the reader. Indeed, a malicious
person should not be able to abuse a remote and honest person to pay a bill on his
behalf. While contact-based devices prevent such a scenario "by design", it becomes
possible with contactless ones. Indeed, practical attacks have demonstrated that the
1https://www.grandviewresearch.com/industry-analysis/contactless-payments-market
2https://usa.visa.com/visa-everywhere/blog/bdp/2019/05/13/tap-to-pay-1557714409720.html
3https://mastercardcontentexchange.com/newsroom/press-releases/2020/april/mastercard-
study-shows-consumers-globally-make-the-move-to-contactless-payments-for-everyday-
purchases-seeking-touch-free-payment-experiences/

1
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short range of the High Frequencies used by e.g. RFID of NFC tags are not sufficient
to enforce physical proximity of the reader and the card involved in a transaction. They
have been shown to be practical many times against keyless entry systems embedded
in recent cars [FDC11] and any NFC/RFID card compliant with the ISO/IEC 14443
standard [Han05, FHMM10, SC13]. When looking at tap-to-pay transactions, practical
attacks have been conducted too [CGdR+15]. On our side, we managed to perform quite
easily such an attack against Mastercard and Visa credit cards controlling two "mali-
cious" smartphones only. Messages were intercepted using an Android app relying on
the NFC chip onboard the smartphones and relayed through Wi-Fi. Thanks to this sim-
ple setting, we were able to do payments with a gap of several meters between the card
and the reader.

All of these attacks consist in man-in-the-middle (MiM) scenarios as described in
Figure 1.1. An attacker controls two malicious devices: a rogue reader and a rogue
tag. He then relays, via a very fast channel of communication (e.g. the Wi-Fi), all the
messages sent by the two honest parties, i.e. the honest card and the honest terminal.
Even though the two devices are distant, the reader authenticates the tag at the end of the
attack. This kind of scenarios is also known as the Chess Grandmaster problem [Con76]
in which a little girl defeats a chess grandmaster by playing two simultaneous games,
each against a chess grandmaster, and replaying moves performed on a board to the
other one. Note that, when looking at these attacks, the attacker may be simply relay
messages, or be more active, e.g. making some computations to forge new messages. The
contactless applications are thus subject to simple relay attacks, but also, more advanced
distance-based frauds.

Figure 1.1: Relay attack scenario against payment protocols.

1.1. Distance-bounding protocols
In order to mitigate such attacks (and others), some security protocols, called distance-

bounding protocols, have been designed. As usual, they rely on cryptographic primitives
(e.g. encryption, signature, hash function) to ensure standard properties. When look-
ing at the payment application, these properties are at least the confidentiality and the
integrity of the data, and the mutual authentication of the card and the reader. In ad-
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dition, distance-bounding protocols pretend to enforce the physical proximity of the two
devices, i.e. whenever a reader authenticates a card, then both must be close. Since the
card must prove its proximity to the reader, these two parties are respectively named a
prover and a verifier.

1.1.1. A common design

In 1993, Brands and Chaum [BC93] proposed the first distance-bounding proto-
col. Since then, some surveys [BGL15, ABB+18] reported that more than 40 distance-
bounding protocols have been proposed with few specificities each. However, we notewor-
thy observe that they all follow the same structure, presented in Figure 1.2. A distance-
bounding protocol commonly starts by an initialisation phase in which the prover and the
verifier exchange data to prepare the rapid phase that follows. To estimate its distance
to the prover, the verifier measures the elapsed times during multiple challenge/response
exchanges. Indeed, assuming the speed of communication c0 is constant and known by
the verifier, the distance between both parties can be estimated relying on the formula:

Dist(V, P )  c0
2

⇥ (tin � tout � tproc)

where tout is the time when the verifier sends the challenge, tin the time when it receives
the response, and tproc the processing time needed to compute the answer on the prover
side. A consequence is that the closer the prover is, the smaller the measurement will be.
Finally, distance-bounding protocols may require a last phase in which the two parties
exchange some extra data.

An example of such a protocol is the SPADE protocol [BGG+16] presented in Fig-
ure 1.3. It relies on an asymmetric encryption scheme, a signature scheme, and a pseudo-
random function as cryptographic primitives. The prover initiates the protocol by sending
a ciphertext that contains a freshly generated value nP and a signature (of this value).
The verifier replies by sending two fresh values mV and nV that are used to generate two
ephemeral shared secrets H

0 and H
1. Then, the critical (or rapid) phase may start: the

verifier sends a bit ci 2 {0, 1} and the prover replies by sending the i
th bit of Hci . This

simple exchange that applies during the rapid phase allows to reduce the processing time
tproc as much as possible in order to get a tighter estimation of the distance. Finally,
a transcript made of all the data exchanged along the protocol is sent by the prover.
The verifier checks the transcript and, depending on the answers he received in the rapid
phase and the times he measured, he decides, or not, to authenticate the prover.

1.1.2. Attack scenarios

The main goal of these protocols is to ensure the physical proximity of the partici-
pants. Regarding the literature, the different attack scenarios that may apply on distance-
bounding protocols have been gathered into three main classes: mafia fraud [DGB87],
terrorist fraud [DGB87], and distance fraud [Des88]. Recently, Cremers et al. [CRSC12]
have discovered a new class of attacks called distance hijacking attacks. Nowadays, the
security analyses are thus performed w.r.t. to these four classes of attacks. Each of them
differs from the honesty and the locations of the main participants:
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Verifier Prover

Initialisation phase

ci

ri

Rapid phase � for i = 1 to n

Verification phase

Figure 1.2: Common structure of a distance-bounding protocol.

• Distance fraud: a far-away and isolated dishonest prover tries to be authenticated
by an honest verifier (see Figure 1.4a).

• Distance hijacking: a far-away dishonest prover tries to abuse honest parties in
order to be authenticated by an honest verifier (see Figure 1.4b).

• Mafia fraud (or MiM): an attacker located between an honest verifier and an honest
far-away prover tries to make the verifier authenticate the prover (see Figure 1.4c).

• Terrorist fraud: a far-away dishonest prover accepts to collude with an attacker to
be authenticated once by an honest verifier. However the collusion should not give
any advantage to the attacker for future attacks (see Figure 1.4d).

The mafia fraud, or MiM attack, is the class that encompasses the aforementioned
relay attacks that applies against tap-to-pay transactions or keyless entry systems em-
bedded in cars. The terrorist fraud is an advanced scenario in which a prover accepts to
collude with the attacker once. However, this collusion should not enable the attacker
to mount future attacks. By consequence, in such a scenario, the dishonest prover will
not accept, for instance, to reveal his long-term keys. Instead, he will typically output
session identifiers or ephemeral keys (e.g. H

0 and H
1 in the SPADE protocol) to give to
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Verifier
sk(V ), ssk(V )

Prover
sk(P ), ssk(P )

pick nP fresh
� = sign(nP , ssk(P ))

aenc(hnP ,�i, pk(V ))

check signature
and

pick mV , nV fresh hmV , nV i

H
0 = prf(hnP , nV i)

H
1 = nP �mV �H

0

pick ci 2 {0, 1}
ci

ri =

(
H

0
i

if ci = 0

H
1
i

if ci = 1
ri

Rapid phase � for i = 1 to n

prf(hnP , nV ,mV , c1 . . . cn, r1 . . . rni)

check all ri
and transcript

Figure 1.3: SPADE protocol [BGG+16].

his accomplice material that will not be reusable in other sessions. The two remaining
classes of attacks, distance fraud and distance hijacking, are very similar. They consist in
scenarios in which an attacker tries to be authenticated while being located far-away from
the verifier. In case of distance fraud, this attacker is alone, whereas he can abuse hon-
est parties in distance hijacking. Hence, distance hijacking attacks encompass distance
frauds.

An important remark about these definitions is that they are not really restrictive
about the topologies on which an attack may apply, e.g. the number of agents that
are involved beside the three main participants is not restrained. By consequence, for
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each class of attacks, one may imagine an infinite number of different topologies that
match the requirements. Similarly, the definitions do no limit the number of sessions
that each agent is willing to execute. Designing a protocol which effectively ensures
physical proximity is therefore difficult.

(a) Distance fraud (b) Distance hijacking

(c) Mafia fraud (d) Terrorist fraud

Figure 1.4: The four usual classes of attacks when analysing distance-bounding protocols.

1.1.3. Security analysis

Due to their critical applications, e.g. payment protocols, proving the correctness
of distance-bounding protocols is requested. For a long time, these security analyses
consisted in analysing the protocols against well-known attacks only, and prove their
inapplicability. These analyses were mainly focused on mafia fraud considering the simple
pre-ask, post-ask and early-reply attack strategies. These last define the behaviour of the
attacker: in the pre-ask strategy, he performs a rapid phase with the remote prover in
advance and then tries to re-use the answers he received to pass the rapid phase on the
verifier side in the pre-ask strategy. In the post-ask strategy, the attacker first executes
the rapid phase with the verifier and then with the remote prover. Finally the early-
reply strategy applies for distance fraud and let the attacker anticipate the outputs of the
challenges, by sending random answers in advance. All these analyses provide a limited
confidence in the correctness of the protocols since they focus on rather specific attacks
only.

More recently, computational models have been designed to formally verify distance-
bounding protocols in a more general setting. In these models, messages are represented
by bitstrings, an attacker is any probabilistic polynomial time algorithm, and an attack
applies if there exists an attacker with a non-negligible probability of success. These fea-
tures are accurate enough to precisely analyse distance-bounding protocols and obtain
strong security guarantees. However, this great expressiveness is also the main drawback
of this approach: in order to take the numerous specificities of each protocol into account,
various models have been proposed, which makes the comparison of the protocols diffi-
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cult. In 2011, Dürholz et al. [DFKO11] proposed a framework with the aim to establish
relations between frauds. They established that the frauds are mainly independent from
one another. In the same time, Avoine et al. [ABK+11] proposed another framework
with the aim to standardise the analyses of distance-bounding protocols and make the
comparisons possible. Recently, numerous protocols have been analysed in this frame-
work [ABB+18]. Unfortunately, these two works required tedious hand-written proofs
for each of them. Automation appears to be a very difficult task in these models.

Another approach for protocol verification is symbolic verification. At the price of
few abstractions (e.g. messages by terms) it allows for an automatic verification.

1.2. Symbolic verification
Symbolic verification of cryptographic protocol is a well-known approach to allow for

automation. Efficient tools exist and have shown their usefulness to prove the (in)security
of real-world protocols.

1.2.1. State-of-the-art

Most of the attacks that apply on security protocols do not require to break any
cryptographic primitive. Instead they exploit weaknesses in the flow of the protocol.
Symbolic verification aims at proving the security of the protocols looking for such logical
attacks. A common abstraction of such models is to abstract cryptographic primitives by
symbols of functions representing a perfect cryptography (e.g. an encryption primitive
is assumed not to leak any information regarding the plaintexts to anyone who does
not know the correct decryption key). Messages exchanged during a protocol are then
represented by terms that are built over the symbols of function. Another common
abstraction applies on the attacker model: symbolic models commonly assume a Dolev-
Yao [DY83] attacker which is able to intercept, forge and send messages at any time of
an execution. It models an omniscient and omnipresent attacker.

Even considering these two abstractions,the automatic verification of cryptographic
protocols remains a difficult problem. In most cases, proving security properties for an
expressive enough class of protocols appears as an undecidable problem [MSDL99]. Even
though, procedures and tools, e.g. Proverif [Bla01] or Tamarin [MSCB13], have been
designed to tackle this problem. They proved their efficiency and usefulness to analyse
real-world protocols. Some famous examples are the proofs of security for TLS 1.3 Draft
18 [BBK17], or for a specific version of the e-voting protocol Belenios [CGG19]. They
have also proved their utility to detect flaws in largely deployed protocols like the Single-
Sign-On protocol used by e.g. Google Apps [ACC+08].

Some decidability results have been proposed for the verification of cryptographic
protocols in restricted setting. For example, when bounding the number of sessions, the
problem has been proved NP-complete [RT03] and tools implementing decision proce-
dures have been proposed, e.g. Akiss [CCCK16] or Deepsec [CKR18].
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1.2.2. Regarding distance-bounding protocols

Unfortunately, because of the omniscient and omnipresent attacker, the existing mod-
els and tools relying on symbolic models cannot faithfully model time and locations.
Therefore, they are not suitable to analyse distance-bounding protocols. To overcome
this limitation, few models have been proposed [MPP+07, MBK10, BCSS11, LSLD15,
CGdR+15]. They all develop symbolic models in which messages take time to travel
from one location to another.

In 2007, Meadows et al. [MPP+07] proposed the first symbolic model to analyse
distance-bounding protocols which relies on an authentication logic that faithfully fea-
tures locations and time. Thanks to this logic, authors proved the security of a new
protocol they proposed (see Figure 1.5) when the answer to the challenge is either
F (nV , nP , P ) = hnV , P, nP i, or F (nV , nP , P ) = hnV , nP�P i, or F (nV , nP , P ) = hnV �
f(P, nP )i. Sadly, their framework is quite complex and does not allow for automation;
all of these security proofs are done manually.

Verifier
shk(V, P )

Prover
shk(V, P )

pick nP freshpick nV fresh
V, hello

nV

F (nV , nP , P )

Rapid phase

s = hP, locP , nP , nV i

hs, f(shk(V, P ), s)

check response
and transcript

Figure 1.5: Meadows et al. protocol [MPP+07].
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In 2011, Basin et al. [BCSS11] proposed another symbolic framework to analyse
distance-bounding protocols. It extends an existing model based on multiset rewriting
rules with time and locations in a general setting. The protocol descriptions and the
deduction capabilities of the attackers remain unchanged; the unique difference with the
usual model lies in the network rule: a message m can be received at time tR by an
agent B if, and only if, it has been sent by an agent A soon enough to let the message
travel from A’s location to B’s, i.e., at time tS such that tR � tS + Dist(A,B). Besides,
the authors propose a formal definition of physical proximity. They consider the following
security property:

8tr 2 Tr(Proto), claim(V, P, d) ) d  Dist(V, P )

where Tr(Proto) is the set of all the possible traces of executions of the protocol under
study, and claim(V, P, d) is an event triggered by the verifier V when it authenticates the
prover P with a proximity threshold d. Typically, d = tin�tout

2 , where tin and tout are
the two timestamps that identify the beginning and the end of the challenge response
exchange.

This property faithfully models physical restrictions and has been used to analyse
distance-bounding protocols. Instead of relying on hand-written proofs, authors encoded
their model into the theorem-proving assistant Isabelle/HOL [NPW02] in order to pro-
vide a partially automated framework. Indeed, many lemmas are generic enough to be
protocol-independent and thus re-usable across different analyses. The approach followed
by the authors across this paper demonstrates a noteworthy effort to provide a rigorous
framework to analyse distance-bounding protocols. Unfortunately, the automation re-
mains incomplete since protocol-dependent lemmas must be manually defined by the
end-user (typically between 8 and 20 in their case studies).

In 2015, Chothia et al. [CGdR+15] aimed at verifying a new payment protocol, named
PaySafe, designed to ensure physical proximity in contactless transactions. To this aim,
they developed an approach based on the well-known Proverif tool [Bla01] that allows
for an automatic verification. They managed to encode in the Proverif tool rather simple
topologies that involve only two locations: the reader’s/verifier’s location and a remote
location (typically for the honest prover when considering relay attacks). This encoding
relies on the notion of phases provided by Proverif: three phases are defined, one for each
step of the protocol, following the structure of distance-bounding protocols presented in
Figure 1.2. Agents at the verifier’s location are allowed to act during any phase, but
remote agents cannot act during the rapid phase (intuitively they are too far to respond
to the challenge).

The main limitations of this approach are two-fold: first, instead of taking the infinite
number of topologies that match the requirements for each class of attacks into account,
they focus on a unique and rather simple one they encode in Proverif. Then, they do not
formally justify the encoding of the simple topologies they propose using phases. Despite
that, this is an appealing approach and some of the results presented in this manuscript
take some inspiration from this work.
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Meanwhile we established the results presented in this manuscript to allow for an au-
tomatic verification of distance-bounding protocols, Mauw et al. extended the Basin et
al.’s model to cope with a complete automation [MSTPTR18, MSTPTR19]. As a con-
sequence, in addition to precisely comparing our model and framework to Chothia et
al.’s [CGdR+15, CdRS18], we will compare to Mauw et al.’s too. These discussions will
be presented in Chapters 2 and 5.

1.3. Contributions
In this manuscript, we tackle the issue of the automatic verification of distance-

bounding protocols. To this end, we will develop symbolic models, procedures, and
reduction results. In the spirit of [CLC03, CDD12], the latter will allow to get rid
of specific difficulties of distance-bounding protocol verification (topologies and collu-
sion behaviours), and leverage existing tools. Finally we provide automatic frameworks
to analyse distance-bounding protocols. We applied them and managed to prove the
(in)security of numerous distance-bounding protocols. In particular, we applied our re-
sults to analyse payment protocols.

In this manuscript, the contributions are four-fold:

(1) We develop symbolic models to analyse distance-bounding protocols. Based on the
applied pi-calculus [AF01], it allows to faithfully model the physical constraints by
modelling agent locations and time. In Chapter 6, we even present the first calculus
which models mobility, i.e. in which agents can move during an execution, that is
suitable to analyse distance-bounding protocols. About the physical constraints,
we model that a message takes time to travel from one location to another. Finally,
we propose formal definitions for each class of attacks, formalising the informal ones
presented in Section 1.1.2 by considering an arbitrary number of agents, each lo-
cated at arbitrary locations. Note that, we do not make any difference between
distance-fraud and distance-hijacking attack since we aim at verifying distance-
bounding protocols considering an arbitrary number of agents. When looking at
payment protocols, we consider a new class of attacks involving malicious read-
ers [CBC19] and accordingly extend an existing security property [MSTPTR18].

(2) We extend the underlying procedure of the Akiss tool [CCCK16] to take time
and locations into account. This procedure addresses the automatic verification
of distance-bounding protocols w.r.t. reachability properties when considering a
bounded number of sessions. The soundness and the completeness of the procedure
have been formally proved. Finally, it has been implemented on top of the Akiss
tool and successfully applied to prove the (in)security of some distance-bounding
protocols.
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(3) We propose two reduction results in the spirit of [CDD12] to reduce the number of
topologies that must be considered when analysing a distance-bounding protocol,
and to reduce the number of collusion behaviours that must be considered when
considering terrorist frauds. Precisely, we reduce from infinitely many to only one
the number of topologies that must be taken into account for each class of attacks,
and, under some hypotheses, we prove the existence of a most-general collusion
behaviours the analyses can focus on.

(4) Finally, thanks to the previous contributions, we propose a comprehensive case
studies analysis (more than 25 protocols). It relies either on our newly implemented
procedure for bounded number of sessions, or the Proverif tool to verify the security
properties we proposed considering an unbounded number of sessions.

All these contributions have been published in [DDW18, DD19, DDW19, BCDD20].

1.4. Outline
This manuscript is made of 2 parts and 6 chapters. The first part deals with the

symbolic verification of standard distance-bounding protocols, i.e. protocols following
the global shape presented before. We propose two approaches: one which consists in
designing and implementing a new procedure for a bounded number of sessions, and
one relying on reductions results that allows to leverage existing tools. The second part
focuses on the verification of two novel EMV-payment protocols that embed specific fea-
tures which make the previous results not suitable.

Part I: Verification of standard distance-bounding protocols

Chapter 2 presents a generic model that will be used across Part I. It extends the
applied pi-calculus to take time and locations in consideration in order to define the three
security properties we will be interested in when analysing distance-bounding protocols:
mafia fraud resistance, terrorist fraud resistance, and distance hijacking resistance. This
calculus has been designed to remain as general as possible and allows to model a wide
class of protocols.

Chapter 3 presents the theoretical development of a procedure that will be applied to
decide reachability properties (e.g. mafia fraud, terrorist fraud, and distance hijacking)
on timed protocols considering a bounded number of sessions. In a bounded setting,
protocols can be described by a finite set of traces that correspond to the possible inter-
leavings of the roles. In this chapter, we prove the procedure sound and complete when
considering such traces. Its termination will be demonstrated in practice across case
studies presented in Chapter 5. Since the procedure builds on the underlying procedure
of the Akiss tool [CCCK16], in Chapter 5 we will also discuss how our procedure has
been implemented on top of it.
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Chapter 4 presents two reduction results that allow to consider only two simple topolo-
gies when analysing distance-bounding protocols. Moreover, under some hypothesis, it
reduces the number of collusion behaviours that must be considered when looking at ter-
rorist frauds: there exists a most general behaviour that subsumes the others. These two
reduction results will be crucial to ease the automatic verification of distance-bounding
protocols.

Chapter 5 applies the results presented in the two previous chapters to perform a com-
prehensive case studies analysis. It discusses few implementations aspects, and bridges
the gap between the theoretical model and the practical one, implemented behind the
tools. The efficiency of both approaches is proved in practice, and, besides agreeing on
(in)security proofs of already studied protocols, it establishes the first proof of (in)security
for others.

Part II: Analysis of two novel EMV-payment protocols

Chapter 6 presents a symbolic model that fits the specificities of EMV-payment
protocols. In particular it extends the security property presented by Mauw et al.
[MSTPTR18] to prevent relay attacks (i.e. mafia frauds) in the context of mobile agents
and malicious readers/verifiers. We prove this timed security-property equivalent to a
causality-based property which solely relies on the order of the actions during an ex-
ecution. This last property can thus be checked by any existing tool. We prove the
correctness of the two novel EMV-payment protocols proposed in [CBC19], relying on
the Proverif tool.
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A symbolic model with time
and locations 2

In this chapter, we describe the symbolic model we will use along this thesis. Similarly
to the standard applied pi-calculus [AF01], our model relies on a term and a process
algebra to define what messages and protocols are. However, all these notions need to
be extended to faithfully model time and agent locations. In particular, a message must
take time to travel from one location to another, and agents must be able to perform time
checks. We finish this chapter by defining the three security properties we will consider
when analysing a distance-bounding protocol: mafia fraud, terrorist fraud and distance
hijacking attack resistance.

Contents

2.1 Messages . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.1.1 Term algebra . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.1.2 Equational theory. . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.1.3 Rewriting system . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.1.4 Timing constraints . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.2 Protocols . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.2.1 Process algebra . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.2.2 Semantics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

2.3 Security properties. . . . . . . . . . . . . . . . . . . . . . . . . . . 25

2.3.1 Valid initial configuration . . . . . . . . . . . . . . . . . . . . . 26

2.3.2 Mafia fraud . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

2.3.3 Terrorist fraud . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

2.3.4 Distance hijacking attacks . . . . . . . . . . . . . . . . . . . . . 31

2.4 Comparison with existing models. . . . . . . . . . . . . . . . . . 32

2.4.1 Chothia et al.’s model . . . . . . . . . . . . . . . . . . . . . . . 32

2.4.2 Mauw et al.’s model . . . . . . . . . . . . . . . . . . . . . . . . 34

15



2

16 2. A symbolic model with time and locations

2.1. Messages
As usual in the symbolic setting, we model messages through a term algebra. Fol-

lowing the approach developed in [Bla01], we consider both an equational theory and a
reduction relation to represent the properties of the cryptographic primitives. In addi-
tion, we consider time expressions to handle time checks performed during an execution
of a protocol.

2.1.1. Term algebra

We consider two infinite and disjoint sets of names: N is the set of basic names, which
are used to represent keys and nonces, whereas A is the set of agent names, i.e. names
which represent the agent identities. We denote R+ the set of non-negative real numbers
and ⌃0 an infinite set of public constants, i.e., known by the attacker. Finally, we consider
three infinite sets of variables: X refers to unknown parts of messages, W contains the
variables used to store messages learnt by the attacker, and time variables belong to Z.
During an execution variables from Z should only be instantiated by elements in R+.

To model cryptographic primitives we assume a signature ⌃, i.e., a set of function
symbols together with their arity. These elements are split into constructor and destruc-
tor symbols, i.e., ⌃ = ⌃c[⌃d. Constants are considered as constructor function symbols
of arity 0. We note ⌃+ = ⌃ [ ⌃0 and ⌃+

c = ⌃c [ ⌃0. Given a signature F , and a set of
atomic data A, we denote by T (F , A) the set of terms built from atomic data A by apply-
ing function symbols in F . A constructor term is a term in T (⌃+

c ,N[A[R+[X[Z[W).
We note vars(u) the set of message, time and frame variables occurring in a term u. A
message is a ground constructor term u, i.e., vars(u) = ;.

To model attacker capabilities, the signature ⌃ is split into public and private symbols
⌃pub and ⌃priv. We note ⌃+

pub
= ⌃pub[⌃0. An attacker is able to make some computations

to deduce new messages applying public function symbols on top of terms he already
knows and that are available through variables in W . Formally, a computation done by
the attacker is a term in T (⌃+

pub
,W[R+). For technical reasons we distinguish two kinds

of computations: timed-recipes which are terms in T (⌃+
pub

,W [ R+), and recipes which
are terms in T (⌃+

pub
,W).

A substitution � = {x1 ! u1, . . . , xn ! un} is a mapping from variables x1, . . . , xn 2
X [W[Z to terms u1, . . . , un. We note dom(�) = {x1, . . . , xn} its domain and img(�) =
{u1, . . . , un} its image. The application of a substitution � to a term u is noted u� and
consists in replacing all the occurrences of xi in u by ui (for 1  i  n).

Given terms u1, . . . , un, we say that a substitution � is a unifier for u1, . . . , un if
u1� = . . . = un�. We note (when it exists) mgu(u1, . . . , un), the most general unifier of
u1, . . . , un, i.e. the substitution ✓ such that for all unifiers � of u1, . . . , un, there exists a
substitution ⌧ such that � = ✓⌧ .

We define as usual, the subterms, noted st(u), and the positions of a term u. We
note u|p the subterm at position p in u and u[v]p the term u in which the subterm at
position p has been replaced by v.
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Example 2.1. To model the SPADE protocol presented in Chapter 1, we consider the
following signature: ⌃ = {prf/1, pk/1, sk/1, aenc/2, adec/2, sign/2, check/2, spk/1, ssk/1,
h , i/2, proj1/1, proj2/1,�/2, 0/0, answer/3, eq/2, ok/0}. The prf symbol models a pseudo-
random function. The symbols aenc, adec, pk and sk model an asymmetric encryption
scheme together with a decryption algorithm and the corresponding public/private keys.
The symbols sign, check, spk and ssk model a signature scheme. The symbols sign and
ssk are used to sign a message using a private key while check and spk are used to verify
a signature using the corresponding public key. The symbols h , i, proj1 and proj2 model
pairs and projections. The exclusive-or operator is modelled by the symbol � and we use
the symbol 0 as the identity element. Since we cannot model messages at the bit-level, the
symbol answer is used to represent in an abstract way the response provided by the prover
during the rapid phase. Finally, we consider the symbols eq and ok to check message
equalities.

Amongst all the symbols in ⌃, we consider adec, check, proj1, proj2 and eq as de-
structors. Only sk and ssk, that model private keys associated to the agent name given
in argument, belong to ⌃priv. Note that an attacker will not be able to derive his own
material alone, it will be provided through an initial knowledge (see Section 2.3.1).

Remark 2.1. For readability purposes, we may use, in the rest of this manuscript the
following notations: ht1, . . . , tni = ht1, ht2, . . . , htn�1, tniii for the concatenation of n ele-
ments, and ⇡j,n(ht1, . . . , tni) = proj1�proj

j�1
2 (ht1, . . . , tni) the j-th projection on a n-uplet,

with j 2 {1, . . . , n� 1}, while, for j = n, we define ⇡j,n = projn2 (ht1, . . . , tni).

2.1.2. Equational theory

The algebraic properties of the constructor symbols are modelled through an equa-
tional theory. It consists of a finite set E of equations of the form u = v where u, v 2
T (⌃c,X ). It induces an equivalence relation =E over constructor terms. Formally =E is
the least congruence on constructor terms, which contains all the equations u = v in E

and closed under substitutions. We assume that E models a non-trivial theory, i.e. there
exists u and v such that u 6=E v.

Example 2.2. The equational theory derived from the following set Exor reflects the
algebraic properties, in particular the associativity and commutativity, of the exclusive-or
operator.

(x� y)� z = x� (y � z) x� y = y � x x� 0 = x x� x = 0.

2.1.3. Rewriting system

The meaning of destructor symbols is provided through a set R of rewriting rules. For-
mally, a rule is of the form g(t1, . . . , tn) ! t where g 2 ⌃d and t, t1, . . . , tn 2 T (⌃c,X ).
A term u can be rewritten in v if there exists a position p in u, and a rewriting rule
g(t1, . . . , tn) ! t such that u|p =E g(t1, . . . , tn)✓ for some substitution ✓, and v = u[t✓]p.
Moreover we assume that t✓, t1✓, . . . , tn✓ are constructor terms.
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As usual, we only consider sets of rules R that yield to a convergent rewriting system
(modulo E):

• R is terminating, i.e. there is no infinite sequence u ! u1 ! u2 ! . . .

• R is confluent, i.e. for all terms u, u1, u2 such that u !⇤
u1 and u !⇤

u2, there
exist v1, v2 such that u1 !⇤

v1 and u2 !⇤
v2 and v1 =E v2, where !⇤ denotes the

transitive closure of !.

Given a term u we note u# its normal form. By convention, we note u# = ? when u

does not reduce to a constructor term.

Example 2.3. Continuing Examples 2.1, the property of the destructor symbols is given
through Rex, the set made of the following rules:

adec(aenc(x, pk(y)), sk(y)) ! x proj1(hx, yi) ! x

check(sign(x, ssk(y)), spk(y)) ! x proj2(hx, yi) ! y

eq(x, x) ! ok.

These rules exactly model the expected behaviours of an asymmetric encryption scheme,
a signature or a pairing function. They allow to decrypt a ciphertext applying the symbol
adec together with the correct secret key, check the validity of a signature and retrieve
the signed message applying the symbol check with the correct public key, and extract the
first (resp. second) component of a pair applying the symbol proj1 (resp. proj2). Finally,
the semantics given to the symbol eq allows to reduce a term eq(u, v) to ok as soon as
u# and v# are constructor terms and u# =E v#. Note that this model assumes a perfect
cryptography, i.e. given an encrypted message an attacker cannot retrieve any bit of
information of the plaintext. He can neither forge a valid signature without the whole
and correct private key.

Remark 2.2. Considering both an equational theory and a rewriting system provides
a rich framework to model primitives. Indeed each of them allows to model specific be-
haviours. For example, an equational theory allows to faithfully model the exclusive-or
operator including its associativity and commutativity properties, which is not possible
through a convergent rewriting system. On the other side, a rewriting system allows to
model primitives that may fail. For example, considering the rewriting rule presented
in the previous example, the term adec(ok, pk(id)) (for some id 2 A) is not a message
(because it is not a constructor term) and thus cannot be sent over the network; the
computation fails. On the contrary, if the encryption scheme is modelled by the equation
adec(aenc(x, pk(y)), sk(y)) = x considering both aenc and adec as constructor symbols,
then adec(ok, pk(id)) is a message and can be sent/received over the network. It then
models a decryption scheme which never fails; it always returns a term which may appear
as a message of the protocol.

Depending on the encryption scheme you consider, the first (with a rewriting rule) or
the second (with an equation) solution may be preferable.
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2.1.4. Timing constraints

To model time, we use non-negative real numbers, i.e. R+, and the specific set
of variables Z. Time expressions are inductively constructed by applying arithmetic
symbols (e.g., +, ⇥, � . . .) to time expressions starting with the initial set R+ [ Z. A
timing constraint is then of the form t1 ⇠ t2 with ⇠2 {<,,=} and t1 and t2 two time
expressions.

Our theoretical framework does not constrain the set of arithmetic symbols we use
as soon as there exists a procedure to decide whether a finite set of timing constraints
is satisfiable or not. This point will be discussed in Chapter 5 when we will present the
implementations of the procedures we proposed.

Example 2.4. Timing constraints are often used to model the check performed by the
verifier during the rapid phase. Typically, for the SPADE protocol presented in Figure 1.3,
the constraint has the form z2 � z1 < td with z1, z2 2 Z and td 2 R+. Indeed, z1 and z2

will be instantiated by the global times at which the verifier initiates the rapid phase by
sending his challenge and the one at which he stops it receiving the response. The time
td corresponds to the bound defining his proximity.

2.2. Protocols
Protocols describe how messages should be exchanged between participants. Similarly

to the applied pi-calculus [AF01], they are modelled by a process algebra accompanied
with an operational semantics.

2.2.1. Process algebra

Processes are generated by the following grammar:

P := 0
| new n.P

| inz(x).P
| outz(u).P
| letmess x = v in P

| lettime z = v in P

| iftime t1 ⇠ t2 then P

| end(u1, u2)

with x 2 X , z 2 Z, u, u1, u2 2 T (⌃+
c ,N [A[R+ [X ), v 2 T (⌃+

,N [A[R+ [X ) and
t1 ⇠ t2 a timing constraint.

All these commands model the behaviour of a participant. The command 0 is the
null process, meaning that no action is pending. The command new n allows to pick
random values (unknown from the attacker). The inz(x) and outz(u) commands model
communications, respectively the input and the output of a message. The variable z will
store the current global time of the system when the command is executed. Whenever
this time is useless, i.e. does not occur in the remaining process P , the variable z may
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be omitted. The let commands allows to perform local computations. The letmess
command succeeds and continues by executing P in which x has been substituted by
v if v reduces in a constructor term. Otherwise, the process is blocked. Similarly,
the lettime command succeeds if v reduces to a time, i.e., a non-negative real number.
Timing constraints are checked using the iftime command: if the constraint is satisfied
then the process P is executed, otherwise the process is blocked. Finally the command
end(u1, u2), which can only occur at the end of a process, will be used to express the
security properties.

Remark 2.3. We do not consider conditionals for messages. Indeed the symbol eq defined
in Example 2.3 allows to perform equality tests using the letmess command: given two
terms u, v, the term eq(u, v) reduces to a constructor term, ok, and let the process progress
if, and only if, u# and v# reduce to constructor terms and u# =E v#. This models an
equality testing command. However, it is important to note that it does not allow to
model else branches (i.e. dis-equality testing).

Remark 2.4. Process algebras based on the applied pi-calculus often define two extra
commands: the parallel composition and the replication. The first models that two pro-
cesses can run in parallel while the second models that a given process can be executed an
arbitrary number of times. It allows for a verification with an unbounded number of ses-
sions. These two commands are deliberately omitted in our syntax: they will be inherent
to our model following the definition of configuration presented in Section 2.2.2.

As usual, we denote bv(P ) the set of bound variables in P . These are variables intro-
duced by an input, a let command, or an annotation over an input/output. Similarly
we note bn(P ) the set of bound names in P , i.e., those introduced by a new command.
On the opposite, we note fv(P ) the set of free variables, and fn(P ) the set of free names
occurring in P . These are variables or names that are not bound.

We consider parametrised processes, denoted P (x0, . . . , xn), where x0, . . . , xn are spe-
cific variables that belong to the set XA disjoint from X , W and Z. They will be
instantiated by agent names and, in particular, x0 will be the agent who executes the
process. Distance-bounding protocols are two-party protocols between a verifier and a
prover. A distance-bounding (DB) protocol P is thus a pair (V(x0, x1), P(x0, x1)) such that:

• fn(R) = ;; and

• fv(R) ✓ {x0, x1}; and

• R does not contain any command end(ui, uj)

for R = V(x0, x1) or P(x0, x1). The parametrised process V(x0, x1) is called the verifier role
while P(x0, x1) is called the prover role. We note Vend(x0, x1) the parametrised process
V(x0, x1) ending with the command end(x0, x1) instead of the null process 0. This specific
process will used to identify the targeted session of the verifier role used to define the
security properties
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Example 2.5. As a running example, we consider the SPADE protocol presented in
Figure 1.3. For modelling purposes, few abstractions must be done: first, the rapid phase
relying on bit exchanges is collapsed into a single challenge/response exchange in which
the challenge is modelled by a fresh name unknown from the attacker. As a consequence,
we can no longer define the responses as precisely as in Figure 1.3. We thus abstract the
answer by the uninterpreted symbol of function answer taking the challenge and the two
pre-computed values H

0 and H
1 as argument. The abstracted protocol is presented in

Figure 2.1 and the two roles are described as follows.

On the first hand, the prover role is quite simple. Since there is no time consideration,
it only involves standard commands from the applied pi-calculus.

P(x0, x1) := new nP .

out(aenc(hnP , sign(nP , ssk(x0))i, pk(x1))).
in(x1).
letmess xm = proj1(x1) in
letmess xn = proj2(x1) in
letmess x

0
H

= prf(hnP , xni) in
letmess x

1
H

= nP � xm � x
0
H

in

in(x2).
out(answer(x2, x0H , x

1
H
)).

out(prf(hnP , xn, xm, x2, answer(x2, x0H , x
1
H
)i)).

0

On the other hand, the verifier role must take time into account to model the rapid
phase. It uses specific features of our model: the output and the input delimiting the rapid
phase are annotated with time variables z1 and z2. Moreover, a timing constraint is used
to check whether the time elapsed between these two actions is less than the admissible
threshold 2⇥ t0. If not, the prover is assumed remote and the verifier stops.

V(x0, x1) := in(x1).
letmess y1 = adec(x1, sk(x0)) in
letmess y

1
check

= eq(proj1(y1), check(proj2(y1), spk(x1))) in
new mV. new nV .

out(hmV , nV i).
new c.

outz1(c).
inz2(x2).
iftime z2 � z1 < 2⇥ t0 then

in(x3).
letmess x

0
H

= prf(hproj1(y1), nV i) in
letmess x

1
H

= proj1(y1)�mV � x
0
H

in

letmess y
2
check

= eq(x2, answer(c, x0H , x
1
H
)) in

letmess y
3
check

= eq(x3, prf(hproj1(y1), nV ,mV , c, x2i)) in
0
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Verifier
sk(V ), ssk(V )

Prover
sk(P ), ssk(P )

pick nP fresh
� = sign(nP , ssk(P ))

aenc(hnP ,�i, pk(V ))

check signature
and

pick mV , nV fresh hmV , nV i

H
0 = prf(hnP , nV i)

H
1 = nP �mV �H

0

pick c fresh
c

r = answer(c,H0
, H

1)
r

prf(hnP , nV ,mV , c, ri)

check r

and transcript

Figure 2.1: Abstracted version of the SPADE protocol.

2.2.2. Semantics

We provide an operational semantics that enables to simulate executions of the proto-
col. It is defined by a labelled transition system over configurations that is parametrised
by a topology. This last models that agents are located in the space and messages take
time to travel from one to another.

Definition 2.1. A topology is a tuple T0 = (A0,M0, Loc0, v0, p0) such that:

• A0 ✓ A is the finite set of agents composing the system;

• M0 ✓ A0 is the subset of agents that are malicious;

• Loc0 : A0 ! R3 is a mapping defining the position of each agent in space;

• v0, p0 2 A0 are two agent names that represent respectively the verifier and the
prover w.r.t. whom the security analysis is performed.

For sake of simplicity, we assume that all the messages travel at the same speed, e.g.
the speed-of-light, denoted c. The distance between two agents is then defined by the
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time a message takes to travel from one to the other, i.e.:

DistT0(a, b) =
kLoc0(a)� Loc0(b)k

c
for all a, b 2 A0

where k·k denotes the usual Euclidean norm.

Remark 2.5. Unlike the classical Dolev-Yao attacker [DY83], our model does not as-
sume a unique omniscient and omnipresent attacker. All the agents, including dishonest
ones, are subject to the physical constraints which means that they cannot instantaneously
receive messages previously sent over the network. They can neither forge messages that
can be instantaneously received by the other agents. Enough time must have elapsed to
let the message reach its destination. Considering several dishonest agents at different
locations is therefore meaningful in our model.

Example 2.6. Given a threshold t0 2 R+, we define T t0
s

v0 p0
p

t0

(depicted on the right) the simple topology composed of three
agents {v0, p0, p} among whom only p is malicious. The rela-
tive distance between agents being of greater importance than their precise location, we
prefer to describe the topologies focusing on this point. The topology T t0

s is thus defined
by:

DistT t0
s

(v0, p) = 0 and DistT t0
s

(v0, p0) = t0.

The two agents v0 and p share the same location, and can thus instantaneously exchange
messages, while p0 is at distance t0 from them, i.e. a message takes at least a time t0 to
reach p0 from v0 or p (and conversely).

The configurations manipulated by our operational semantics aim at describing the
network at a given point of an execution. The actions that remain to be executed by the
agents belong to a multiset of extended processes of the form bP c

a
, meaning that process

P remains to be executed by agent a. The messages already sent over the network are
stored into a frame, extended to keep track of when a message has been sent and by
whom. Finally, a configuration contains the global time of the system. Formally, given
a topology T0 = (A0,M0, Loc0, v0, p0), a configuration over T0 is as follows.

Definition 2.2. A configuration is a tuple (P;�; t) such that:

• P is a multiset of extended processes bP c
a

such that a 2 A0;

• � = {w1
a1,t1���! u1, . . . ,wn

an,tn���! un} is an extended frame with wi 2 W, ai 2 A0,
ti 2 R+ and ui is a message, for i 2 {1, . . . n};

• t 2 R+ is the global time of the system.

An initial frame is a frame such that ti = 0 (1  i  n). We write b�c t
a

for the
restriction of � to the agent a at time t, i.e.:

b�c t
a
= {wi

ai,ti��! ui | (wi

ai,ti��! ui) 2 � and ai = a and ti  t}.
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Example 2.7. Let us consider the topology T t0
s defined in Example 2.6. Given a DB

protocol (V(x0, x1), P(x0, x1)) we can define the configuration K0 = (P0;�0; 0) such that:

• P0 = {bVend(v0, p0)cv0] bP(p0, v0)cp0} where Vend(v0, p0) corresponds to the process
V(v0, p0) in which the null process 0 has been replaced by the special command
end(v0, p0); and

• �0 = {w1
p,0��! v0, w2

p,0��! p0, w3
p,0��! p, w4

p,0��! sk(p), w5
p,0��! ssk(p)}.

This configuration models a scenario in which the agents v0 and p0 try to execute a session
of the protocol together. The agent v0 acts as a verifier while p0 acts as a prover. The
special command end(v0, p0) has been added in the verifier role to emphasise the end of the
session in case of success. Moreover, since the agent p is malicious the frame �0 contains
his initial knowledge, i.e. the identities of the agents involved in the configuration as well
as his private keys.

Given a topology T0 = (A0,M0, Loc0, v0, p0), the operational semantics is given
through the transition system presented in Figure 2.2. All the rules are as expected
and formally define the informal behaviour of each command presented in Section 2.2.1.
The IN rule is the most complex one and deserves some comments. It allows an agent a

to receive a message u that has necessarily been forged by another agent b early enough,
i.e. at a time tb  t�DistT0(b, a). Note that, as usual in the applied pi-calculus, dishonest
agents are able to forge new messages using messages they already know. However, since
they are subject to the physical constraints in our model, they do not know the whole
frame: a message outputted by an agent c is known by b at time tb if, and only if, it
belongs to b�c tb�DistT0 (c,b)

c .
We sometimes simply write !T0 instead of a,↵��!T0 . The relation !⇤

T0 is the reflexive
and transitive closure of !T0 , and we often write tr�!T0 to emphasise the sequence of
labels tr that has been used during this execution.

Example 2.8. Let us continue Example 2.7. However, instead of considering K0 as
defined, we define K0

0 a slightly different configuration: the process P(p0, v0) is replaced
by P(p0, p). This models a scenario in which the prover p0 tries to execute a session with
the malicious agent p acting as a verifier. This configuration will allow us to illustrate
the mafia fraud that applies on the SPADE protocol.

Let’s start the execution as follows:

K0
0

p0,⌧��!T t0
s

p0,out(aenc(hn0
P
,sign(n0

P
,ssk(p0))i,pk(p)))�������������������������!T t0

s

�!T t0
s

v0,in(aenc(hn0
P
,sign(n0

P
,ssk(p0))i,pk(v0)))�������������������������!T t0

s

K1

where the configuration K1 is defined by:

K1 = (bV1cv0 ] bP1cp0 ;�0 [ {w6
p0,0��! aenc(hn0

P , sign(n
0
P , ssk(p0))i, pk(p))}; t0)
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TIM (P;�; t) �!T0 (P;�; t+ �) with � � 0

NEW (bnew n.P c
a
] P;�; t)

a,⌧��!T0 (bP{n 7! n
0}c

a
] P;�; t)

with n
0 2 N fresh

LET_M (bletmess x = v in P c
a
] P;�; t)

a,⌧��!T0 (bP{x ! v#}c
a
] P;�; t)

when v# 6= ?

LET_T (blettime z = v in P c
a
] P;�; t)

a,⌧��!T0 (bP{z ! v#}c
a
] P;�; t)

when v# 2 R+

IF (biftime t1 ⇠ t2 then P c
a
] P;�; t)

a,⌧��!T0 (bP c
a
] P;�; t)
if t1 ⇠ t2 is true

OUT (boutz(u).P c
a
] P;�; t)

a,out(u)�����!T0 (bP 0c
a
] P;� ] {w a,t�! u}; t)

with w 2 W fresh and P
0 = P{z ! t}

IN (binz(x).P c
a
] P;�; t)

a,in(u)����!T0 (bP 0c
a
] P;�; t)

with P
0 = P{z ! t}{x ! u}

when u 6=? and there exist b 2 A0 and tb 2 R such that tb  t� DistT0(b, a) and:

• if b 2 A0 rM0 then u 2 img(b�c tb
b
) [ R+;

• if b 2 M0 then u = R�# for some recipe R such that for all w 2 vars(R) there
exists c 2 A0 such that w 2 dom(b�c tb�DistT0 (c,b)

c ).

Figure 2.2: Semantics of our calculus

with V1 the process Vend(v0, p0) without the first input and in which x1 has been instan-
tiated by u = aenc(hn0

P
, sign(n0

P
, ssk(p0))i, pk(p)), and P1 the process P(p0, v0) without

the two first commands (i.e. the nonce generation and the output). In the execution
above, the first transition is the nonce nP generation executed by p0 (note that this com-
mands replaces nP by a fresh name n

0
P

in the remaining process). After p0’s output,
the next transition is a TIM rule in order to let enough time for the message to reach
the attacker p. Then, the final transition models the input, by v0, of a message con-
structed by p based on the message sent by p0. The recipe used to build the message is
R = aenc(adec(w6,w4), pk(w1)).

2.3. Security properties
Distance-bounding protocols are supposed to resist against mafia frauds, distance

hijacking attacks and terrorist frauds. As explained in Chapter 1, they consist in scenarios
in which an illegitimate prover, or attacker, tries to be authenticated by a verifier. The
three security properties (one for each class of attacks) can therefore be formally expressed
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as a reachability property relying on the symbol of function end presented in Example 2.1:
does there exist a topology and an execution that reaches the command end(v0, p0) for
an illegitimate prover p0?

2.3.1. Valid initial configuration

Depending on the protocol and the class of attacks under study, the set of initial
configurations that must be considered varies. Informally, a valid initial configuration
starts at time t = 0 and must contain a multiset of processes made of instances of the
roles of the protocols and an initial frame that contains (at least) the initial knowledge of
the dishonest agents. Moreover, we assume that there is a unique instance of the verifier
role that contains the special command end(x0, x1) used to encode the security properties.

For sake of simplicity, we assume that the initial knowledge of an agent is uniform and
given through a template, i.e. a set of terms in T (⌃+

c ,XA). Formally, given a template
I0 and a set of agent names A0, the initial knowledge of an agent a 2 A is defined by:

Knows(I0, a,A0) =

⇢
(u0{x0 7! a})� ground u0 2 I0 and � a substitution

such that img(�) ✓ A0

�
.

Given a topology T0 = (A0,M0, Loc0, v0, p0) we note �T0
I0 the initial frame corresponding

to the topology, i.e. such that bimg(�T0
I0)c

0

a
= Knows(I0, a,A0) when a 2 M0, and

bimg(�T0
I0)c

0

a
= ; otherwise.

Example 2.9. When looking at the the SPADE protocol presented in Figure 2.1, the
initial knowledge of a dishonest agent a should at least contain his private keys, i.e.,
sk(a) and ssk(a). Another information that a dishonest agent should know is the names
of the agents that are involved in the topology under study. In case of T t0

s presented
in Example 2.6 and then involved in Example 2.8, the dishonest agents must know the
names v0, p0 and p.

All this knowledge we informally described may be given to malicious agent through the
template I0 = {x1, sk(x0), ssk(x0)}. Indeed, x1 subsumes all the names of the agents that
belongs to the topology and sk(x0) and ssk(x0) provide the private keys of the malicious
agent.

We are now able to define the set of valid initial configurations that will be considered
when looking for an attack. First, we assume that the multiset of extended processes only
contains instances of the roles of the protocols. Then, we assume that the initial frame
contains at least the initial knowledge of the dishonest agents that appear in the topology,
i.e., �T

I0 . Finally, we assume that an execution starts with a global time set to 0. Such a
configuration is said a valid initial configuration for a given protocol (V(x0, x1), P(x0, x1))
w.r.t. a topology T , an initial frame �0, and a template I0. When clear from the context
we will omit the template I0.
Definition 2.3. Let (V, (x0, x1), P(x0, x1) be a DB-protocol, T0 = (A0,M0, Loc0, v0, p0)
be a topology, �0 be an initial frame, and I0 be a template. The tuple K = (P;�; t) is a
valid initial configuration for (V(x0, x1), P(x0, x1)) w.r.t. T0, �0, and I0 if:
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• P = bVend(v0, p0)cv0 ] P 0, and for each bP 0c
a0 2 P 0, we have that a

0 2 A0, and
either P

0 = V(a0, b0) or P
0 = P(a0, b0) for some b

0 2 A0; and

• � = �0 [ �T0
I0 ; and

• t = 0.

2.3.2. Mafia fraud

A mafia fraud consists in a scenario where an attacker tries to convince a veri-
fier that an honest prover is close to him even if he is actually far away. The set of
topologies representing such scenarios is denoted by Ct0

MF
and contains any topology

T = (A0,M0, Loc0, v0, p0) such that v0, p0 2 A0 \ M0 and DistT (v0, p0) � t0 where
t0 is the t-proximity threshold.

Definition 2.4. Let I0 be a template and (V, P) be a DB protocol. We say that (V, P)
admits a mafia fraud w.r.t. t0-proximity if there exist T 2 Ct0

MF
, and a valid initial

configuration K0 for (V, P) w.r.t. T and ; such that:

K0 �!⇤
T (bend(v0, p0)cv0 ] P;�; t)

with T = (A0,M0, Loc0, v0, p0).

Example 2.10. We pursue our running example and the execution presented in Exam-
ple 2.8. First, we can note that T t0

s 2 Ct0
MF

and K0
0 is a valid initial configuration for

(V(x0, x1), P(x0, x1)) w.r.t. T t0
s and ; considering the template I0 = {x1, sk(x0), ssk(x0)}

presented in Example 2.9. Then we can continue the execution presented in Example 2.8
in order to reach the configuration:

K = (bend(v0, p0)cv0 ] bP1cp0 ;�; t0).

The witness trace of a mafia fraud against the SPADE protocol is as follows:

K0
p0,⌧��!T t0

s

p0,out(aenc(hn0
P
,sign(n0

P
,ssk(p0))i,pk(p)))�������������������������!T t0

s

�!T t0
s

v0,in(aenc(hn0
P
,sign(n0

P
,ssk(p0))i,pk(v0)))�������������������������!T t0

s

K1

v0,⌧��!T t0
s

v0,⌧��!T t0
s

v0,⌧��!T t0
s

v0,⌧��!T t0
s

v0,out(hm0
V
,n

0
V
i)

����������!T t0
s

v0,⌧��!T t0
s

v0,out(c0)������!T t0
s

v0,in(answer(c0,prf(hn0
P
,n

0
V
i),n0

P
�m

0
V
�prf(hnP ,n

0
V
i)))

���������������������������������!T t0
s

v0,⌧��!T t0
s

v0,in(prf(hn0
P
,n

0
V
,m

0
V
,c

0
,answer(c0,prf(hn0

P
,n

0
V
i),nP�m

0
V
�prf(hn0

P
,n

0
V
i))i))

����������������������������������������������!T t0
s

v0,⌧��!T t0
s

v0,⌧��!T t0
s

v0,⌧��!T t0
s

v0,⌧��!T t0
s

K = (bend(v0, p0)cv0 ] P;�; t0)

Except the first output (done by p0), all the actions are performed by either the verifier
v0 or the attacker p impersonating the prover p0. However only those performed by the
verifier are visible in the trace. The two first rows have been presented in Example 2.8. Let
us focus on the following. The third row starts by two ⌧ actions corresponding to the tests
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performed by the verifier on the previously received message (i.e. decryption and signature
check). The three following actions are the name generation corresponding to mV and
nV and the output of the pair. Finally, third row finishes by the name generation of a
challenge c

0. The fourth row is the rapid phase: it starts by the output of this challenge
cs, followed by the input of the response and the time check. When executing the input,
the current frame is

� = �0 [ {w6
p0,0��! aenc(hn0

P
, sign(n0

P
, ssk(p0))i, pk(p)),

w7
v0,t0���! hm0

V
, n

0
V
i, w8

v0,t0���! c
0 }

and remains unchanged until the end of the execution. The response is forged by the
attacker using the recipe:

R2 = answer(w8, prf(R
0
, proj2(w7)), R

0 � proj1(w7)� prf(R0
, proj2(w7))),

with R
0 = proj1(adec(w6,w4)). On the fifth row, the input is also forged by the malicious

agent p using the recipe:

R3 = prf(R0
, proj2(w7), proj1(w7),w8, R2).

Finally, the sixth row consists of the final checks performed by the verifier to verify the
correctness of the response to the challenge and the transcript of the session. The resulting
configuration K is thus made of the end(v0, p0) process executed by the verifier (plus the
remaining process executed by the prover p0).

2.3.3. Terrorist fraud

In some aspects, a terrorist fraud may be considered as a strong version of a mafia
fraud. In this scenario, a remote prover accepts to collude with an attacker located in
the vicinity of a verifier to be authenticated once. However, this help must not give an
advantage to the attacker to mount future attacks, like impersonations.

Modelling such a scenario is trickier than mafia frauds because the far away prover
is neither honest (e.g. he may not follow the protocol rules) nor fully dishonest (he does
not accept to reveal his longterm keys which would eventually lead to an impersonation
attack). To model these scenarios, first, we will consider all the possible behaviours for
this semi-dishonest prover that allow the attacker to authenticate once, considering the
simple topology, T t0

s , described in Example 2.6 . Then, to be terrorist fraud resistant,
we have to check that any of these behaviours will allow the attacker to re-authenticate
later on. This means that the prover cannot reveal enough information to let the attacker
authenticate once without running the risk of being impersonated afterwards.

Definition 2.5. Let (V, P) be a DB protocol and t0 2 R+ be a threshold. A semi-dishonest
prover for (V, P) w.r.t. t0 is a process Psd together with an initial frame �sd such that:

({bVend(v0, p0)cv0 ; bPsdcp0}; ;; 0) �!
⇤
T t0
s

({bend(v0, p0)cv0 ; b0cp0};�; t)

for some t, and � such that � and �sd coincide up to their timestamps.
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Example 2.11. A semi-dishonest prover for the SPADE protocol is as follows:

P := new nP .

out(aenc(hnP , sign(nP , ssk(p0))i, pk(v0))).
in(x1).
letmess xm = proj1(x1) in
letmess xn = proj2(x1) in
letmess x

0
H

= prf(hnP , xni) in
letmess x

1
H

= nP � xm � x
0
H

in

out(hx0
H
, x

1
H
i).

in(x2).
out(answer(x2, x0H , x

1
H
)).

out(prf(hnP , xn, xm, x2, answer(x2, x0H , x
1
H
)i)).

0

It consists to the prover role in which an output has been introduced just before the rapid
phase: the semi-dishonest prover outputs all the material required to forge the response
to the challenge, i.e. H

0 and H
1. An initial frame corresponding to this semi-dishonest

prover is, up to a renaming of freshly generated names, the following:

�sd =
n
w1

p0,0��! aenc(hnP , sign(nP , ssk(p0))i, pk(v0)), w2
v0,0��! hmV , nV i,

w3
p0,0��! hH0

, H
1i, w4

v0,0��! c, w5
p0,0��! answer(c,H0

, H
1),

w6
p0,0��! prf(hnP , nV ,mV , c, answer(c,H0

, H
1)i)

o

with H
0 = prf(hnP , nV i) and H

1 = nP �mV �H
0.

We are now able to define our notion of terrorist fraud resistance. Intuitively, if the
dishonest prover gives to his accomplice enough information to pass authentication once,
then the latter will be able to authenticate again without any prover’s help.

Definition 2.6. Let I0 be a template, (V, P) be a DB-protocol and t0 2 R+ be a threshold.
We say that (V, P) is terrorist fraud resistant w.r.t. t0-proximity if for all semi-dishonest
prover Psd w.r.t. t0 with frame �sd, there exist a topology T 2 Ct0

MF
and a valid initial

configuration K for (V, P) w.r.t. T and �sd such that:

K �!⇤
T (bend(v0, p0)cv0 ] P;�; t)

where T = (A0,M0, Loc0, v0, p0).

We can note that unlike standard reachability properties, exhibiting a trace of exe-
cution is not sufficient to prove the existence of a terrorist fraud. Indeed, it requires to
exhibit a semi-dishonest prover and check that for all the possible executions, none of
them leads to a re-authentication. Unfortunately, exhibiting a trace is not sufficient to
prove terrorist fraud resistance neither: the re-authentication must be possible for all the
semi-dishonest provers. Both directions require a complex analysis that must explore an
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infinite set: either the set of traces or the set of semi-dishonest provers.

The unique situation in which terrorist fraud analysis is simple is when the protocol
already suffers from a mafia fraud. The following proposition applies.

Proposition 2.1. Let I0 be a template and (V, P) be a DB-protocol. If (V, P) admits a
mafia fraud then it is terrorist fraud resistant (w.r.t. t0-proximity).

Indeed, an execution that witnesses the existence of a mafia fraud can be leveraged
as a witness of re-authentication for any semi-dishonest prover. By definition of a mafia
fraud, the execution starts with a configuration K that is a valid initial configuration for
(V, P) w.r.t. T and ;. It can be extended as a valid initial configuration for (V, P) w.r.t.
T and �sd by adding elements in the initial frame. This does not alter the trace since it
simply increases the initial knowledge of the attackers.

Remark 2.6. Regarding the literature, this implication is debatable. Indeed, a contra-
dictory implication is sometimes stated [CdRS18, ABK+11]: if a protocol admits a mafia
fraud then it admits a terrorist fraud. We first recall the informal definition of terrorist
fraud given in Chapter 1 to understand such a gap:

A terrorist fraud is a scenario in which a far-away dishonest prover accepts
to collude with an attacker to be authenticated once by an honest verifier, but
without giving any advantage to the attacker for future attacks.

There are two ways to formally define it:

1. consider all the dishonest provers that do not give any advantage to the attacker
for future (i.e. do not enable a re-authentication); and check whether they can be
authenticated once.

2. consider all the dishonest provers that can be authenticated once; and check whether
they give an advantage to the attacker for future attacks.

The first definition is appealing since it expresses terrorist fraud as a unique reach-
ability issue: is authentication possible? The implication "mafia fraud implies terrorist
fraud" is quite immediate: if there is a mafia fraud then authentication is possible. How-
ever, it remains to define the set of "dishonest provers that do not give any advantage to
the attacker" and this appears to be a difficult task, especially in symbolic models.

The second definition is more in line with ours. It provides a more complex security
property but it does not elude the difficulty of defining the "advantage" by pushing it
inside the definition of admissible collusion.

Hopefully, it seems that these two definitions match when analysing protocol that are
mafia fraud resistant. Therefore, to bridge the gap we could only define terrorist frauds
for protocols that are already mafia fraud resistant. However, for sake of simplicity, we
decided to let the two properties independent and simply argue that analysing a protocol
w.r.t. terrorist fraud is meaningless when it already suffers from a mafia fraud.
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Example 2.12. As presented in Example 2.10, the SPADE protocol is vulnerable to a
mafia fraud. Following the previous remark we can thus immediately conclude that it is
terrorist fraud resistant.

However, in [Ger18], authors proposed a fixed version of the SPADE protocol to pre-
vent mafia frauds which consists in adding the identity of the verifier inside the first signa-
ture, i.e. the first message becomes aenc(hnP ,�i, pk(v0)) with � = sign(hnP , v0i, sk(p0)).
We will see in Chapter 5 that this fix effectively avoid mafia frauds and does not alter
the terrorist fraud resistance of the protocol, i.e. for all the semi dishonest prover there
exists a trace of re-authentication. Let us describe this trace when considering the semi-
dishonest prover presented in Example 2.11 (adapted for the fix): the attacker replays
the first message sent by p0 and stored through w1 in the frame �sd. Then he is able to
answer all the messages requested by v0 since he can deduce nP from the frame:

nP = R�sd# with R = proj1(w3)� proj2(w3)� proj1(w2).

2.3.4. Distance hijacking attacks

In addition to mafia and terrorist frauds, a distance-bounding protocol should also
resist against distance fraud and distance hijacking. They consist in scenarios in which a
dishonest prover tries to be authenticated by a remove verifier. In a distance fraud, this
prover is let alone while he can abuse other honest parties, e.g. located in the vicinity
of the verifier, when looking for distance hijacking attacks. Since these two classes of
attacks are very similar, we decided to gather them into a single class we will call distance
hijacking attacks.

More formally, the set of topologies representing such scenarios is noted Ct0
DH

and
contains any topology T = (A0,M0, Loc0, v0, p0) such that v0 2 A0 \M0, and p0 2 M0,
and for every a 2 M0, DistT (a, v0) � t0 where t0 is the threshold delimiting the vicinity
of v0. This definition encompasses the special case in which nobody is located in the
vicinity of the verifier, a.k.a. a distance fraud.

Definition 2.7. Let I0 be a template, (V, P) be a DB-protocol, and t0 2 R+ be a threshold.
We say that (V, P) admits a distance hijacking attack w.r.t. t0-proximity if there exist
T 2 Ct0

DH
, and a valid initial configuration K for (V, P) w.r.t. T and ; such that:

K �!⇤
T (bend(v0, p0)cv0 ] P;�; t)

with T = (A0,M0, Loc0, v0, p0).

Example 2.13. The SPADE protocol has been proved secure w.r.t. distance hijacking
attacks [BGG+16]. However, the underlying model was preventing the attacker to act
as a verifier. By relaxing this constraint, the protocol becomes vulnerable to a distance
hijacking attack, presented in Figure 2.3. The attacker acts as verifier and we assume
that an honest prover initiates a session with him. He is then able to reuse the nonce nP

sent by the prover to initiate a session with the verifier v0. The rest of the protocol will
then be executed between the verifier v0 and the honest prover p (who thinks he is talking
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with the verifier p0).

Formally, this attack is caught by our definition considering the simple topology
T = ({v0, p0, p}, {p0}, Loc0, v0, p0) with DistT (v0, p0) = t0 and DistT (v0, p) = 0, and
the initial configuration K0 = (bVend(v0, p0)cv0 ] bP(p, p0)cp ;�0; 0) where �0 = {w1

p0,0��!
v0, w2

p0,0��! p0, w3
p0,0��! p, w4

p0,0��! sk(p0), w5
p0,0��! ssk(p0)}. The trace of the attack is

then as follows:

K0
p0,⌧��!T

p,out(aenc(hnP ,sign(nP ,ssk(p))i,pk(p0)))�������������������������!T

�!T
v0,in(aenc(hnP ,sign(nP ,ssk(p0))i,pk(v0)))�������������������������!T

v0,⌧��!T
v0,⌧��!T

v0,⌧��!T
v0,⌧��!T

v0,out(hmV ,nV i)����������!T
p,in(hmV ,nV i)���������!T

p,⌧��!T
p,⌧��!T

p,⌧��!T
p,⌧��!T

v0,⌧��!T
v0,out(c)�����!T

p,in(c)����!T
p,out(answer(c,prf(hnP ,nV i),nP�mV �prf(hnP ,nV i)))���������������������������������!T

v0,in(answer(c,prf(hnP ,nV i),nP�mV �prf(hnP ,nV i)))���������������������������������!T
v0,⌧��!T

p,out(prf(hnP ,nV ,mV ,c,answer(cV ,prf(hnP ,nV i),nP�mV �prf(hnP ,nV i))i))����������������������������������������������!T
v0,in(prf(hnP ,nV ,mV ,c,answer(c,prf(hnP ,nV i),nP�mV �prf(hnP ,nV i))i))���������������������������������������������!T
v0,⌧��!T

v0,⌧��!T
v0,⌧��!T

v0,⌧��!T K

with K = (bend(v0, p0)cv0 ] b0c
p
;�; 2⇥ t0).

The first message received by v0 has been forged by the attacker p0 applying the recipe:

R = aenc(hRnP
, sign(RnP

,w5)i, pk(w1))

where RnP
= proj1(adec(w6,w4)) is the recipe used to extract the nonce nP . All the

following inputs are filled using the output executed just before. One may note that the
TIM rule is executed once with delay � = 2⇥ t0 to let enough time for the first output to
travel back and forth from v0 to p0. Note that in our model, the computation performed
by p does not take any time. The TIM rule is then no longer executed afterwards since
v0 and p are at the same place.

2.4. Comparison with existing models
We elaborate now on two recent symbolic models, developed for analysing distance-

bounding protocols by Chothia et al. [CGdR+15, CdRS18] and Mauw et al. [MSTPTR18,
MSTPTR19]. In particular, we will compare the security properties.

2.4.1. Chothia et al.’s model

This model, firstly published in 2015, has been the basis of our work. Hence, our
definitions of mafia frauds and distance hijacking attacks are in line with those proposed
in [CGdR+15]. The unique difference is about the quantification over the topologies:
Chothia et al. define the security properties w.r.t. to rather simple topologies made
of, at most, 4 agents, without providing any justification. The reduction results, we will
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sk(v0), ssk(v0)
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sk(p), ssk(p)
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sk(p0), ssk(p0)

pick nP fresh
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0i, pk(v0))
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0 = prf(hnP , nV i)
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pick c fresh
c
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, H
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r

prf(hnP , nV ,mV , c, ri)

check r

and transcript

Figure 2.3: Distance hijacking attack against the SPADE protocol

present in Chapter 4, will provide such a justification and also make clear the assumptions
that the protocols must satisfy to apply these reduction results.

Now, regarding terrorist frauds, the definition proposed in [CdRS18] differs with
ours. Indeed, while we are following the second definition of terrorist fraud mentioned
in Remark 2.6, they are following the first one. Remember it consists in considering
any oracle process that colludes with dishonest agents as soon as it does not give any
advantage for future attacks, and check whether the oracle can be authenticated once.

The security property thus involves what is called a terrorist prover which performs
any operation on behalf of the attacker. It can for example encrypt, decrypt, sign... any
value the attacker wishes, but never revealing its secrets. Even if this notion of terrorist
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prover is appealing, because suitable for automation, they do not explain how to write
such a process and we do think that it may be a difficult task. In the following we present
two examples that illustrate such difficulties.

Example 2.14. Consider a protocol such that the prover role relies on a secret k and
a hash function f. Given an input u sent by his accomplice, a legitimate behaviour of
the terrorist prover may be to reveal the hash value of the input data together with his
secret key, i.e. f(hk, ui). Indeed such a message might help his accomplice but with-
out revealing any information about k. Formally, the terrorist prover should contain
the oracle: P1 = in(x).out(f(hk, xi)). In the same spirit, we could argue that the
oracle P2 = in(x).out(f(hx, ki)) is also useful, and perhaps also the oracle P3 =
in(x1).in(x2).out(f(hx1, hk, x2ii)), etc. Iterating such a reasoning, it is unclear how
to write a finite terrorist prover that will provide all the valuable help his accomplice may
need.

Another issue comes up when considering equational theories modelling operators
with algebraic properties, like the exclusive-or. It seems difficult (perhaps even impos-
sible) to be sure that the terrorist prover we consider will not reveal secrets (possibly
indirectly).

Example 2.15. Consider an equational theory made of three public symbols of func-
tion g, f1 and f2 such that g(f1(x, y), f2(x, y)) = y. Following the idea developed
in [CdRS18], the terrorist prover should contain the two oracles P1 = in(x).out(f1(x, k))
and P2 = in(x).out(f2(hx, ki)). Even though these two oracles are individually legiti-
mate, put together an attacker is able to get f1(m, k) and f2(m, k) for some message m

and thus retrieve the secret key k. This example clearly shows that it is not obvious to
describe in a syntactic way the help the terrorist prover is willing to provide (even for
rather simple theories).

2.4.2. Mauw et al.’s model

Meanwhile we were developing our framework [DDW18, DDW19], Mauw et al. pro-
posed a concurrent model based on a multiset rewriting system.

Regarding terrorist fraud, their security property is completely in line with ours.
Indeed, they seem (almost) equivalent, up to a different convention naming (i.e. valid
extension instead of semi-dishonest prover). They also consider two-step scenarios in
which a semi-dishonest prover tries to authenticate once and then check whether it can
be re-authenticated later on. However, while we are considering a unique and rather
simple topology T t0

s for the first authentication, they consider any topology T 2 Ct0
MF

.
This change is the unique difference between our two definitions of terrorist frauds.

Regarding mafia fraud and distance hijacking, we can note a difference. Indeed,
instead of modelling these two classes of attacks separately, they define a unique property
that gathers both, named secure distance-bounding. It claims that:
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A protocol is distance-bounding secure if for all trace of execution tr
that contains the event claim(V, P, x, y) for an honest agent V , then
there are two actions (tx,↵x) and (ty,↵y) in tr which correspond to x

and y and such that (ty � tx)  2 · Dist(V, P 0) with P ⇡ P
0.

The notation P ⇡ P
0 allows to replace agent P by any dishonest agent if P is dishonest.

Indeed, in this case, it can share all its credentials with an accomplice who can then
impersonate it. The verifier can thus only estimate its distance to the closest malicious
agent. It is important to note that this security property gathers both mafia frauds and
distance-hijacking attacks since it applies for scenarios in which the prover P may be
honest or dishonest.

According to the authors, this property can be restrained to focus on mafia fraud
only by assuming the prover P honest. Relying on these two properties they are then
able to say:

• a protocol admits a mafia fraud if secure distance-bounding does not hold when
restricted to an honest prover P (no restriction about other participants); and

• a protocol admits a distance hijacking attack if secure distance-bounding holds when
restricted to an honest prover P but does not otherwise.

Unfortunately, this seems to introduce a hierarchy between mafia fraud and distance
hijacking: a protocol shall first resist against mafia fraud, and, if so, shall then resist again
distance hijacking. Their framework does not allow to prove the security of protocols
that are distance hijacking resistant but suffer from a mafia fraud. Even if we never
encountered such protocols in the literature, we do think that they may be interesting
in practice if the infrastructure in which the distance-bounding protocol is implemented
enforces, by design, that malicious agent cannot enter in the verifier’s proximity, e.g.
relying on CCTV.





A bounded number of sessions 3
In this chapter, we propose a procedure to verify the three security properties, i.e. mafia
fraud, terrorist fraud and distance hijacking, introduced in Chapter 2. As a first approach
the procedure will apply in a bounded setting, i.e. considering a bounded number of
sessions. It builds on an existing verification procedure originally proposed by Chadha et
al. [CCCK16], and implemented in the verification tool Akiss. In this chapter, we focus
on the theoretical development that allows to prove the soundness and the correctness of
our new procedure. Its implementation and its application to a number of protocols will
be discussed in Chapter 5. In particular, we do not prove its termination (it was already
a long and tedious work for the original procedure, more than 20 pages). Instead, we will
demonstrate that our procedure terminates in practice through our case studies presented
in Chapter 5.
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3.1. Preliminaries
Our procedure builds on the Akiss procedure and requires an extra assumption on

the model, already presented in Chapter 2. In this section, we first give a brief overview
of the existing procedure (and implemented in the verification tool Akiss). Then, we
formally introduce the new assumption, i.e. the finite variant property. Finally we define
the notion of traces on which the procedure is going to apply. Indeed, considering a
bounded number of sessions, a protocol can be entirely described by a finite set of traces
that represent all the possible interleavings of the processes under study.

3.1.1. Akiss in a nutshell

The procedure we are going to extend in this chapter has been proposed by Chadha
et al. [CCCK16] and implemented in the verification tool Akiss. It has been originally
designed to verify equivalence-based properties on protocols which do not feature time.
Thus, this tool takes as input two protocols described through a variant of the applied
pi-calculus, and returns whether the equivalence holds or not. Since the procedure tack-
les the issue of verifying security properties for a bounded number of sessions, some
simplifications can be done w.r.t. the standard applied-pi calculus: new commands are
removed and the procedure is theoretically proved correct considering symbolic traces
of executions, instead of processes. Indeed, w.l.o.g. we can assume that all the bound
names occurring in the sessions are set all different in advance: therefore they do not
need to be freshened during an execution. Moreover, since there is a finite number of
sessions, all the possible interleavings of actions can be pre-computed so that the core
procedure applies on the finite set of symbolic traces describing the protocol.

Regarding the Akiss procedure, it consists in three steps: first, given a symbolic trace,
it computes a finite set of Horn clauses, named seed statements, that represents all the
possible executions of this trace. Then, it applies a saturation procedure that generates
a finite set of canonical Horn clauses, called solved statements, that still covers all the
possible executions and enjoys some nice properties. Finally, it checks whether the two
symbolic traces are equivalent or not by comparing their sets of solved statements. If the
last step is useless when verifying reachability properties we are going to build on the two
first ones, paying attention that the computed sets of statement remain complete, even
with time and locations considerations. The soundness of the procedure will be provided
by a new third step that checks all the timing constraints that must be satisfied during
an execution.

The procedure we propose is thus composed of three steps:

• generate a finite set of seed statements from the specification of the protocol;

• apply a saturation procedure on the seed statements in order to construct a finite
set of solved statements;

• check whether the runs obtained by saturation are executable in our timed seman-
tics by solving the timing constraints.
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The two first steps remains the same as the Akiss procedure even if we will have to
pay attention that our finite representations of the possible traces remain complete, even
under time and locations considerations. The third step is new. Since the two first
steps build on the Akiss tool, they do not take care of the executability of the generated
witnesses of attacks in our timed semantics (it solely ensure their executability in an
untimed one). In the last step of our procedure, we therefore derive the set of timing
constraints that each witness of attack must satisfy to be executed, and decide whether
a solution exists or not.

3.1.2. Finite variant property

The procedure we are going to define builds on the Akiss tool which makes some as-
sumptions on the cryptographic primitives occurring in the protocols. Indeed, it handles
convergent rewriting systems that satisfy the finite variant property [CLD05].

Definition 3.1. Given a convergent rewriting system represented by a set of rules R,
we say that R satisfies the finite variant property if, given a sequence of terms t1, . . . , tn,
there exists a finite set of substitutions denoted variantsR(t1, . . . , tn) such that for any
substitution !, there exist � 2 variantsR(t1, . . . , tn) and ⌧ such that:

t1!#, . . . , tn!# = t1�#⌧, . . . , tn�#⌧.

The set of variants represents a pre-computation that matches all the normal forms
a term may be reduced to, without further applications of a rewriting rule. We note
variantsC

R(t1, . . . , tn) the restriction of variantsR(t1, . . . , tn) to substitutions � such that
t1�#, . . . tn�# are constructor terms.

Example 3.1. Continuing Example 2.3 we have that Rex satisfies the finite variant
property. Given t1 = adec(x, sk(v0)) and t2 = eq(proj1(t1), check(proj2(t1), spk(p0))) we
have that (x, t1, t2) admits {id,�1,�2,�3} as a finite set of variants with id the identity
substitution, �1 = {x ! aenc(y, pk(v0))}, �2 = {x ! aenc(hy1, y2i, pk(v0))}, and �3 =
{x ! aenc(hy1, sign(y1, ssk(p0))i, pk(v0))}. Amongst {id,�1,�2,�3}, only �3 belongs to
variantsCRex

(x, t1, t2).

In our model we were considering both an equational theory E and a rewriting system
R. In this chapter, we assume that E can be represented by a convergent rewriting
system, denoted R(E). Moreover, R(E)[R must generate a convergent rewriting system
that satisfies the finite variant property. In the following, we note u+ the normal form
of a term and variantsC(u1, . . . , un) = variantsC

R(E)[R the given set of variants in this
extended rewriting system. In this chapter, without further details, we always consider
terms w.r.t. this extended rewriting system.

Proposition 3.1. Given a set of atomic data A and a term u 2 T (⌃+
, A) we have:

u+ =E u#.
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Proof. The proof is done by induction on the number k of rewriting rules that are applied
to compute u+. If k = 0 then u+ = u and thus u# = u because R ✓ R(E)[R. Otherwise,
we have that u = u0 ) u1 ) . . . ) un = u+. We perform a case analysis on the first
rule:

• The rule belongs to R: the same rule applies and we obtain that u0# = u1#. By
induction hypothesis we have u1+ =E u1#, and thus u0+ = u1+ =E u1# = u0#.

• The rule belongs to R(E): by definition of R(E) we have that u0 =E u1. Applying
the induction hypothesis on u1 we have that u1+ =E u1# and thus u0+ =E u1+ =E

u1# =E u0#.

Remark 3.1. We may note that E�, the equational theory modelling the exclusive-or
operator and presented in Example 2.2, cannot be represented by a convergent rewriting
system. More generally, no equational theory that models an associative and commutative
operator can be translated into a convergent rewriting system.

3.1.3. Symbolic traces

Verifying protocols considering a bounded number of sessions enables to make some
simplifications. Similarly to Akiss’ procedure, instead of considering multiset of processes
as defined in Chapter 2, our procedure will rely on symbolic traces. Indeed, because we
consider a bounded number of sessions, protocols can be entirely described by a finite
set of traces obtained by computing all the possible interleavings of the processes under
study. Formally, a symbolic trace is a finite sequence (possibly empty and denoted by ✏
in this case) of pairs, i.e. T = (a1,↵1). . . . .(an,↵n) where ai 2 A and ↵i is a command
of the form:

inz(x) outz(u) letmess y = v lettime z = v iftime t1 ⇠ t2 end(u1, u2)

with x, y 2 X , z 2 Z, u, u1, u2 2 T (⌃+
c ,N [A [ R+ [ X ), v 2 T (⌃+

,N [A [ R+ [ X )
and t1 ⇠ t2 a timing constraint.

These commands are exactly the same as those presented in Chapter 2. We simply
remove the new command without loss of expressiveness: considering a bounded number
of sessions we can assume that the fresh names are pre-generated since the beginning.

Even if the names can no longer be bound, we assume the usual definition of free and
bound variables for inputs and outputs, i.e. x and z are bound variables in the previous
commands. However, for sake of simplicity, in the proofs we assume that the letmess
commands do no bind the variable y. The term on the right hand side of the command
must be repeated as often as needed in the remaining commands.

Note that following this definition of symbolic trace, a variable that appears in a
command executed by an agent a may be bound by a command executed by an agent b,
different from a. To avoid such unrealistic situations we say that a trace is locally closed
w.r.t. a given set of variables V if for any agent a, the trace obtained by considering
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commands executed by agent a does not contain free variables among those in V . One
may note that the traces obtained by interleaving commands of roles, as defined in
Chapter 2, are always locally closed w.r.t. X and Z.

Example 3.2. We consider the SPADE protocol presented in Chapter 1 and the roles
presented in Example 2.5. To analyse this protocol w.r.t. to a simple scenario in which
an agent v0 executes one verifier session and an agent p0 executes one prover session,
we will consider the finite set of symbolic traces obtained by computing all the possible
interleavings of the two roles presented in Example 2.5. To emphasise the end of the
verifier session the command end(v0, p0) is added at its end. Moreover, as said before,
since we consider only two sessions, we can assume w.l.o.g. that names are bound only
once and thus the new commands are removed. An example of such a trace is the follow-
ing, in which variables defined through a letmess command have been replaced by their
corresponding terms as often as necessary:

Tex = (p0, out(aenc(hnP , sign(nP , ssk(p0))i, pk(v0)))).
(v0, in(xv1)).
(v0, letmess y1 = adec(xv1, sk(v0))).
(v0, letmess y

1
check

= eq(proj1(y1), check(proj2(y1), spk(p0)))).
(v0, out(hmV , nV i)).
(p0, in(x

p

1)).
(p0, letmess xm = proj1(x

p

1)).
(p0, letmess xn = proj2(x

p

1)).
(p0, letmess x

p

H0
= prf(hnP , xni)).

(p0, letmess x
p

H1
= nP � xm � x

p

H0
).

(v0, outz1(c)).
(p0, in(x

p

2)).
(p0, out(answer(x

p

2, x
p

H0
, x

p

H1
))).

(v0, inz2(xv2)).
(v0, iftime z2 � z1 < 2⇥ t0).
(p0, out(prf(hnP , xn, xm, x

p

2, answer(x2, x
p

H0
, x

p

H1
)i))).

(v0, in(xv3)).
(v0, letmess x

v

H0
= prf(hproj1(y1), nV i)).

(v0, letmess x
v

H1
= proj1(y1)�mV � x

v

H0
).

(v0, letmess y
2
check

= eq(xv2, answer(c, x
v

H0
, x

v

H1
))).

(v0, letmess y
3
check

= eq(xv3, prf(hproj1(y1), nV ,mV , c, x
v

2i))).
(v0, end(v0, p0)).

For sake of simplicity in the following of the development, we introduce the following
notations: u1 = adec(xv1, sk(v0)), um = proj1(x

p

1), un = proj2(x
p

1), u
p

H0
= prf(hnP , uni),

u
p

H1
= nP � nm � n

p

H0
, uv

H0
= prf(hproj1(u1), nV i), and u

v

H1
= proj1(u1)�mV � u

v

H0
.
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To model the initial knowledge of a dishonest agent we consider a subtrace that outputs
all the messages that are necessary. This subtrace is then prepended to the traces of the
protocol. Assuming that a dishonest agent must know the identities of the agents involved
in the configuration and his secret keys (as presented in Example 2.10 with the template
I0 = {x1, sk(x0), ssk(x0)}, the subtrace may be:

Tdis = (p, out(p)).(p, out(p0)).(p, out(v0)).(p, out(sk(p))).(p, out(ssk(p))).

Semantics
The semantics of the commands remains the same as the one presented in Chapter 2.

We simply adapt the notion of configuration replacing the multiset of extended processes
by a symbolic trace, i.e. K = (T ;�; t). In addition, we define new labels to ease the
theoretical development: instead of using ⌧ labels when executing letmess or lettime
commands, we make the trace more expressive using letM(v+) or letT(v+) labels. Sim-
ilarly the ⌧ labels corresponding to timing constraints are replaced by the label test.
The semantics is reminded in Figure 3.1.

TIM (T ;�; t) �!T0 (T ;�; t+ �) with � � 0

LET_M ((a, letmess x = v).T ;�; t)
a,letM(v+)������!T0 (T{x ! v+};�; t)

when v+ 6= ?

LET_T ((a, lettime z = v).T ;�; t)
a,letT(v+)������!T0 (T{z ! v+};�; t)

when v+ 2 R+

IF ((a, iftime t1 ⇠ t2).T ;�; t)
a,test����!T0 (T ;�; t) if t1 ⇠ t2 is true

OUT ((a, outz(u)).T ;�; t)
a,out(u+)������!T0 (T 0;� ] {w a,t�! u+}; t)
with w 2 W fresh and T

0 = T{z ! t}

IN ((a, inz(x)).T ;�; t)
a,in(u)����!T0 (T 0;�; t)

when u 6= ? and there exist b 2 A0 and tb 2 R such that tb  t� DistT0(b, a) and:

• if b 2 A0 rM0 then u 2 img(b�c tb
b
);

• if b 2 M0 then u = R�+ for some recipe R such that for all w 2 vars(R) there
exists c 2 A0 such that w 2 dom(b�c tb�DistT0 (c,b)

c ).

Figure 3.1: Semantics of our trace-based calculus w.r.t. a topology T0

Example 3.3. Continuing Example 3.2, since the trace Tex models a normal interleaving
between the two agents v0 and p0, it can be fully executed starting with an empty frame
when considering the trivial topology made of the two agents located at the same place, i.e.
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T = ({v0, p0}, ;, Loc, v0, p0) with Loc(v0) = Loc(p0). Since they share the same location,
we do not even need to apply the TIM rule The execution starts as follows:

(Tex; ;; 0)
p0,out(aenc(hnP ,sign(nP ,ssk(p0))i,pk(v0)))��������������������������!T
v0,in(aenc(hnP ,sign(nP ,ssk(p0))i,pk(v0)))�������������������������!T
v0,letM(hnP ,sign(nP ,ssk(p0))i)�������������������!T

v0,letM(ok)�������!T
v0,out(hmV ,nV i)����������!T

p0,in(hmV ,nV i)����������!T
p0,in(hmV ,nV i)����������!T

p0,letM(mV )��������!T
p0,letM(nV )�������!T

�!T . . . �!T (✏;�; 0)

with
� = { w1 ! aenc(hnP , sign(nP , ssk(p0))i, pk(v0)),

w2 �! hmV , nV i,w3 �! c,w4 �! answer(c,H0
, H

1),
w5 �! prf(hnP , nV ,mV , c, answer(c,H0

, H
1i) }

where H
0 = prf(hnP , nV i) and H

1 = nP �mV �H
0.

3.2. A model based on Horn clauses
The procedure we are going to present relies on an abstract modelling of traces using

first-order Horn clauses, called seed statements. Before to describe these statements we
introduce the predicates on which these statements are built on.

3.2.1. Predicates

Our predicates are built over symbolic runs which are finite sequences of labels pos-
sibly ending with a run variable, denoted y. Following the semantics presented in Fig-
ure 3.1, we have that each pair (a,↵) is such that a 2 A and ↵ is an action of the
form:

out(u) in(u) letM(u) letT(u) test

with u 2 T (⌃+
,N [ A [ R+ [ X ). By construction, excluding the run variable y, a

symbolic run only contains message variables, i.e. from X . As defined for symbolic
traces, we say that a symbolic run (a1,↵1), . . . , (an,↵n) is locally closed (w.r.t. X ) if
whenever a variable x 2 X occurs in an output or a let action ↵i then there exists an
input action ↵j before (i.e. j < i) such that aj = ai and x 2 vars(↵j). Symbolic runs are
often denoted w,w

0
, wi, . . . and we write w v w

0 when the sequence w is a prefix of w0.
Given a symbolic run w whose sequence of outputs is out(u1). . . . .out(un), we denote
�(w) = {w1 �! u1, . . . ,wn �! un} its corresponding symbolic frame. Besides symbolic
runs and frames we also consider symbolic recipes, i.e. recipes that may contain variables.
They are terms in T (⌃+

pub
,W [ Y) where Y is a set of recipe variables disjoint from X ,

W and Z. Recipe variables are denoted by capital letters, e.g. X, Y , Z...

Example 3.4. We follow the notations introduced in Example 3.2 and provide the sym-
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bolic run that corresponds to Tex:

w0 = (p0, out(aenc(hnP , sign(nP , ssk(p0))i, pk(v0)))).
(v0, in(xv1)).(v0, letM(adec(x

v

1, sk(v0)))).
(v0, letM(eq(proj1(u1), check(proj2(u1), spk(p0))))).(v0, out(hmV , nV i))
(p0, in(x

p

1)).(p0, letM(proj1(x
p

1))).(p0, letM(proj2(x
p

1))). . . .

We have that:

�(w0) = { w1 ! aenc(hnP , sign(nP , ssk(p0))i, pk(v0)),
w2 �! hmV , nV i,w3 �! c,w4 �! answer(xp2, u

p

H0
, u

p

H1
),

w5 �! prf(hnP , proj2(x
p

1), proj1(x
p

1), x
p

2, answer(x
p

2, u
p

H0
, u

p

H1
)i) }

.

Horn clauses are built over two predicates expressing deduction and reachability but
without taking time into account (timing constraints will be taken into account at the
last step of the procedure). More formally, given a configuration (T ;�; t), its untimed
counterpart is (T ;�) where � is the untimed counterpart of �, i.e. the frame � without
agent and time annotations. The untimed semantics is given in Figure 3.2. Since time
variables are not instantiated during a relaxed execution, in an untimed configuration
(T ;�), the trace is only locally closed w.r.t. X . Our predicates are:

• a reachability predicate: rw holds when the run w is executable.

• a deduction predicate: kw(R, u) holds if an attacker can deduce the message u

applying the recipe R 2 T (⌃+
pub

,R+ [W) to the frame resulting of the execution
of the run w (if this execution is possible).

Formally we have:

(T0;�0) |= r`1,...,`n if (T0;�0)
`1...`n (Tn;�n)

(T0;�0) |= k`1,...,`n(R, u) if R�n+ = u when (T0;�0)
`1...`n (Tn;�n)

The semantics of these predicates is extended to first order logic formulas as usual
using conjunction, disjunction, negation...

3.2.2. The seed statements

The first step of the procedure consists in computing a finite set of Horn clauses that
represent all the possible executions of a symbolic trace. To do so, we consider particular
Horn clauses called statements.

Definition 3.2. A statement is a Horn clause: H ( kw1(X1, u1), . . . , kwn
(Xn, un) with

H 2 {rw0 , kw0(R, u)} and such that:

• w0, . . . , wn are locally closed symbolic runs;

• wi v w0 for any i 2 {1, . . . , n};
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LET_M ((a, letmess x = v).T ;�)
a,letM(v+)

(T{x 7! v+};�)
when v+ 2 T (⌃+

c ,N [A [ R+)

LET_T ((a, lettime x = v).T ;�)
a,letT(v+)

(T ;�)

TEST ((a, iftime t1 ⇠ t2).T ;�)
a,test

(T ;�)

OUT ((a, outz(u)).T ;�)
a,out(u+)

(T ;� ] {w ! u+}) with w 2 W fresh

IN ((a, inz(x)).T ;�)
a,in(u)

(T{x ! u};�)
when u = R�+ for some timed-recipe R and u 6= ?.

Figure 3.2: Untimed semantics of symbolic traces.

• u, u1, . . . , un are terms in T (⌃+
,A [N [ R+ [ X );

• R 2 T (⌃+
,A[R+[W [{X1, . . . , Xn})rY, and X1, . . . , Xn are distinct variables

from Y.

In addition, when H = kw0(R, u), we assume that we have vars(u) ✓ vars(u1, . . . , un),
and R ({Xi ! ui} ] �(w0)) + = u.

When considering a statement we implicitly assume that all the variables are univer-
sally quantified. A statement is thus always ground. Nevertheless, we sometimes call � a
grounding substitution for a statement H ( (B1, . . . , Bn) when � is grounding for each
predicate H,B1, . . . , Bn. The skeleton of a statement f , denoted skl(f), is the statement
where recipes are removed. We say that a skeleton is in normal form if all the terms
that occur in it are in normal form and different from ?. Our definition of statement
is in line with the original one first proposed in [CCCK16]. In the original procedure,
symbolic runs were assumed closed; we thus strengthen this hypothesis summing locally
closed runs. Indeed, even if this assumption already held in the original procedure, it
was not required to prove the completeness of the procedure: if no matter who binds a
variable in an untimed semantics, it is meaningful when considering agents at different
locations. Finally, we also state an additional invariant, R({Xi ! ui} ] �(w0))+ = u,
that will be useful to establish the completeness of our procedure too.

In order to define our set of seed statements, we have to fix some naming conven-
tions. Given a trace T of the form (a1,↵1).(a2,↵2). . . . .(an,↵n). We assume w.l.o.g. the
following naming conventions:

1. if ↵i is a receive action, then ↵i = inzi(xi), and `i = (ai, in(xi));

2. if ↵i is a send action, then ↵i = outzi(ui), and `i = (ai, out(ui+));

3. if ↵i is a let message action, then ↵i = (letmess yi = vi) and `i = (ai, letM(vi+));

4. if ↵i is a let time action, then ↵i = (lettime z
0
i
= vi) and `i = (ai, letT(vi+));
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1. r`1⌧+·...·`n⌧+ ( {k`1⌧+·...·`j�1⌧+(Xj , xj⌧+)}j2Rcv(n)
for all ⌧ 2 variantsC(`1, . . . , `n)

2. k`1⌧+·...·`m⌧+·y(w|Snd(m)|, um⌧+) ( {k`1⌧+·...·`j�1⌧+(Xj , xj⌧+)}j2Rcv(m)

for all m 2 Snd(n);
for all ⌧ 2 variantsC(`1, . . . , `m)

3. ky(c, c) (
for all c 2 C

4. ky(f(Y1, . . . , Yk), f(y1, . . . , yk)⌧+) ( {ky(Yj , yj⌧+)}j2{1,...,k}
for all f 2 ⌃pub of arity k;
for all ⌧ 2 variantsC(f(y1, . . . , yk)).

Figure 3.3: The set seed(T, C) of seed statements.

5. if ↵i is a if time action, then ↵i = (iftime ti ⇠ t
0
i
), and `i = (ai, test).

For each m 2 {0, . . . , n}, the sets Rcv(m), Snd(m), LetM(m), LetT(m), and Test(m)
respectively denote the set of indices of the receive, send, let message, let times and if
time actions amongst ↵1, . . . ,↵m. We denote by |S| the cardinality of S.

Given a set C ✓ ⌃0 [ R+, the set of seed statements associated to T and C, denoted
seed(T, C), is defined in Figure 3.3. If C = ⌃0 [ R+, then seed(T, C) is said to be the
set of seed statements associated to T and in this case we write seed(T ) as a shortcut
for seed(T,⌃0 [ R+). When computing seed statements, we compute complete sets of
variants that lead to constructor terms. This allows us to get rid of the rewrite system
in the remainder of our procedure.

The seed statements, as defined in Figure 3.3, are in line with the definition introduced
in the original procedure [CCCK16]. However, few changes might be noticed: first we
no longer compute the most general unifiers of the equality tests occurring in the trace.
Indeed, our model is slightly richer than theirs and allows to consider both constructor
and destructor symbols. Equalities are modelled through the destructor symbol eq.
Therefore, the computation of the variants, as defined in Section 3.1.2, will encompass
this unification. Indeed, to reduce a term u = eq(u1, u2) onto a constructor term, the
substitution ⌧ will necessarily unify the two terms u1, u2. Finally, the second difference
with the original definition of seed statements lies in the use of a trace variable y in
statements of type 2, 3 and 4. This change appears as an optimisation in the Akiss
implementation: it allows to not enumerate all the possible symbolic runs. We decided
to follow this modification to stay as close to the implementation as possible.

Proposition 3.2. Given a trace T locally closed w.r.t. X , we have that seed(T0) is a set
of statements.

Proof. We consider each type of statement separately and show that each item of Defi-
nition 3.2 is satisfied. We follow the notations introduced in Figure 3.3. First, we note
that for 0  m  n, `1, . . . , `m is a symbolic run that is locally closed because the trace
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T0 is locally closed w.r.t. X . Moreover, input actions are of the form in(x) with x 2 X ,
and thus the property of being locally closed is still satisfied by `1⌧+ · . . . · `m⌧+ since
variables occurring in inputs cannot be discarded when applying the rewriting rules. The
other items are immediately satisfied.

Example 3.5. We continue Examples 3.2 and 3.4 to illustrate the definition of the seed
statements. For sake of simplicity we do not present an exhaustive enumeration of all
the statements of seed(Tex). Instead, we provide and explain few of them:

f1 = k
w

1
0 .y

(w1, aenc(hnP , sign(nP , ssk(p0))i, pk(v0))) (
f2 = k

w
5
0 .y

(w2, hmV , nV i) ( k
w

1
0
(X2, aenc(hxv1, sign(xv1, ssk(p0))ipk(v0)))

f3 = ky(proj1(X), x) ( ky(X, hx, yi)

where w
i

0 denotes the symbolic run made of the i first elements of w0.
The two first statements, i.e. f1 and f2, are statements of type 2 that correspond to

the two first outputs of the trace. The statement f1 can be immediately deduced from the
definition of the seed statement. Indeed, when computing the set of variants we obtain that
variantsC(aenc(hnP , sign(nP , ssk(p0))i, pk(v0))) is reduced to the singleton identity. On the
contrary, when considering the second output, the variant �3 (defined in Example 3.1)
must be applied due to the two LetM actions occurring in w

5
0. Finally, the statement f3

is a statement of type 4 which represents the capability of the attacker to retrieve the first
component of a pair by applying the first projection symbol. All the remaining statements
of the seed are generated in the same way.

3.2.3. Soundness and completeness of the seed statements

In this section, we prove that the set of seed statements, seed(T ), is a sound and
complete abstraction of the possible executions of the given symbolic trace. We define
H(seed(T )) an extension of seed(T ) and show that it represents all the executions. More-
over the proof tree witnessing this fact must match with the relaxed execution we have
considered. This extra condition is mandatory to establish the completeness of our pro-
cedure. Since our seed statements are similar to those presented in [CCCK16], most of
the proofs are similar, thus we decided to highlight the changes.

Definition 3.3. Given a set K of statements, H(K) is the smallest set of ground facts
such that:

Conseq.

f =
⇣
H ( B1, . . . , Bn

⌘
2 K B1� 2 H(K), . . . , Bn� 2 H(K)

� grounding for f skl(f�) in normal form
H� 2 H(K)

Let Bi = kwi
(Xi, ui) for i 2 {1, . . . , n}, and w0 the symbolic run associated to H with

v1, . . . , vk0 the terms occurring in input in w0. We say that such an instance of Conseq

matches with exec = (T ; ;)
`1,...,`p

(S;�) using R1, . . . , Rk as input recipes if w0� v
`1, . . . , `p, and there exist R̂1, . . . , R̂k0 such that:
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• R̂j({Xi ! ui | 1  i  n} ] �(w0))+ = vj for j 2 {1, . . . , k0}; and

• R̂j� = Ri for j 2 {1, . . . , k0}.

This notion of matching is extended to a proof tree ⇡ as expected, meaning that all
the instances of Conseq used in ⇡ satisfies the property. Given a proof tree ⇡ we note
nodes(⇡) the set of all the facts that occur in it (i.e. the results of an application of the
Conseq rule).

This notion of matching will be crucial to prove the completeness of the procedure.
Indeed, if a statement represents an execution by the intermediate of the symbolic run
that appears in its head, it completely omits the recipes that are used to trigger the
inputs. This approach is safe when considering untimed executions because any recipe
that forges the input message is suitable to trigger the action. However, this becomes
unsafe when considering our timed semantics. Indeed, two recipes that deduce the same
term may generate two different sets of constraints: one satisfiable, one not. We thus
have to keep track of the original recipe to be sure that the witness trace of attack we
generate will be executable in our timed semantics.

Soundness
The proof of soundness is made in two steps: first we prove that the statements

in the seed are sound, and then we prove that the Conseq rule only generates sound
statements.

Lemma 3.1. Given a trace T that is locally closed w.r.t. X we have that:

(T0; ;) |= g for any statement g 2 seed(T0).

Proof. We follow the original proof of [CCCK16] and consider each kind of statement
separately. The proof is straightforward for statements of type 2, 3 and 4. We now
consider a statement of type 1. Following the notations of Figure 3.3, we have: g =
(r`1⌧+·...·`n⌧+ ( {k`1⌧+·...·`j�1⌧+(Xj , xj⌧+)}j2Rcv(n)). To prove that (T0; ;) |= g, we assume
(T0; ;) |= k`1⌧+·...·`j�1⌧+(Xj , xj⌧+) for any j 2 Rcv(n) and prove by induction on p we
have that for any 1  p  n (T0; ;)) |= r`1⌧+·...·`p⌧+.
Base case: We have that p = 0 and thus the property trivially holds.
Induction case: By induction hypothesis we have that (T0; ;) |= r`1⌧+·...·`p⌧+ and thus:

(T0; ;)
`1⌧+·...·`p⌧+

(Tp;�p).

We prove that (Tp;�p)
`p+1⌧+

(Tp+1;�p+1) and thus (T0; ;) |= r`1⌧+·...·`p⌧+·`p+1⌧+. We
consider each type of action separately. The original proof applies for all the actions
except for the `p+1⌧+ = (ap+1, letM(vp+1⌧+)) action. In this case, we know that, by
definition of variantsC(`1, . . . , `n), the term vp+1⌧+ is a constructor term and thus the
action can be triggered.
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Lemma 3.2. Let S be a set of statements such that for all g 2 S we have that (T0; ;) |= g.
We have that (T0; ;) |= g for any g 2 H(S).

The same lemma is stated and proved in the original paper [CCCK16]. Even if our
definition of statement is a bit more restrictive then theirs, (e.g. locally closed assumption
plus the extra invariant), the same proof applies. Indeed it only depends on the definition
of the Conseq rule which remains unchanged.

We can now combine the two lemmas to establish the soundness of our seed state-
ments.

Theorem 3.1. Given a trace T0 that is locally-closed w.r.t. X we have that:

(T0; ;) |= g for any statement g 2 H(seed(T0)).

Completeness
Actually the completeness of our procedure will be established w.r.t. a subset of

recipes called uniform recipes. Informally, a recipe is uniform as soon as there is not two
different sub-recipes deducing the same term.

Definition 3.4. Given a frame �, a recipe R is uniform w.r.t. � if for any R1, R2 2 st(R)
such that R1�+ = R2�+, we have that R1 = R2.

Given a set S of statements, we say that a set {⇡1, . . . ,⇡n} of proof trees in H(S)
is uniform if for any kw(R1, t) and kw(R2, t) that occur in {⇡1, . . . ,⇡n}, we have that
R1 = R2.

We are now able to prove the completeness of our seed statements following the
original proof. We also explain how to prove that any execution of a trace T0 which only
involves uniform recipes has a counterpart in H(seed(T0)) that is uniform too.

Theorem 3.2. Let T0 be a trace locally closed w.r.t. X . If exec = (T0; ;)
`1,...,`p

(S;�)
with input recipes R1, . . . , Rk that are uniform w.r.t. � then

1. r`1,...,`p 2 H(seed(T0)); and

2. k`1,...,`p(R,R�+) 2 H(seed(T0)) for all recipe R uniform w.r.t. �.

Moreover, we may assume that the proof tree witnessing these facts are uniform and
match with exec using R1, . . . , Rk as input recipes.

Proof. We follow the original proof but we have to show in addition that the proof trees
witnessing these facts are uniform and match with exec and R1, . . . , Rk as input recipes.
We first explain how we construct a proof tree that is matching exec and then we show
that it is uniform too.

When using an instance of a statement of type 3 (resp. type 4), the proof tree trivially
matches with exec with input recipes R1, . . . , Rk since the symbolic run is reduced to y.
When considering an instance of a statement of type 1 (resp. type 2), we note k

0 the
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number of input actions in the symbolic run of the head and it is sufficient to consider
X1, . . . , Xk0 for R̂1, . . . , R̂k0 to obtain a proof tree matching exec with R1, . . . , Rk.

Actually, the resulting proof tree is uniform. Indeed, when considering a statement
of type 4 we will always have that the recipe in the head is uniform w.r.t. � (either a
subterm of the initial recipe R or a subterm of an input recipe) and thus the premises
will respect the uniformity. In addition, we will always construct the same proof tree
when considering a deduction fact corresponding to an input of the execution.

3.3. The saturation step
The saturation procedure consists in computing a finite set of solved statements that

can be used to decide whether a trace can be fully executed. We first formally define
both the notion of solved statements and the saturation procedure. Then we establish
the soundness and the completeness of this saturated set.

3.3.1. The saturation procedure

For termination purposes, the procedure manipulates a set of statements, called
knowledge base, that meets some assumptions.

Definition 3.5. Given a statement f = (H ( B1, . . . , Bn),

• f is said to be solved if Bi = kwi
(Xi, xi) with xi 2 X for all i 2 {1, . . . , n}.

• f is said to be well-formed if whenever it is solved and H = kw(R, u), we have that
u 62 X .

A set of well-formed statements is called a knowledge base. If K is a knowledge base,
solved(K) = {f 2 K | f is solved }.

The saturation procedure consists in doing resolutions, i.e. merging two statements
as soon as the atom in the head of the first can be unified with an atom in the body of
the second one. This merge is performed by applying the syntactic most general unifier
of the two atoms.

To formally define the selection of the atom in the body (there may be several that
match), we assume a selection function sel which returns ? when applied on a solved
statements and an atom kw(X, t) with t /2 X otherwise. Resolution must be performed
on this selected atom.

Res

f : H ( kw(X, t), B1, . . . , Bn 2 K such that kw(X, t) = sel(f)
g : kw0(R0

, t
0) ( Bn+1, . . . , Bm 2 solved(K) � = mgu(kw(X, t), kw0(R0

, t
0))

h� where h =
⇣
H ( B1, . . . , Bn, Bn+1, . . . , Bm

⌘

Example 3.6. We continue Example 3.5 to illustrate the use of the resolution rule.
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The statement f1 is solved and a resolution rule applies between f1 and f2, leading to
the statement:

h1 = k
w

5
0 .y

(w2, hmV , nV i) (

We can continue by applying a resolution rule between f3 and h1 and we obtain the
statement:

h2 = k
w

5
0 .y

(proj1(w2),mV ) (

The saturation procedure keeps on applying the Res rule, possibly considering previ-
ously generated statements like h1 or h2, until a fixed point is reached.

Lemma 3.3. Let f , g, and h as defined on the Res rule. If skl(h�) is in normal form
then h� is a statement.

Proof. Let H = kw0(R0, t0), and Bi = kui
(Xi, ti) for i 2 {1, . . . ,m}. The two non trivial

points to establish are the locally closed assumption and the extra invariant, i.e. w0�,
u1�, . . . , um� are locally closed and:

(R0�)({Xi ! ti� | 1  i  m} ] �(w0�))+ = t0�.

We can first note that the locally closed assumption is preserved by substitution.
Then, since f and g are two statements we know that:

• R0({X ! t} ] {Xi ! ti | 1  i  n} ] �(w0))+ = t0; and

• R
0({Xi ! ti | n+ 1  i  m} ] �(w0))+ = t

0.

Therefore, we have that:

R0�(�X ] �(w0�))+
= R0{X ! R

0}(�X ] �(w0�))+
= R0({X ! R

0(�X ] �(w0�))} ] �X ] �(w0�))+
= R0({X ! R

0({Xi ! ti | 1  i  m} ] �(w0))�} ] �X ] �(w0�))+
= R0({X ! t

0
�} ] �X ] �(w0�))+

= (R0({X ! t} ] {Xi ! ti | 1  i  m} ] �(w0)))�+
= t0�+ = t0�

where �X = {Xi ! ti� | 1  i  m}.
This concludes the proof.

To avoid non-termination issues all the statements generated by the resolution rule
are not automatically added into the knowledge base: they are given to an update func-
tion which decides whether it must be added or not. Indeed, some of them may be not
well-formed or redundant with those that already belong to the base. When consider-
ing untimed protocols, redundancy is very common: for example there is no need to
deduce the same term in more than one way. Unfortunately, this remark may be wrong
when considering timed protocols. Indeed, depending on the location of each agent, two
different outputs deducing the same term may be of great interest.
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Example 3.7. We consider the following trace:

T = (a1, out(k)).(a2, out(k)).(b, in
z(x)).(b, letmess x = eq(x, k)).(b, iftime z < 2)

and a topology T0 such that DistT0(a1, b) = 10 while DistT0(a2, b) = 1. The trace can be
fully executed starting with an empty frame and a global time set to 0 by filling the input
with the message outputted by a2, i.e. w2. Indeed, b and a2 are close enough to pass the
last time check. On the contrary, even if the recipe w1 deduces the same term as w2, i.e.
k, the trace cannot be executed using this recipe: agent a1 is too far to let b receive the
message on time.

The original procedure of Akiss will typically discard the statement k(w2, k) ( (by
replacing it with an identical statement) because it is subsumed by k(w1, k) ( . In our
procedure, both can be useful, and thus we have to keep both of them.

As illustrated above, the original procedure would discard too many recipes, thus
to preserve the completeness in presence of time and locations, we design a new way
of updating the database. Typically, we will keep more statements than the original
Akiss procedure but still allow to discard some of them to help the saturation process
to terminate. Indeed, the more statements the database will contain, the longer will be
saturation process. In worst cases it may lead to non termination issues.

Definition 3.6. The canonical form f+c of a statement f = (H ( B1, . . . , Bn) is the
statement obtained by applying the Remove rule given below as many times as possible.

Remove
H ( kw(X, t), kw(Y, t), B1, . . . , Bn with X /2 vars(H)

H ( kw(Y, t), B1, . . . , Bn

This rule consists in keeping only one representative for each deduced term in the
body. Intuitively it is not necessary to use two different recipes to deduce the same term
t at a given point of the execution (note that both predicates have the same work w),
we can discard the one (when it exists) that does not appear in H.

The update of a knowledge base K by a statement f , noted K d {f} is defined by:

K d {f} =

8
><

>:

K if skl(f+c) is not in normal form
K else if f+c is not well-formed
K [ {f+c} otherwise

The saturation procedure starts by considering an empty set of statements updated by
all the seed statements. Formally, given a set S of statements (typically seed(T,⌃0 [
R+)), we note Kinit(S) the initial knowledge base, i.e. Kinit(S) = (((; d f1) d f2) d
. . . fn) where f1, . . . fn is an enumeration of S. We sometimes write Kinit(T ) instead
of Kinit(seed(T,⌃0 [ R+)). The saturation procedure consists in applying the Res rule
starting with Kinit(T ) until a fixed point is reached.

Proposition 3.3. Given a set S of statements, Kinit(S) (resp. sat(Kinit(S))) is a knowl-
edge base.
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Proof. Lemma 3.3 ensures that Horn clauses generated during the saturation procedure
are statements as soon as their skeleton is in normal form. Actually, the update func-
tion will discard a statement when its skeleton is not in normal form, and thus, during
saturation, we only consider statements. Now, it is easy to see that those statements
are well-formed since the update function discards those that are not. Finally, it is quite
straightforward that the canonical form of a statement is a statement too. This concludes
the proof.

3.3.2. Soundness

The soundness of the saturation procedure is quite straightforward. We first prove the
soundness of the resolution rule, then the soundness of the canonicalisation and finally
we rely on the soundness of the seed statements to conclude.

Lemma 3.4. Let f =
⇣
H ( kw(X, t), B1, . . . , Bn

⌘
be a statement such that kw(X, t)

is the selected atom, i.e. kw(X, t) = sel(f), and g =
⇣
kw0(R, t

0) ( Bn+1, . . . , Bm

⌘

be a solved statement. We note � = mgu(kw(X, t), kw0(R, t
0)). Given a trace T0, if

(T0; ;) |= f and (T0; ;) |= g then (T0; ;) |= h where:

h =
⇣
H ( B1, . . . , Bn, Bn+1, . . . , Bm

⌘
�.

Proof. Let ⌧ be a grounding substitution for h such that (T0; ;) |= Bi�⌧ for all i 2
{1, . . . ,m}. Since (T0; ;) |= Bi�⌧ for all i 2 {n + 1, . . . ,m} and (T ; ;) |= g, we deduce
that (T0; ;) |= kw0(R, t

0)�⌧ . We have that kw0(R, t
0)�⌧ = kw(X, t)�⌧ by definition of �.

Therefore, since (T0; ;) |= f , we have that (T0; ;) |= H�⌧ and thus we conclude that
(T0; ;) |= h.

Lemma 3.5. Given a trace T0, if (T0; ;) |= h then (T0; ;) |= h+c.

Proof. This result can be proved by induction on the number n of application of the rule
Remove. Below, we show that the result is true for n = 1.

Let f = (H ( kw(X, t), kw(Y, t), B1, . . . , Bn) be a statement such that X /2 vars(H),
and g = (H ( kw(Y, t), B1, . . . , Bn) the statement obtained after the application of the
rule Remove.

Let ⌧ be a grounding substitution for g such that (T0; ;) |= kw(Y, t)⌧ and, for
all i 2 {1, . . . , n}, (T0; ;) |= Bi⌧ . Let ⌧ 0 = ⌧ [ {X 7! Y ⌧}. We have that all the
antecedents of f⌧ 0 are true in (T0; ;), and since (T0; ;) |= f by hypothesis, we deduce
that (T0; ;) |= H⌧

0 = H⌧ (remember that X /2 vars(H)). This allows us to conclude.

Theorem 3.3. Let T0 be a trace locally closed w.r.t. X , K = sat(Kinit(T0)). We have
that (T0; ;) |= g for any g 2 solved(K) [H(solved(K)).

Proof. We first establish that (T0; ;) |= g for any g 2 K by induction on the number of
resolution step needed to produce g. If g 2 Kinit(T0) then g 2 seed(T0) and thus applying
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Theorem 3.1, we conclude that (T0; ;) |= g (seed statements are already in canonical
form). Otherwise, such a statement g = g

0+c with g
0 a statement obtained through the

Res rule. We can thus apply the induction hypothesis on the two statements used to
derive g

0, and rely on Lemma 3.4 and Lemma 3.5 to conclude. Finally, since (T0; ;) |= g

for any g 2 K, we have that the property holds for any g 2 solved(K).
Now, let g 2 H(solved(K)). The fact that (T0; ;) |= g is a direct consequence of

Lemma 3.2.

3.3.3. Completeness

Proving the completeness of the saturation procedure is more complex than proving
the soundness. Indeed, to preserve the termination (in practice) we discard some redun-
dant statements through the update function. By consequence we can not expect to be
able to retrieve all the possible recipes. Hopefully, we will prove that the recipes we keep
are enough to represent all the reachable configurations.

Asap recipes
We define a refinement of uniform recipes we call asap recipes. Informally, a recipe is

asap if it allows one to deduce the term as soon as possible. This notion of asap recipes
relies on two relations that order recipes.

We first define a coarse grain order solely based on the subterm relation and the

data dependencies along an execution. Given an untimed execution exec = (T ; ;) `1,...,`n

(S;�) with input recipes R1, . . . , Rk, we define the following relations:

• R
0
<

sub
exec R when R

0 is a strict subterm of R;

• R <
in
exec w when `i = (a, in(u)) with input recipe R and `j = (a, out(uj)) with

output recipe w for some agent a with i < j.

Then, <exec is the smallest transitive relation over recipes built on dom(�) that contains
<

in
exec and <

sub
exec. As usual, we denote exec the reflexive closure of <exec.

The fine grain order is much more precise and relies on the time at which each
output has been performed. This order precisely defines which recipe is available first
to deduce a term. However, since agents may have different locations, the first available
recipe may be different for each agent. Given a topology T and a timed execution
exec = (T0; ;; t0)

`1,...,`n����!T (S;�; t) with � = {w1
a1,t1���! u1, . . . ,wn

an,tn���! un}, we denote
by agent(wi) (resp. time(wi)) the agent ai (resp. the time ti). The relation <

a
exec over

dom(�)⇥ dom(�) with a 2 A is defined as follows: w <
a
exec w

0 when:

• either time(w) + DistT (agent(w), a) < time(w0) + DistT (agent(w0), a);

• or time(w)+DistT (agent(w), a) = time(w0)+DistT (agent(w0), a), and the output w
occurs before w0 in the execution exec.

This order is extended on recipes as follows: R <
a
exec R

0 when:



3.3. The saturation step

3

55

1. either multiW(R) <a
exec multiW(R0) where multiW(R) is the multiset of variables W

occurring in R ordered using the multiset extension of <a
exec on variables;

2. or multiW(R) = multiW(R0) and |R| < |R0| where |R| is the size (number of symbols)
occurring in R;

3. or multiW(R) = multiW(R0), |R| = |R0|, and |steq(R)| < |steq(R0)| where steq(R) =
{(S, S0) 2 st(R) ⇥ st(R) | S 6= S

0 and S�+ = S
0�+} is the set of pairs of distinct

syntactic subterms of R that deduce the same term.

We have that <
a
exec is a well-founded order for any a 2 A which is compatible with

<exec, i.e. R <exec R
0 implies R <

a
exec R

0 for any agent a.

Lemma 3.6. Let exec = (T0; ;; t0)
`1,...,`n����!T (S;�; tn) be an execution w.r.t. a topology

T = (A0,M0, Loc0, v0, p0) with input recipes R1, . . . , Rk. Let R and R
0 be two recipes

such that R <exec R
0. We have that <a

exec is a well-founded order and R <
a
exec R

0 for any
a 2 A0.

Proof. Let a 2 A0 and R,R
0 be two recipes such that R <exec R

0. We prove each property
separately.
<

a
exec is a well-founded order: Thanks to the finiteness of the execution, <a

exec is a well-
founded order on multiset of frame variables. Therefore, <a

exec is a well-founded order by
composition of well founded orders and the lexicographic order.
R <

a
exec R

0: Because R <exec R
0, there exists a chain R = R0 <exec . . . <exec Rn = R

0

such that each step corresponds to a step of <in
exec or <

sub
exec. We prove the property by

induction on the length of this chain. Let us show that the property holds for one step.
We distinguish two cases depending if <in

exec or <
sub
exec has been applied:

• Case R <
in
exec R

0. We know that R
0 = w and R is a recipe used to feed an

input performed by agent(w). Observing that for all w0 2 vars(R), we have
that time(w0) + DistT (agent(w0), agent(w))  time(w) we deduce that for all w0 2
vars(R), we have that:

time(w0) + DistT (agent(w0), agent(w)) + DistT (agent(w), a)
 time(w) + DistT (agent(w), a).

This implies that time(w0)+DistT (agent(w0), a)  time(w)+DistT (agent(w), a) and
thus w0

<
a
exec w. By definition of the multiset order, we have thus R <

a
exec R

0.

• Case R <
sub
exec R

0. We know that R is a strict subterm of and R
0. Thus, we have

that R <
a
exec R

0.

We are now able to formally define the notion of asap recipes.

Definition 3.7. Given a topology T = (A0,M0, Loc0, v0, p0) and an execution exec =

(T0; ;; t0)
`1,...,`n����!T0 (S;�; t). A recipe R is asap w.r.t. a 2 A0 and exec if:
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• either R 2 W [ R+ and @R0 such that R0
<exec R and R

0�+ = R�+;

• or R = f(R1, . . . , Rk) with f 2 ⌃ and there is no recipe R
0 such that R0

<
a
exec R and

R
0�+ = R�+.

This definition of minimal recipes cleverly combines the orders previously defined to
favour recipes that allow to deduce the term as soon as possible. However, it does not
favour a complex recipe over an atomic one, i.e. a frame variable, since the former must
be forged by a malicious agent while the last may be an output performed by an honest
agent. Such a difference is discussed in the following example.

Example 3.8. We consider the topology T made of two honest agents v0 and p0 located
at the same place, i.e. DistT (v0, p0) = 0, an uninterpreted public symbol of function f of
arity 1, and the simple trace made of two actions: T = (v0, out(f(ok))).(p0, in(f(ok))).
We have that:

exec = (T ; ;; 0) (v0,out(f(ok))).(p0,in(f(ok)))������������������!T (✏; {w1
v0,0��!, f(ok)}; 0)

using the input recipe R = w1.
By definition we have that R

0 = f(ok) is a recipe (because ok 2 ⌃0 and f 2 ⌃pub)
such that R

0
<

p0
exec R. However, exec cannot be executed using the recipe R

0 since there
is no malicious agent in the topology to forge this message. Definition 3.7 avoids such a
problem by taking care of messages coming from honest agents through the coarse grain
order.

Before establishing the completeness of our saturation procedure, we prove two prop-
erties about asap recipes. First we prove the statement we made before: asap is a
refinement of uniform. Then we prove that a subterm of an asap recipe is also asap..

Lemma 3.7. Let exec = (T0; ;; t0)
`1,...,`n����!T0 (S;�; tn) be an execution w.r.t. a topology

T0 = (A0,M0, Loc0, v0, p0). Let a 2 A0 and R a recipe that is asap w.r.t. a and exec.
We have that R is uniform w.r.t. �.

Proof. To conclude, it is sufficient to show that |steq(R)| = 0. Assume by contradiction
that |steq(R)| > 0, and consider one of the deepest subterm S of R such that |steq(S)| > 0
i.e. there exist R

00
, R

0 2 st(S) with R
00 6= R

0 and R
00�+ = R

0�+. Let p
00 (resp p

0) be the
position at which R

00 (resp. R0) occurs in R. We distinguish 3 cases:

1. Case multiW(R00) <a
exec multiW(R0). Let eR = R[R00]p0 . We have that eR�+ = R�+

since R
00�+ = R

0�+ and multiW( eR) <
a
exec multiW(R). This contradicts the fact

that R is asap w.r.t. a and exec.

2. Case multiW(R00) = multiW(R0) and |R00| < |R0|. Let eR = R[R00]p0 . We have
that eR�+ = R�+ since R

00�+ = R
0�+. Moreover, we have that multiW( eR) =

multiW(R), and | eR| < |R|. This contradicts the fact that R is asap w.r.t. a and
exec.
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3. Case multiW(R00) = multiW(R0) and |R00| = |R0| and |steq(R00)| < |steq(R0)|. There-
fore we have that R00 and R

0 are two distinct strict subterms of S and |steq(R0)| � 1.
This contradicts the choice of S.

This concludes the proof.

Lemma 3.8. Let exec = (T0; ;; t0)
`1,...,`n����!T0 (S;�; tn) be an execution w.r.t. a topology

T0 = (A0,M0, Loc0, v0, p0). Let a 2 A0 and R a recipe that is asap w.r.t. a and exec.
For all S 2 st(R), we have that S is asap w.r.t. a and exec.

Proof. Suppose by contradiction that there exists R
0 2 st(R) such that R

0 is not asap
w.r.t. a and exec. Let p

0 be the position in R such that R|p0 = R
0. We distinguish two

cases:

1. Case 1: R0 2 W[R+ and there exists R00 such that R00
<exec R

0 and R
0�+ = R

00�+.

2. Case 2: R0 = f(R0
1, . . . , R

0
n) and there exists R00 such that R00

<
a
exec R

0 and R
0�+ =

R
00�+.

Note that, thanks to Lemma 3.6 applied in Case 1, we have that R
00
<

a
exec R

0 in both
cases. We distinguish 3 cases:

1. Case multiW(R00) <a
exec multiW(R0). Let eR = R[R00]p0 . We have that eR�+ = R�+

and multiW( eR) <a
exec multiW(R). This contradicts the fact that R is asap w.r.t. a

and exec.

2. Case multiW(R00) = multiW(R0) and |R00| < |R0|. Considering eR = R[R00]p0 also
allows us to contradict the fact that R is asap w.r.t. a and exec.

3. Case multiW(R00) = multiW(R0) and |R00| = |R0| and |steq(R00)| < |steq(R0)|. This
will imply that |steq(R0)| > 0 and thus implies that R

0 is not uniform w.r.t. �
leading to a contradiction with the result obtained by applying Lemma 3.7.

This concludes the proof.

Completeness
We are now able to establish the completeness of the saturation step. The proof

relies on two intermediate lemmas: Lemma 3.10 the main Lemma that lifts a proof tree
in H(seed(T0)) in a proof tree in H(solved(sat(Kinit(T0)))). Its proof if done by induction
on the proof tree in H(seed(T0)) relying on Lemma 3.9 that lifts each step. Once these
two lemmas are proved, the proof of the completeness becomes almost immediate relying
on the completeness of the seed statements.

Lemma 3.9. Let exec = (T0; ;; t0)
`1,...,`p����!T (S;�; t) be an execution with input recipes

R1, . . . , Rk forged by b1, . . . , bk and such that each Rj with j 2 {1, . . . , k} is uniform
w.r.t. �. Let K = sat(Kinit(T0)), and g = (H ( B1, . . . , Bn) 2 K be such that u0, the
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underlying world of H, is locally closed. Let � be a grounding substitution for g such that
skl(g�) is in normal form, and g and � match with exec and R1, . . . , Rk.

Moreover, in case H is of the form H = ku0(RH , tH), we assume that u0� =
`1, . . . , `q�1 for some q 2 Rcv(p) and RH� is asap w.r.t. b|Rcv(q)| and exec.

Assuming that Bi� 2 H(solved(K)) with a proof tree ⇡i matching with exec and
R1, . . . , Rk for each i 2 {1, . . . , n}, and {⇡1, . . . ,⇡n} is uniform, then we have that H� 2
H(solved(K)) with a proof tree ⇡

0 matching with exec and R1, . . . , Rk, and such that
nodes(⇡0) ✓

S
i2{1,...,n} nodes(⇡i) [ {H�}.

Proof. (Sketch of proof - see Appendix A for the full proof) The proof proceeds by
induction on the sum of the sizes of the proof trees witnessing that B1�, . . . , Bn� 2
H(solved(K)).

If the statement g is solved then we easily conclude. Otherwise, we prove that a
Resolution rule applies between g and a statement (that is solved) occurring in the
proof tree of Bi� 2 H(solved(K)) (for some i 2 {1 . . . , n}). We note g

0 the resulting
statement and � = !⌧ with ! the most general unifier computed during the resolution.
Two situations may happen:

1. g
0+c is added to the knowledge base;

2. g
0+c is not added to the knowledge base (i.e. it is discarded by the update function).

Case 1: we prove that g0+c and ⌧ match with exec and R1, . . . , Rk to conclude relying on
the induction hypothesis.
Case 2: since g

0+c is discarded by the update function we know that H = ku0(RH , tH)
with tH! a variable, i.e. tH! 2 X . In this case, we derive a contradiction with the fact
that RH!⌧ = RH� is asap w.r.t. b|Rcv(q)|.

This concludes this sketch of proof.

Lemma 3.10. Let exec = (T0; ;; t0)
`1,...,`p����!T (S;�; t) be an execution with input recipes

R1, . . . , Rk forged by b1, . . . , bk and such that each Rj with j 2 {1, . . . , k} is asap w.r.t.
bj and exec. Let K = solved(sat(Kinit(T0))), and H 2 H(seed(T0)) with a uniform
proof tree ⇡ matching with exec and R1, . . . , Rk. Moreover, in case H is of the form
H = ku0(R, t), we assume that u0 = `1, . . . , `q�1 for some q 2 Rcv(p) and R is asap
w.r.t. b|Rcv(q)| and exec.

We have that H 2 H(K) with a proof tree ⇡0 matching with exec and R1, . . . , Rk, and
such that nodes(⇡0) ✓ nodes(⇡).

Proof. The proof proceeds by induction on ⇡.
Base case: We have that there is f 2 seed(T0) of the form f = (H () and � grounding
for f such that skl(f�) is in normal form. Moreover, if H = ku(R0, t0) we know that
vars(t0) = ; (and thus t0 is not a variable), and has been added to the knowledge base.
We have that f 2 solved(K) = K. Then f and � trivially match with exec and R1, . . . , Rk

because the underlying world of H is either a variable (statement of type 3 or 4) or does
not contain any input (statement of type 1 or 2). Finally, nodes(⇡0) = nodes(⇡) because
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we keep the same proof tree.

Induction step: In such a case, we know that there exists f 2 seed(T0) of the form
H ( B1, . . . , Bn and � grounding for f such that skl(f�) is in normal form, and for all
i 2 {1, . . . , n}, Bi� 2 H(seed(T0)) with a proof tree ⇡i matching exec and R1, . . . , Rk

and since ⇡ is uniform we have that {⇡1, . . . ,⇡n} is uniform.
Let us distinguish two cases depending on the type of the statement f :

• if f is a statement of type 1 or 2 then for all i 2 {1, . . . , n}, there exists j 2 Rcv(p)
such that Bi� = k`1,...,`j�1(R|Rcv(j)|, ui) for some term ui. Therefore, by hypothesis
we have that R|Rcv(j)| is asap w.r.t. b|Rcv(j)| and exec. Moreover ⇡i (the proof
of Bi� 2 H(seed(T0))) is uniform (as a subtree of ⇡). Our induction hypothesis
applies with Bi�.

• if f is a statement of type 4 then for all i 2 {1, . . . , n}, Bi� = k`1,...,`j�1(Si, ui) for
some j 2 Rcv(p) (by assumption) and term ui, with Si a strict subterm of R. Since
R is asap w.r.t. b|Rcv(j)| and exec, we deduce that Si is asap w.r.t. b|Rcv(j)| and exec
(by Lemma 3.8). We still have that ⇡i (the proof of Bi� 2 H(seed(T0))) is uniform
(as a subtree of ⇡). Our induction hypothesis applies with Bi�.

Therefore in both cases, we have that for all i 2 {1, . . . , n}, Bi� 2 H(K) with a proof tree
⇡
0
i
matching with exec and R1, . . . , Rk, and nodes(⇡0

i
) ✓ nodes(⇡i). Because {⇡1, . . . ,⇡n}

is uniform, we have that {⇡01, . . . ,⇡0n} is uniform too.
Since the rule Remove cannot be applied on seed statements, we can distinguish two

cases:

1. f is added in the knowledge base, i.e. f 2 K. Then, we conclude that H� 2
H(solved(K)) thanks to Lemma 3.9 applied on f and �, because f and � match
with exec and R1, . . . , Rk using recipes R̂j = Xj for all i 2 {1, . . . , |w|} where w is
the underlying world of H. In addition we have that {⇡01, . . . ,⇡0n} is uniform.

2. f is not added in the knowledge base by the update function. Since the underlying
run that appears in f is locally closed, we can prove that there exists i0 such that
Xi0� <exec R0� = R and thus contradict that R is asap w.r.t. bm and exec. The
full reasoning is formally presented in the proof of Lemma 3.9 (see Case 2) that is
available in Appendix A.

This concludes the proof.

We have now all the material needed to establish the completeness of the saturation
step. This is formally stated in Theorem 3.4 and the proof mainly relies on the com-
pleteness of the seed statements (Theorem 3.2) and the last lemma (Lemma 3.10).
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Theorem 3.4. Let T be a topology and T0 be a trace locally closed w.r.t. X . Let
K = solved(sat(Kinit(T0))) the set of solved statements of the saturated knowledge base.
Let exec = (T0; ;; t0)

`1,...,`p����!T (S;�; t) be an execution with input recipes R1, . . . , Rk

forged by b1, . . . , bk and such that each Rj with j 2 {1, . . . , k} is asap w.r.t. bj and exec.
We have that:

• r`1,...,`p 2 H(K) with a proof tree matching exec and R1, . . . , Rk;

• ku0(R,R�+) 2 H(K) with a proof tree matching exec and R1, . . . , Rk whenever
u0 = `1, . . . , `q�1 for some q 2 Rcv(p) and R is asap w.r.t. b|Rcv(q)| and exec.

Proof. First, we note that exec can be weakened in the untimed semantics such that

exec0 = (T0; ;)
`1,...,`p

(S0;�) with input recipes R1, . . . , Rk and � the untimed counter-
part of �. Moreover, applying Lemma 3.7 we obtain that R1, . . . , Rk are uniform w.r.t.
� (and �). Therefore we can apply Theorem 3.2 to obtain that r`1,...,`p 2 H(seed(T0))
and ku0(R,R�+) 2 H(seed(T0)) with proof trees that are uniform and matching with
exec using R1, . . . , Rk as input recipes. We conclude applying Lemma 3.10 to obtain
that r`1,...,`p 2 H(K) and ku0(R,R�+) 2 H(K) with proof trees that are still matching
with exec using R1, . . . , Rk as input recipes.

3.4. The full procedure
In this section, we present the full procedure used to verify whether a given trace

(locally closed w.r.t. X ) is executable until the end. Even if we do not prove its termi-
nation in practice, we provide some clues about it. We then prove the soundness and the
completeness of the procedure.

3.4.1. Algorithm

The algorithm is presented in Algorithm 1. It takes as input the trace T0, the initial
global time t0, and the underlying topology under study. As expected, it starts by
computing the set K of solved statements applying the saturation step on the seed derived
from the trace T . However, for termination purposes, it only considers the set of public
names occurring in T , noted CT , as constants. The algorithm continues by considering
all the reach statements in K. It grounds them using a bijective function that maps
variables to a specific set of constants and then computes for each input (ai, in(vi)), the
set Li of recipes that may generate the message vi. Finally, it generates the set of timing
constraints associated to the run under study. In case such a set is satisfiable then the
trace will be declared executable. Note that the inverse substitution ⇢

�1 is applied to
the recipes before checking the satisfiability of the timing constraints. This allows to
replace the constants c1, . . . , cq introduced before by variables: some of them might be
instantiated by non negative real numbers (i.e. times) to make the lettime and iftime
commands executable. Intuitively, these constants represent any atomic data in ⌃0 [R+

that are all known by the attackers, and are only used to close the statement and make
the search in H(K) possible.



3.4. The full procedure

3

61

Algorithm 1 Test for checking whether (T, ;, t0) is executable in T0
1: procedure Reachability(T, t0, T0)
2: K = solved(sat(seed(T, CT )))
3: for all r`01,...,`0n ( kw1(X1, x1), . . . , kwm

(Xn, xm) 2 K do
4: let c1, . . . , cq be specific constants such that
5: ⇢ : vars(`01, . . . , `

0
n) ! {c1, . . . , cq} is a bijective function

6: for all i 2 Rcv(n) do
7: if `0

i
= (ai, in(vi)) then

8: Li =
n
R | k`01⇢...`0i�1⇢

(R, vi⇢) 2 H(K)
o

9: end if
10: end for
11: Let {i1, . . . , ip} = Rcv(n) such that i1 < i2 < . . . < ip

12: for all Li1 ⇥ . . .⇥ Lip 2 Li1⇢
�1 ⇥ . . .⇥ Lip⇢

�1 do
13: Let  = Timing(T0, (T ; ;; t0), Li1 . . . Lip , vi1 , . . . , vip).
14: if  satisfiable then
15: return true
16: end if
17: end for
18: end for
19: return false
20: end procedure

Let us explain how the set of timing constraints is generated. Given a trace T =
(a1,↵1).(a2,↵2). . . . .(an,↵n) locally closed w.r.t. X and Z, we note orig(j) the index
of the action in the trace T that perform the j

th output, i.e. orig(j) is the minimal k
such that |Snd(k)| = j. For sake of simplicity, we also assume the notations presented in
Section 3.2.2. The Timing function takes as input the topology, the initial configuration
(made of the trace T and the initial time t0), the recipes used to feed the inputs as well
as the corresponding terms. These terms may still contain variables from Z since they
are not instantiated during the saturation step. It then generates the formula which is
the conjunction of the following constraints:

1. z1 = t0, and zi  zi+1 for any 1  i < n;

2. ti ⇠ t
0
i
for any i 2 Test(n) with ↵i = (iftime ti ⇠ t

0
i
);

3. z
0
i
= vi{xj ! uj | j 2 Rcv(i)}+ for any i 2 lettime(n);

4. For any i 2 Rcv(n), we consider the formula:

• zorig(j) + DistT0(aorig(j), ai)  zi if Ri = wj ;
• otherwise, we consider:

_

b2M0

� ^

{j|wj2vars(Ri)}

zorig(j) + DistT0(aorig(j), b)  zi � DistT0(b, ai)
�
.
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The constraints given in item 1 ensure that the global time increases along the ex-
ecution in which the first action is set to start at the global time t0. We assume that
a time variable zi is associated to each pair (ai,↵i) in the trace. Constraints given in
item 2 correspond to those that already explicitly occurs in the trace through the iftime
commands. Constraints in item 3 ensure that the reduced term in lettime commands will
reduce to a time. Indeed, if not, the formula will not be satisfiable. Finally, constraints
in item 4 gather all the timing constraints that must be satisfied to trigger the input
rule.

The last step of the algorithm consists in checking whether the formula  is satisfiable.
This step can be implemented relying on any constraint solving algorithm which features
the kind of constraints allowed in the iftime commands. All the other constraints are
simple linear inequalities.

3.4.2. About termination

As previously mentioned, we do not intend to prove the termination of our procedure.
Instead, we want it to terminate in practice. To do so, we can note several things.

First, the set of seed statements must be finite. The set seed(T ) as presented in
Figure 3.3 is infinite but it was proved in [CCCK16] that we can restrict ourselves to
perform saturation using the finite set seed(T, CT ) where CT contains the public names
and the real numbers occurring in the trace T . This is formally stated and proved below.

Lemma 3.11. Let CT be the finite set of public names and real numbers occurring in T ,
and Call = ⌃0 [ R+. We have that:

sat(Kinit(seed(T, Call))) = sat(Kinit(seed(T, CT ))) [ {ky(c, c) ( | c 2 Call}.

Proof. We just note that the saturation step does not involve seed statements of type
3 with constants which do not occur in T , i.e. c 2 Call \ CT . This can be formally
established by showing that constants in Call \CT will never occur in statements obtained
by resolution.

Another source of non-termination is the saturation step itself. To avoid such issue the
update function must discard as many statements as possible. Sadly, but as expected,
the more statements are discarded, the more difficult the theoretical development to
prove completeness is. The update function we have defined keeps more statements than
the one defined in the original procedure. We thus did not try to prove its termination
(which already required more than 20 pages in [CCCK16]). Instead we will demonstrate
its termination in practice in Chapter 5.

Finally, a source of non-termination is the computation of the sets Li that contain
all the recipes R such that kw(R, ui) for the input terms ui. Fortunately we can focus
on asap recipes and rely on a backward search in the saturated knowledge base K to
compute the sets. Since all the statements in K are well-formed, the recursive calls will
consider strict subterms at each step and the search will eventually terminate.
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3.4.3. Soundness and completeness

Theorem 3.5 formally states the soundness (item 1) and the completeness (item 2) of
our procedure.

Theorem 3.5. Let T be a trace that is locally closed w.r.t. X and Z. Let T0 be a topology
and K = (T ; ;; t0) be a configuration built on T0.

• if Reachability(T, t0, T0) holds then (T ; ;; t) �!⇤
T0 (✏;�; t);

• if (T ; ;; t0) �!⇤
T0 (✏;�; t) then Reachability(K, t0, T0) holds.

The soundness part (item 1) is quite straightforward relying on Theorem 3.3 that
proves the soundness of the saturation procedure and the correctness of the timing con-
straints solver. However, the completeness part (item 2) is more involved. Indeed, the
completeness of the saturation procedure has only been established w.r.t. executions
with asap recipes for inputs. We thus need to first prove that w.l.o.g. we can focus on
such executions.

Lemma 3.12. Let exec = K0
`1,...,`n����!T0 (S;�; t) be an execution. We may assume

w.l.o.g. that exec involves input recipes R1, . . . , Rk forged by agents b1, . . . , bk and Ri is
asap w.r.t. bi and exec for each i 2 {1, . . . , k}.

Proof. (Sketch of proof)
Due to the definition of asap recipes that builds on two different orders, <exec and

<
a
exec (for a 2 A0) the proof becomes quite technical even if the results seems rather

intuitive. The full proof is presented in Appendix A. It proceeds as follows:

1. We consider the execution exec together with recipes R1, . . . , Rk that are minimal
w.r.t. <exec or <

bi
exec depending on the honesty of the agent bi who forges the

inputted message.

2. We prove by induction on the length of the trace that R1, . . . , Rk are asap recipes
w.r.t. b1, . . . , bk. To do so we distinguish several cases depending on the action
that is going to be executed, the form of the recipe and the status of the agent
forging a message (in case of an input). We then conclude relying on the induction
hypothesis or the minimality of the recipes R1, . . . , Rk we consider.

Proof of Theorem 3.5

Proof. We can now prove the soundness and the completeness of our algorithm.

Soundness (item 1): We assume that our algorithm returns true when considering `01 . . . `0n
and recipes Li1 , . . . , Lin . Actually, soundness of our saturation procedure (Theorem 3.3)

gives us that (T ; ;)
`
0
1⇢...`

0
n⇢

(✏;�) (untimed semantics) using recipes Li1 , . . . , Lin . The
formula  gathers all the timing constraints that have to be satisfied, in particular those
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to ensure that all the material needed to perform the computation Lij
is available in

time. The satisfiability of  gives us a valuation ⇢0 : X [Z[Y ! R+ that satisfies all the
timing constraints. Let us consider the substitution ⇢0 : {c1, . . . , cq} ! R+ which match
the given valuation. Note that since c1, . . . , cq do not appear in T we can apply ⇢0 along
the execution to obtain that:

(T ; ;)
`
0
1⇢

0
...`

0
n⇢

0

T0 (✏;�⇢0)

Finally, since ⇢0 has been defined such that it matches the valuation, we have:

(T ; ;; t0)
`
0
1⇢

0
...`

0
n⇢

0

������!T0 (✏;�⇢0; t).

This concludes the proof for the first item.

Completeness (item 2): We assume that (T ; ;; t0) is executable in T0. It follows that
there exists an execution exec such that:

exec = (T ; ;; t0)
`1�!T0 (T1;�1; t1)

`2�!T0 . . .
`n�!T0 (Tn;�n; tn) = (✏;�; t)

First, thanks to Lemma 3.12, we can assume w.l.o.g. that there exist recipes R1, . . . , Rk

forged by agents b1, . . . , bk that can be used as inputs in exec and such that Rj is
asap w.r.t. bj and exec for any j 2 {1, . . . , k}. Therefore, applying Theorem 3.4
we obtain that r`1,...,`n 2 H(solved(sat(Kinit(T )))) with a proof tree ⇡ matching with
exec using R1, . . . , Rk as input recipes. Applying Lemma 3.11 we have that r`1,...,`n 2
H(solved(sat(Kinit(T, CT )))) using the same proof tree.

We deduce that ⇡ ends with a solved statement

h = r`01,...,`0n ( kw1(Y1, y1), . . . , kwm
(Ym, ym) 2 K

instantiated with a substitution ⌧ such that (`01, . . . , `
0
n)⌧ = (`1, . . . , `n). Moreover, be-

cause ⇡ matches with exec with input recipes R1, . . . , Rk, there exist recipes R̂1, . . . , R̂k

such that:

• R̂j({Yi ! yi | 1  i  m} ] �(`01, . . . , `0n))+ = v
0
j

for j 2 {1, . . . , k}.

• R̂j⌧ = Rj for j 2 {1, . . . , k}

where v
0
1, . . . , v

0
k

are the terms occurring in input in `01, . . . , `0n.
Note that for all grounding substitutions ⇢ : X [Z [Y ! R+ such that Yi⇢ = yi⇢ for

i 2 {1, . . . ,m}, we have that:

exec⇢ = (T ; ;)
`
0
1⇢

. . .
`
0
n⇢ (✏;'⇢)

using R̂1⇢, . . . , R̂k⇢ as input recipes.
Moreover, the timing constraints induced by R̂j⇢ are less restrictive than those in-

duced by Rj since R̂i⌧ = Rj . W.l.o.g. we can thus consider the substitution ⇢ that makes
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all the lettime and iftime commands executable (note that it exists since the commands
are executable in exec) and we have that:

exectimed

⇢ = (T ; ;; t0)
`
0
1⇢��!T0 . . .

`
0
n⇢��!T0 (✏;'⇢; t)

using R̂1⇢, . . . , R̂k⇢ as input recipes.
The statement h is the one that will be considered in our procedure. To conclude

we have to show that our procedure will consider recipes that can fill the inputs and
satisfy the timing constraints. Applying Lemma 3.12 we know that there exist recipes
Ŝ1, . . . , Ŝk and agents b

0
1, . . . , b

0
k

such that for each j 2 {1, . . . , k}, Ŝj is asap w.r.t. b
0
j

and exectimed
⇢ and such that exectimed

⇢ with input recipes Ŝ1, . . . , Ŝk forged by b
0
1, . . . , b

0
k

is an execution. Applying Theorem 3.4 (item 2), we obtain that k`01...,`0j�1
(Ŝj , vj⇢) 2

H(solved(sat(Kinit)(T ))) with a proof tree ⇡. We can now replace all the occurrences
of ky(t, t) with t 2 R+ by ky(c, c) with c 2 {c1, . . . , cq} such that the new proof tree
deduces vj⇢

0 where ⇢0 is the bijective function considered in the algorithm. This proof
tree provides the recipe R

0
j

that will be considered in our algorithm. Finally, the set of
constraints derived from Ŝj is the same as the one derived from R

0
j

and thus the formula
� considered in the algorithm will be satisfiable. This concludes the proof.

3.5. Conclusion
In this chapter we presents a procedure that addresses the issue of verifying the

executability of a timed symbolic trace. We have managed to prove its correctness, i.e.
its soundness and completeness, in a generic model that is very close to the one described
in Chapter 2. The unique restriction is about the equational theory that must satisfy
the finite variant property. Removing this assumption, there is no hope of termination
in practice.

This chapter have presented the theoretical foundations of the global procedure that
will be presented in Chapter 5 to analyse distance-bounding protocols w.r.t. reachability
properties considering a bounded number of sessions.. In Chapter 5, we will first explain
how a protocol can be represented by a finite set of symbolic traces, then we will discuss
about the implementation of the procedure, and then we will apply it to the analysis
of case studies. On this occasion we will discuss about its termination and efficiency in
practice: these two aspects are closely related to the update function involved during the
saturation step.

As reminded above, the main theoretical limitation of our procedure is the finite
variant property assumption. As defined in Definition 3.1, it prevents us to consider
associative and commutative (AC) symbols of function like the exclusive-OR operator.
The finite variant property has been defined for AC theories [CLD05], and the Akiss
procedure has been recently extended to handle the exclusive-OR [BDGK17]. We thus
hope that this limitation could be removed in future works when looking at our procedure
too. However, to handle this new operator, the update function of the Akiss procedure has
been modified so that more statements are discarded (typically, it discards a deduction
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statement as soon as the knowledge base already deduces the same term modulo AC).
Hence, it will complicate the proof of completeness when considering time and locations.



An unbounded number of
sessions 4

In this chapter, we address the verification of distance-bounding protocols considering an
unbounded number of sessions. We establish several reduction results that remove specific
sources of unboundedness, and allow one to leverage existing tools for an automatic ver-
ification (see Chapter 5). The first result reduces the number of topologies that must be
considered from infinitely many to only one per class of attacks. The second one applies
for terrorist frauds and defines a most general semi-dishonest prover which subsumes all
the possible collusion behaviours.
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4.1. Hypotheses
Verifying protocols in the context of an unbounded number of sessions is well-known

to be much more complex than in a bounded setting. In order to establish our reduction
results we therefore make some restrictions on our timed model. In particular we will
restrict the use of the timing constraints.

4.1.1. Messages without times

The aim of this chapter is to present reduction results that enable the use of existing
verification tools to analyse distance-bounding protocols. As a first observation, one may
note that these protocols strongly rely on time to estimate the proximity of the agents, but
they do not involve times in messages. Indeed, the proximity check is entirely performed
by the verifier who does not share timing information with the prover. In this chapter,
we therefore prevent from considering time in messages. Note that an agent is still able
to perform time checks on his own side. An immediate consequence of this restriction is
that the lettime command becomes useless. In this chapter we thus consider protocols
made of roles without it.

In few protocols, like MasterCard-RRP [EMV16], the time-bound for the proximity
check is received by the verifier from a message sent by the prover. Indeed, regarding
payment protocol, the time-bound may depend on the computation speed of the card
(i.e. the prover). In this case, in order to overcome the restriction we just introduced,
we will model the time-bound by a public symbol of function timebound(x), where x

is an agent name. We add this value in the end event and simply verify the standard
correspondence property: whenever the command end(v0, p0, u) is reached then the equal-
ity u = checkBound(timebound(p0)) holds. This modelling will be further detailed in
Chapter 5 when looking at these protocols.

4.1.2. A unique clock per process

Distance-bounding protocols always follow the same structure: they mainly rely on
the timing of a challenge/response exchange. To perform such a computation, agents just
need to have a clock that they can reset just before sending the challenge, stop immedi-
ately after they receive the response, and compare to a given threshold. It corresponds
to sub-processes of the form: outz1(u).inz2(x).iftime z2 � z1 < tg then P .

To simplify our calculus, we replace the iftime command by a reset and a guarded in-
put in<tg(x). More formally, a sub-process outz1(u).inz2(x).iftime z2�z1 < tg then P is
translated into a sub-process reset.out(u).in<tg(x).P . In a configuration, the extended
processes are then annotated by the value of the local clock associated to it. We note
bP c ta

a
to model a process P executed by an agent a with a current clock value ta 2 R+.

The semantic rules of these two commands are presented in Figure 4.1. The RESET
rule simply sets the local clock to 0 and the IN-G rule is the IN rule with the extra
constraint ta < tg, meaning that the local clock is less than the guard when triggering
the input. The semantic rules of the old commands do not involve the local clock and
can thus be trivially adapted. However, one may note that the local clocks of each agent
must be increased when the global time elapses. This comment implies to slightly modify
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TIM (P;�; t) �!T0 (Shift(P, �);�; t+ �) with � � 0

RESET (breset.P c ta
a
] P;�; t)

a,⌧��!T0 (bP c0
a
] P;�; t)

IN-G (bin<tg(x).P c ta
a
] P;�; t)

a,in<tg (u)������!T0 (bP{x 7! u}c ta
a
] P;�; t)

when ta < tg and there exist b 2 A0 and tb 2 R+ such that tb  t� DistT0(b, a) and:

• if b 2 A0 rM0 then u 2 img(b�c tb
b
);

• if b 2 M0 then u = R�# for some recipe R 2 T (�pub,W) such that for all w 2
vars(R) there exists c 2 A0 such that w 2 dom(b�c tb�DistT0 (c,b)

c ).

Figure 4.1: Semantics of our calculus using local clocks

the TIM rule. We consider the following notation to increase all the clocks in a raw by
a given non-negative delay �:

Shift(P, �) = {bP c ta+�

a
| bP c ta

a
2 P}.

In the following of this chapter, we consider distance-bounding protocols that match
this restriction about clocks, i.e. iftime commands only appear in sub-processes as
described. By abuse of notation we will always describe the roles and the processes
through this new syntax and execute them through the new semantics. A role is thus a
parametrised process generated by the following grammar:

P := 0
| new n.P

| in(x).P
| out(u).P
| letmess x = v in P

| reset.out(u0).in<tg(x).P
| end(u1, u2)

where x 2 X , n 2 N , u, u0, u1, u2 2 T (⌃+
c ,X [N ), v 2 T (⌃+

,X [N ) and tg 2 R+.

Remark 4.1. Note that in Figure 4.1, the recipes that malicious agents are able to use to
forge a message no longer involve non negative real numbers in comparison to the timed
recipes involved in the semantics presented in Chapter 2. This restriction is necessary to
prevent messages from containing real numbers but does not restrict the expressiveness
of the model itself. Indeed, since an agent only compares times that are generated by
himself, times that might be introduced by an attacker can be seen as constants and thus
replaced by elements in ⌃0.
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Example 4.1. The SPADE protocol presented in Example 2.5 matches the constraints
about clocks. The prover role is let unchanged but the verifier role is now described by:

V(x0, x1) := in(x1).
letmess y1 = adec(x1, sk(x0)) in
letmess y

1
check

= eq(proj1(y1), check(proj2(y1), spk(x1))) in
new mV . new nV .

out(hmV , nV i).
new c.

reset.out(c).in<2⇥t0(x2).
in(x3).
letmess x

0
H

= prf(hproj1(y1), nV i) in
letmess x

1
H

= proj1(y1)�mV � x
0
H

in

letmess y
2
check

= eq(x2, answer(c, x0H , x
1
H
)) in

letmess y
3
check

= eq(x3, prf(hproj1(y1), nV ,mV , c, x2i)) in 0

In the following, we will never take care of the initial values of the local clocks. Indeed,
by construction we have that each guarded input is preceded by a reset command that
sets to 0 the corresponding local clock. Its initial value is thus meaningless. The following
proposition allows us to assume w.l.o.g. that all the clocks, i.e. the global and the local
ones, are set to 0 in initial configurations. This will be useful to re-time executions given
in untimed semantics without taking care of the initial times.

Proposition 4.1. Let T0 = (A0,M0, Loc, v0, p0) be a topology and K = (P;�; t) be a
configuration such that any guarded input in P is preceded by a reset. Let K0 = (P 0;� ]
 0; t0) be a configuration such that K tr�!T0 K0. Let K0 = (P0;�; 0) with P0 equal to P in
which all the local clocks are set to 0.

We have that K0
tr�!T0 K0

0 = (P 0
0;� ] 0

0; t
0
0) for some K0

0 such that:

(1) {(P, a) | bP c t
a
2 P 0 for some t} = {(P, a) | bP c t

a
2 P 0

0 for some t};

(2) {(w, a, u) | w a,t�! u 2  0 for some t} = {(w, a, u) | w a,t�! u 2  0
0 for some t}.

Proof. This proposition is proved establishing a strong relation between the two execu-
tions. We prove the result together with the three properties below by induction on the
length of the derivation K tr�!T0 K0 where � = max({DistT (a, b) | a, b 2 A0} [ {t}).

(i) if bP c ta
a

2 P 0 and P contains a guarded input that is not preceded by a reset then
bP c ta

a
2 P 0

0 (with the same value for ta);

(ii) t
0
0 = t

0 � t+ �, i.e., the global time is just shifted by a constant;

(iii)  0
0 = Shift( 0

, �� t) with Shift( 0
, �� t) = {w a,ta+��t������! u | w a,ta��! u2  0}, i.e., the

frames are the same, up to a time shift.
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Base case: In such a case, we have that K0 = K, and thus t
0 = t, P 0 = P, �0 = �, and

 0 = ;. Let K0
0 = (Shift(P, �);�; �). We have that K0 �!T0 K0

0 using the TIM rule. Note
that item (i) is satisfied since by hypothesis in P 0 (= P), any guarded input is preceded
by a reset. Regarding (ii), we have that t

0
0 = � = t

0 � t + � since t
0 = t. Since  0 = ;,

item (iii) is also satisfied. Then items (1) and (2) are trivially satisfied.

Induction step: In such a case, we have that K tr�!T0 K00 a,↵��!T0 K0 with K00 = (P 00;�00; t00)
and �00 = � ]  00. By induction hypothesis, we know that there exists K00

0 = (P 00
0 ;� ]

 00
0; t

00
0) such that K0

tr�!T0 K00
0 with:

1. {(P, a) | bP c t
a
2 P 00 for some t} = {(P, a) | bP c t

a
2 P 00

0 for some t};

2. {(w, a, u) | w a,t�! u 2  00 for some t} = {(w, a, u) | w a,t�! u 2  00
0 for some t}.

We also have that:

(i) if bP c ta
a

2 P 00 and P contains a guarded input that is not preceded by a reset then
bP c ta

a
2 P 00

0 ;

(ii) t
00
0 = t

00 � t+ �;

(iii)  00
0 = Shift( 00

, � � t).

We consider the rule involved in K00 a,↵��!T0 K0 and we show that the same rule can be
applied on K00

0 , and allows one to get K0
0 with the five properties stated above.

Case TIM rule. In such a case, we have that K0 = (P 00;�00; t00 + �0) for some �0, and we
apply the same rule with the delay �0 on K00

0 . We obtain K0
0 = (P 00

0 ;�] 00
0; t

00
0 + �0), and

we easily check that all the properties are satisfied.

Case OUT rule. In such a case, K0 = (P 0;� ]  00 ] {w a,t
00

��! u}; t00) (for some P 0, w,
a, and u). Relying on item 1, we apply the same rule on K00

0 , and obtain K0
0 =

(P 0
0;� ]  00

0 ] {w
a,t

00
0��! u}; t000) (for some P 0

0). We have that items 1 and 2 are clearly
satisfied as well as item (i). Now, regarding item (ii), we have that t

0
0 = t

00
0 and t

0 = t
00.

Therefore, we conclude that t
0
0 = t

0 � t+ � thanks to our induction hypothesis. Now, to
establish that  0

0 = Shift( 0
, � � t), relying on our induction hypothesis, it only remains

to show that t
00
0 = t

00 + (� � t). This is item (ii).

Case LET and NEW rules. In such a case, K0 = (P 0;� ]  00; t00) (for some P 0), and we
apply that same rule on K00

0 , and obtain K0
0 = (P 0

0;� ]  00
0; t

00
0). We conclude easily (for

each property) relying on our induction hypothesis.

Case RST rule. In such a case, K0 = (P 0;� ]  00; t00) with P 0 = {bP c0
a
} [ Q0 for some

P, a, t
a and Q0, and P 00 = {breset.P c t

a

a
} ] Q0. We apply the same rule on K00

0 , and
obtain K0

0 = (P 0
0;� [ 00

0; t
00
0). Relying on our induction hypothesis, we easily obtain the

fact that items 1 and 2 are satisfied. Regarding item (i), we conclude using our induc-
tion hypothesis for processes in Q0, and the property is satisfied for bP c0

a
. Regarding
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items (ii) and (iii), since the global time and the frame have not evolved, we conclude
relying on our induction hypothesis.

Case IN rule. In such a case, K0 = (P 0;�] 00; t00) (for some P 0), and we apply the same
rule on K00

0 to get K0
0 = (P 0

0;� ]  00
0; t

00
0). The difficult part is to show that the rule

can indeed be applied on K00
0 . By hypothesis, we know that K00 a,in?(u)�����!T0 K0, and thus

P 00 = bin?(x).P c t
a

a
] Q for some x, a, t

a and Q, and we know that there exists b 2 A0

and t
b 2 R+ such that t

b
< t

00 � DistT0(b, a) and:

• if b 2 A0 rM0 then u 2 img(b�00c t
b

b
);

• if b 2 M0 then u = R�# for some recipe R such that for all w 2 vars(R) there
exists c 2 A0 such that w 2 dom(b�00c t

b�DistT0 (c,b)
c

).

Moreover, in case ? is < tg for some tg, we know in addition that t
a
< tg.

We first assume that in?(u) is a simple input (not a guarded one). We show that we
can apply on K00

0 the same rule using the same recipe R. The message will be sent by
the same agent b 2 A0. The time t

b

0 at which the message is sent is t
b

0 = t
b + (� � t).

Note that tb0 � t
b since �� t � 0, and img(b 00c t

b

b
) = img(b 00

0c
t
b

0
b
) (and dom(b 00c t

b

b
) =

dom(b 00
0c

t
b

0
b
) as well) since  00

0 = Shift( 00
, � � t), and t

b

0 = t
b + (� � t). We distinguish

two cases:

• if b 2 A0 rM0 then we know that

u 2 img(b�00c t
b

b
)

= img(b�c t
b

b
) [ img(b 00c t

b

b
)

✓ img(b�c t
b

0
b
) [ img(b 00

0c
t
b

0
b
)

• if b 2 M0 then we consider w 2 vars(R). We have that:

w 2 dom(b�00c t
b�DistT0 (c,b)
c

)

= dom(b�c t
b�DistT0 (c,b)
c ) [ dom(b 00c t

b�DistT0 (c,b)
c

)

✓ dom(b�c t
b

0�DistT0 (c,b)
c ) [ dom(b 00

0c
t
b

0�DistT0 (c,b)
c

)

Thus, in both cases, this allows us to conclude. Now, in case ? is < tg, by hypothesis we
know that t

a
< tg, and thanks to item (i), we know that P 00

0 = bin?(x).P c t
a

a
]Q0. This

allows us to conclude.

4.1.3. Executable processes

The last hypothesis that we will consider is the executability of the roles. Note that
this is not a strong assumption. Indeed, our model allows to define roles, e.g. V(x0, x1)
or P(x0, x1), that contain private data of agents different from x0. To prevent these
unrealistic behaviours, we rely on the template I0 used to derive the initial knowledge of
each agent.
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Definition 4.1. Given a set I0 = {u1, . . . , uk} of terms, we say that a parametrised
process P is I0-executable if for any term u (resp. v) occurring in an out (resp. a
letmess) command, there exists a term R 2 T (⌃+

pub
, {w1, . . . ,wk} [ bn(P ) [ bv(P )) such

that u =E R�# (resp. v# =E R�#) where � = {w1 ! u1, . . . ,wk ! uk}.
We say that a distance-bounding protocol Pdb = (V(x0, x1), P(x0, x1)) is I0-executable

if V(x0, x1) and P(x0, x1) are I0-executable.

Example 4.2. Going back to Example 2.8 and considering I0 = {x1, sk(x0), ssk(x0)}, we
can show that the two roles represented in Example 4.1 are I0-executable.

According to Definition 4.1, we have � = {w1 ! x1,w2 ! sk(x0),w3 ! ssk(x0)}, and
for instance, the first output of P(x0, x1), i.e. u = aenc(hnP , sign(nP , ssk(x0))i, pk(x1)) is
such that u =E R�# with R = aenc(hnP , sign(nP ,w3)i, pk(w1)). The SPADE protocol, as
described by (V(x0, x1), P(x0, x1)) is thus I0-executable.

4.2. Reducing the topologies
When analysing a protocol w.r.t. distance hijacking, mafia or terrorist fraud, an infi-

nite number of topologies must be considered: any topology in Ct0
DH

and Ct0
MF

. Remember
that the scenarios that are considered for the re-authentication step in a terrorist fraud
is a kind of mafia fraud (with an initial knowledge extended with the data of the first
step). The set of topologies that should be analysed when looking for terrorist fraud is
thus the same, i.e. Ct0

MF
as for mafia fraud.

In this section, we establish two reduction results, i.e. for each set of topologies, to
get rid of this source of unboundedness. More precisely we prove that, Ct0

DH
and Ct0

MF
can

be represented by a unique, and rather simple, topology on which the analyses can focus
on to look for distance hijacking, mafia, and terrorist fraud.

4.2.1. Mafia and terrorist frauds

malicious node
honest node

v0 p0

i1 i2

t0

Figure 4.2: Topologies T t0
MF

where t0 is the proximity threshold.

The same set of topologies, Ct0
MF

, must be considered when verifying mafia or terrorist
fraud resistance. In the remainder of this section, we will prove that it can be represented
by a unique and rather simple topology which involves only four agents, located at only
two different locations (see Figure 4.2). In the remainder of this section, we prove that
if a trace exists considering an arbitrary topology T 2 Ct0

MF
then, a similar trace can be

executed in T t0
MF

. This proof proceeds in four stages:

1. we transform any honest agent but v0 and p0 in dishonest ones (Lemma 4.1);

2. relying on the executability hypothesis, we simplify the initial configuration getting
rid of processes executed by malicious agents (Lemma 4.2);
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3. we reduce the number of attackers by placing them ideally (Lemma 4.3);

4. we rename agents preserving their locations to reach the reduced topology T t0
MF

(Lemma 4.4).

The first stage consists in proving that we can corrupt honest participants and still
keep the same trace. Indeed a dishonest agent is actually more powerful than an honest
one.

Lemma 4.1. Let T0 = (A0,M0, Loc0, v0, p0) be a topology, and K0 be a configuration
built on T0. Let H0 ✓ A0rM0. Let K be a configuration such that K0

tr�!T0 K. We have
that K0

tr�!T 0 K where T 0 = (A0,M0 [H0, Loc0, v0, p0).

Proof. We show this result by induction on the length of the derivation K0
tr�!T0 K. The

base case, i.e. tr is the empty trace, is trivial. To conclude, it is sufficient to show that:

K1
a,↵��!T0 K2 implies K1

a,↵��!T 0 K2.

Let K1 = (P1;�1; t1). We consider each rule of the semantics one by one. Actually, the
only rule that depends on the status (honest/dishonest) of the agents in the underlying
topology is the rule IN. In such a case, we have that ↵ = in?(u) for some u. Moreover,
following the notation introduced in Figure 4.1, we know that there exist b 2 A0 (the
agent responsible of the corresponding output) and tb 2 R+ (the time at which the output
has been triggered). The only interesting case is when b 2 H0, and therefore b is now a
malicious agent in the topology T 0 whereas b was an honest one in the topology T0. Since,
the IN rule was triggered in T0, we know that u 2 img(b�1c tbb ), and therefore there exists
w 2 dom(b�1c tbb ) such that w�1# = u. Actually, it is easy to see that choosing the recipe
R = w (and c = b) allows us to conclude. Indeed, we have that tb�DistT 0(b, b) = tb, and
therefore we conclude since we have already shown that w 2 dom(b�1c tbb ).

Applying Lemma 4.1, we can assume that all the agents but v0 and p0 are malicious.
In the second stage, we are going to simplify the configuration by proving that, relying
on the executability hypothesis presented in Section 4.1.3, it is not necessary to consider
processes executed by dishonest agents. Indeed, the initial knowledge contained in the
frame must be enough to mimic these processes.

Lemma 4.2. Let T0 be a topology, D0 be a subset of malicious agents, and K0 =
(P0;�0; t0) be a configuration built on T0 such that the process Pa is executable w.r.t.
img(b�0c t0a ) for any bPac taa 2 P0 with a 2 D0. Let K = (P;�0 ] �+; t) be a configura-
tion such that K0

tr�!T0 K. We have that

(P0;�0; t0)
tr���!T0 (P�;�0 ] �+�; t)

where P0 (resp. P, �+, tr) is obtained from P0 (resp. P, �+, tr) by removing processes
(resp. frame or trace elements) located in a 2 D0 and �(n) = c0 2 ⌃0 for any freshly
generated name n used to trigger the NEW rules executed by agent a 2 D0 in tr.
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Proof. We show this result assuming that D0 contains a unique element a0. The general
result can then easily be obtained by a simple induction on the size of D0. More precisely,
we show the following results by induction on the length of K0

tr�!T0 K = (P;�0 ]�+; t):

1. for all bP c ta
a0

2 P, P� is executable w.r.t.  (t);

2. for all (w a0,ta���! u) 2 �+, there exists a recipe R 2 T (⌃+
pub

, dom( (ta))) such that
R (ta)# =E u�;

3. (P0;�0, t0)
tr���!T (P�;�0 ] �+�; t);

where  (t) = �0 ] {b�+
�c t�DistT0 (b,a0)

b
| b 6= a0}.

The base case, i.e. when tr is empty, is trivial. Now, we assume that

K0
tr�!T0 K = (P;�0 ] �+; t)

a,↵��!T0 K0 = (P 0;�0 ] �0; t0)

and thanks to our induction hypothesis, we know that the three properties above hold
on K. We note �0 the substitution regarding the trace tr.(a,↵). We do a case analysis
on the rule involved in the last step.

Rule TIM. In such a case, we have that �0 = �+ and P 0 = P. Since t
0 � t, we have that

 (t) ✓  (t0), and this allows us to conclude.

Rule OUT. Items (1) and (3) are quite obvious. Regarding item (2), the only non
trivial case is when a = a0. We have to show that the element added to the frame,
namely (w

a0,t��! u) satisfies the expected property. Let P = {bout(u).P c ta
a0
} ] P1 and

P 0 = {bP c ta
a0
} ] P1. By item (1), we know that the process out(u�).P� responsible of

this output is executable w.r.t. img( (t)), and thus there exists R 2 T (⌃+
pub

, dom( (t))[
bn(out(u�).P�)[bv(out(u�).P�)) such that R (t)# = u�. More precisely we have that
R 2 T (⌃+

pub
, dom( (t))) because u� does not contain any bound names/variables, and

img( (t)) does not contain names that belong to bn(P�) since �0 does not contain any
name (only agent identities) and �+

� neither since any bound name is freshened when
executing the NEW rule (and thus before any output).

Rule LET. Items (2) and (3) are quite immediate. Indeed, regarding item (2) we conclude
by remarking that �0 = � and �0 = �+. Regarding item (3) we simply note that if a
term u# is a constructor term then u�# is a constructor term too. Finally, the only non
trivial point to establish is item (1) when a = a0. Let P = bletmess x = v in P

0c ta
a0
]P1,

P 0 = bP 0{x 7! v#}c ta
a0

] P1, �0 = �+, t
0 = t, and �

0 = �. By hypothesis, we know
that the process (letmess x = v� in P

0
�) is executable w.r.t.  (t), thus there exists

R 2 T (⌃+
pub

, dom( (t))) such that R (t)# =E v�# (for the same reason as previously).
To prove item (1), we have to show that (P 0{x 7! v#})� is executable w.r.t.  (t0) =  (t).
Let u be a term occurring in an output (resp. a let) in (P 0{x 7! v#})� = P

0
�{x 7! v�#}.

We have that there exists u0 that occurs in an output (resp. a let) in P
0
� such that
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u0{x 7! v�#} = u, and by hypothesis, we know that (letmess x = v� in P
0
�) is

executable w.r.t.  (t), i.e. there exists R0 2 T (⌃+
pub

, dom( (t)) [ bn(P 0
�) [ bv(P 0

�) [
{x}) such that R0 (t)# =E u0# (actually there is no need of normalisation in case of
an output). Let R

0 = R0{x 7! R}. We have that R
0 2 T (⌃+

pub
, dom( (t)) [ bn(P 0

�) [
bv(P 0

�)) and

R
0 (t0)# =E (R0{x 7! R}) (t)# =E (R0 (t){x 7! v�#})# =E (u0#{x 7! v�#})# =E u#.

Note that u = u0{x 7! v�#} is a constructor term when u0 is a constructor term. Thus,
no normalisation is needed in case u is a term occurring in an output, and we have that
R

0 (t0)# =E u.
Rule NEW. In that case we have that P = bnew n.P

0c ta
a
]P1, P 0 = bP 0{n 7! n

0}c ta
a
]P1,

�0 = �+ and t
0 = t. The only interesting case is when a = a0 and thus �0 = �[{n0 7! c0}.

Note that items (2) and (3) are immediate: we have that tr.(a0, ⌧) = tr and n
0 is fresh

and thus neither occurs in P1 nor in �+.
Regarding item (1) we have to prove that P

0{n 7! n
0}�0 is executable w.r.t.  (t).

Let u be a term occurring in an output (resp. a let) in P
0{n 7! n

0}. We have
that there exists a term u0 that occurs in an output (resp. a let) in P

0 such that
u0 {n 7! n

0} = u. By hypothesis, (new n.P
0)� is executable w.r.t.  (t), and thus

there exists R 2 T (⌃+
pub

, dom( (t))[ bn(P 0
�)[ {n}[ bv(P 0

�)) such that R (t)# = u0�

in case of an output (resp. u0�# in case of a let). We note R
0 = R{n 7! c0}. We have

that P 0
� = P

0
�
0, and thus we obtain that R0 2 T (⌃+

pub
, dom( (t))[bn(P 0

�
0)[bv(P 0

�
0))

and:

R
0 (t)# = R{n 7! c0} (t)# = R (t)#{n 7! c0}# = u0�#{n 7! c0}# = u�

0#.

Note that u�
0 = u0�{n 7! c0} is a constructor term when u0, is a constructor term.

Thus, no normalisation is needed in case u is a term occurring in an output.

Rule RST. In such a case, the result trivially holds.

Rule IN. In case a = a0, the only non trivial point is to establish item (1), and this can
be done in a similar way as it was done in Rule LET. Otherwise, i.e. when a 6= a0, the
non trivial point is to establish item (3). Let ↵ = in?(u). We have to establish that the
IN rule can still be fired with the value u�# despite the fact that some elements have
been removed from �+.
Following the notations introduced in Figure 4.1, we know that there exist b 2 A0 and
tb 2 R+ such that tb  t � DistT0(b, a) and a recipe R such that R(�0 ] �+)# = u and
for all w 2 vars(R) there exists c 2 A0 such that w 2 dom(b�0 ] �+c tb�DistT0 (c,b)

c
).

1. If b /2 M0 then we know that R = w0 for some w0 and we have that b�0 ] �+c tb
b
=

b�0 ] �+c tb
b

because b 6= a0. Thus, the rule can be applied considering the frame
b�0 ] �+�c tb

b
.
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2. If b 2 M0, then in case c 6= a0, or c = a0 with w 2 �0, then it we im-
mediately conclude since � does not apply on it. The interesting case is when
w 2 dom(b�+c tb�DistT0 (a0,b)

a0
), and we have to reconstruct (w�+)�# with elements

available in �0 ] �+�.

Let w be a variable such that w 2 vars(R) and w 2 dom(b�+c tb�DistT0 (a0,b)
a0

).
Thanks to item (2), we know that there exists tw  tb � DistT0(a0, b) and a recipe
Rw 2 T (⌃pub, dom( (tw))) such that Rw (tw)# =E (w�+)�. By definition of
 (_), we have that

 (tw) = �0 ] {b�+
�c tw�DistT0 (c,a0)

c
| c 6= a0}.

Moreover, we know that

tw � DistT0(c, a0)  tb � (DistT0(c, a0) + DistT0(a0, b))  tb � DistT0(c, b).

Thus, we have that vars(Rw) ✓ dom(�0) ] dom({b�+
�c tb�DistT0 (c,b)

c
| c 6= a0}.

Let ✓ be the substitution with domain vars(R) \ dom(b�+
�c tb�DistT0 (a0,b)

a0
) and

such that w✓ = Rw as defined above. We have that R✓ 2 T (⌃+
pub

, dom(�0 ]�+�))
and

R✓(�0 ] �+�)# =E R(�0 ] {w 7! Rw(�0 ] �+�) | w 2 dom(✓)})#
=E R(�0 ] {w 7! (w�+)� | w 2 dom(✓)})#
=E R(�0 ] �+

�)#
=E (R(�0 ] �+))�#
=E (R(�0 ] �+)#)�#
=E u�#.

Note that for all w 2 vars(R✓), by definition of  (tw), we have that (w
c,tc��! v) 2

�0]�+� (for some c, tc, v) such that tc  tb�DistT0(c, b), and thus the IN rule can
be triggered at the same time and relying on the same agent b as in the original
execution trace.

The two first stages simplify the initial configuration but many dishonest agents
located at many different locations still belong to the topology. To reduce the number
of these dishonest agents, we got some inspiration from the work of Nigam et al. in
[NTU16]. In this work, the authors prove that considering topologies in which each
honest agent is accompanied by a dishonest one located at the same place is enough.
These canonical topologies are defined as follows: given a set V = {a1, . . . , ap} of honest
agents together with a location function LocV : V 7! R3, we define the canonical topology
TLocV associated to LocV as TLocV = (V ]M0,M0, LocV ] Loc0, v0, p0) where:

• M0 = {i1, . . . , ip} with i1 . . . , ip 2 A \ V ;
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• Loc0(ij) = Loc(aj) for j 2 {1, . . . , p}.

We can now ideally place the dishonest agents, i.e. one close to each honest agent. The
following lemma proves that, given an execution, and whatever the underlying topology
is, the same execution can be executed in the topology considering a dishonest agent
close to each honest one.

Lemma 4.3. Let T = (A0,M0, Loc, v0, p0) be a topology, K0 = (P0;�0; t0) and K be
two configurations built on T0 such that K0

tr�!T K, and H be a set of agents such that

{a | bP c t
a
2 P0 or b�0c ta 6= ;} ✓ H ✓ A0 \M0.

We have that (P0;�0; t0)
tr�!TLoc|H

K where TLoc|H is the canonical topology associated to
Loc|H .

We note that the set H must at least contain the names of the agents executing a
process in P0 or occurring in the frame �0 to maintain that K0 is a configuration when
considering the topology TLoc|H .

Proof. We show this result by induction on the length of the derivation K0
tr�!TLoc|H

K.
The base case, i.e. tr is the empty trace, is trivial. To conclude, it is sufficient to show
that:

K1
a,↵��!T K2 implies K1

a,↵��!TLoc|H
K2.

In the following, we note TLoc|H = (A0
,M0

, Loc0, v0, p0). We do the proof considering
each rule of the semantics one by one but, actually, the only rule that depends on the
underlying topology is the rule IN. In such a case, we have that ↵ = in?(u) for some
message u. Moreover, we denote K1 = (P1;�1; t1) and following the notations introduced
in Figure 4.1, we know that there exist b 2 A0 (the agent responsible of the corresponding
output) and tb  t1 �DistT (b, a) (the time at which the output has been triggered) that
satisfy the conditions of the rule. We distinguish two cases:

1. In case b 2 A0 rM0, then we know that there exists w 2 img(b�1c tbb ) such that
w�1# = u. By definition of H, we have that b 2 H, and therefore b 2 A0 r M0.
The same rule applies for the same reason.

2. In case b 2 M0, then we know that there exists a recipe R such that R�1# = u,
and for all w 2 vars(R) there exists c 2 A0 such that w 2 dom(b�1c tb�DistT (c,b)

c
).

We show that the same rule applies using the same recipe R. However, the agent
responsible of the output will be the agent ia such that Loc0(ia) = Loc0(a) =
Loc(a) (note that a 2 H), and this output will be performed at time t1 (instead
of tb). We have that R�1# =E u. Now, let w 2 vars(R). Let c 2 A0 such
that w 2 dom(b�1c tb�DistT (c,b)

c
). We have that c 2 H. It remains to show that
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w 2 dom(b�1c
t1�DistTLoc|H

(c,ia)

c ). For this, it is actually sufficient to establish that
t1 � DistT 0(c, ia) � tb � DistT (c, b). We know that:

t1 � DistT (b, a) � tb

) t1 � DistT (b, a)� DistT (c, b) � tb � DistT (c, b)
) t1 � (DistT (b, a) + DistT (c, b)) � tb � DistT (c, b)
) t1 � DistT (c, a) � tb � DistT (c, b)

The last implication comes from the triangle inequality for the distance. Then,
we obtain the expected result since Loc0(ia) = Loc0(a), and thus DistT (c, a) =
DistTLoc|H

(c, a) since a, c 2 H.

This concludes the proof.

Finally, the last step consists in reducing the number of different agent names that
appear in the frame. Indeed, if Lemma 4.3 enables us to reduce the number of agents
belonging to the topology, it does not modify the frame, which may still contain messages
involving names of agents who are no longer present in the topology. To avoid such a
situation, we prove in Lemma 4.4 that we can always rename agents preserving their
status (honest/dishonest).

Lemma 4.4. Let K,K0 be two configurations built on T = (A0,M0, Loc, v0, p0) such that
K tr�!T K0, and ⇢ : A ! A0 be a renaming such that Loc(⇢(a)) = Loc(a) for any a 2 A0,
and ⇢(a) 2 M0 for any a 2 M0. We have that:

K⇢ tr⇢��!T K0
⇢.

Proof. We show this result by induction on the length of K tr�!T K0. The base case, i.e.
tr is the empty trace, is trivial. To conclude, it is sufficient to show that K1

a,↵��!T K2

with K1 a configuration built on T implies that K1⇢
⇢(a),⇢(↵)�����!T K2⇢. First, note that

K1 only involves processes located at a 2 A0, and therefore actions along the derivation
are only executed by agents in A0 whose locations remain unchanged by ⇢. We consider
each rule of the semantics one by one. The only rules that are not trivial are the rules
LET and IN.
Case of the rule LET. In such a case, we have that K1 = (P1;�1; t1) and K2 = (P2;�2; t2)
with P1 = bletmess x = u in P c ta

a
]P, P2 = bP{x 7! u#}c ta

a
]P, �2 = �1, and t2 = t1.

We know that u# 2 T (⌃+
c ,N [A[R+), and therefore we have that (u⇢)# 2 T (⌃+

c ,N [
A [ R+) by applying the same rewriting rule at each step. This allows us to apply the
rule LET and to obtain the expected result.
Case of the rule IN. In such a case, we have that K1 = (P1;�1; t1) and K2 = (P2;�2; t2)
with P1 = bin?(x).P c ta

a
] P, P2 = bP{x 7! u}c ta

a
] P, �2 = �1, and t2 = t1. We

know that there exists b 2 A0, tb 2 R+ such that tb  t1 � DistT (b, a), and a recipe
R such that u = R�1#, and for all w 2 vars(R) there exists c 2 A0 such that w 2
dom(b�1c tb�DistT (c,b)

c
). Moreover, when b 2 A0 r M0, we know that R 2 W . To
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conclude that the rule IN can be applied, we simply have to show that R(�⇢)# = u⇢.
Note that the renaming ⇢ keeps the locations of the agents in A0 unchanged, and therefore
the conditions about distance are still satisfied. We have that R(�⇢)# = (R�)⇢# since
R 2 T (⌃+

pub
,W). We know that (R�)# = u, and therefore we have that (R�)⇢# = u⇢

by applying the same rewriting rule at each step. Note that u⇢ does not contain any
destructor symbol and is thus in normal form. To conclude, it remains to ensure that
when ⇢(b) 2 A0 rM0, then R 2 W . Actually, we know that if ⇢(b) 62 M0 then b 62 M0

by hypothesis, and this allows us to conclude.

Combining these four lemmas, we are now able to state and prove our main reduction
result that allows us to get rid of the quantification over all the topologies. The security
analysis can be done considering solely the topology T t0

MF
., Given a frame �0, we note

names(�0) the set of agent names occurring in it.

Theorem 4.1. Let I0 be a template, Pdb a protocol, t0 2 R+ a threshold, and �0 an
initial frame such that names(�0) ✓ {v0, p0}.

There exists a topology T0 = (A0,M0, Loc0, v0, p0) 2 Ct0
MF

and a valid initial configu-
ration K for Pdb w.r.t. T0 and �T0

I0 [ �0 such that

K tr�!T0 (bend(v0, p0)c tvv0 ] P;�; t)

if, and only if, there exists a valid initial configuration K0 for (V, P) w.r.t. �T t0
MF

I0 [�0 such
that

K0 tr
0

�!T t0
MF

(bend(v0, p0)c tvv0 ] P 0;�0; t0).

Proof. Since T t0
MF

2 Ct0
MF

, the implication from right to left is easy to prove. Thus, we
consider the other one ()). Let T0 = (A0,M0, Loc0, v0, p0) 2 Ct0

MF
and K0 = (P0;�

T0
I0 [

�0; 0) be a valid initial configuration for Pdb(V(x0, x1), P(x0, x1)) w.r.t. T0 and �T0
I0 [ �0

such that:
K0

tr�!T0 (bend(v0, p0).P c ta
v0

] P;�T0
I0 [ �0 [ �; t).

To establish this result, we combine the previous lemmas to show that there exists a
corresponding trace of execution in T t0

MF
. As already announced, the proof is performed

in four steps.

Step 1. Applying Lemma 4.1 with H = A0 r (M0 [ {v0, p0}), we obtain a topology
T1 = (A1,M1, Loc1, v0, p0) where A1 = A0, M1 = A0 r {v0, p0}, and Loc1 = Loc0. We
have that:

K0
tr�!T1 (bend(v0, p0)c tav0 ] P;�T0

I0 [ �0 [ �; t).

We now consider the configuration K+
0 = (P0;�

T1
I0 [ �0; 0). Since �T0

I0 ✓ �T1
I0 (indeed

by adding malicious agents, we have only increased the knowledge of the attacker) and
thus we have that:

K+
0

tr�!T1 (bend(v0, p0)c tav0 ] P;�T1
I0 [ �0 [ �; t).
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Step 2. Since the configuration K0 is valid, we know that for all bQc ta
a0

2 P0 (but
Vend(v0, p0)), either Q = V(a0, a1) or Q = P(a0, a1) for some a1 2 A0 = A1. We assume
w.l.o.g. that we are in the first case. Let ⌧ = {x0 7! a0, x1 7! a1}. We know that for any
term u occurring in an output or a let construction in Q, there exists a corresponding
term u

0 occurring in an output or a let construction in V(x0, x1) such that u = u
0
⌧ . Let

I0 = {v1, . . . , vk}, and � = {w1 7! v1, . . . ,wk 7! vk}. Since V(x0, x1) is I0-executable by
definition of a protocol, there exists a term R 2 T (⌃+

pub
, {w1, . . . ,wk} [ bn(V(x0, x1)) [

bv(V(x0, x1))) such that u
0 =E R�#. Thus, we know that u# = u

0
⌧# =E R�#⌧# = R�⌧#.

Actually, we have that {v1⌧, . . . , vk⌧} ✓ Knows(I0, a0,A1). Therefore if a0 2 M1, since
Knows(I0, a0,A1) ✓ img(b�T1

I0c
0

a0
), we have that Q is executable w.r.t. img(�T1

I0 [ �0).
Therefore, we can apply Lemma 4.2 with K+

0 = (P0;�
T1
I0 [ �0; 0) and D0 = M1 and

conclude that:

(P0;�
T1
I0 [ �0; 0)

tr�2��!T1 (bend(v0, p0)c tav0 ] P�2;�T1
I0 [ �0 [ ��2; t)

where �2(n) = c0 2 ⌃0 for any name n freshly generated by an agent in M1 and P
(resp. �, and tr) is obtained from P (resp. �, tr) by removing processes (frame elements,
actions) located in a 2 D0 = M1.

Step 3. We now consider �T1+
I0 the same frame as �T1

I0 but frame elements located at
a 2 M1 r {v0, p0, i2} are moved to v0 and those located at i2 are moved to p0. Let
�0 = max(DistT1(a, b)) for any a, b 2 A1. Clearly, we have that:

(P0;�
T1+
I0 [ �0; �0)

tr�2��!T1 (bend(v0, p0)c tav0 ] P�2;�T1+
I0 [ �0 [ Shift(��2, �0, ; )t+ �0).

Indeed, adding a delay �0 in the initial configuration, all the messages moved from
an agent a 2 M1 to v0 or p0 can be used by a at the time �0 and thus the initial
execution can be followed shifted by �0. Applying Proposition 4.1, we can turn the first
configuration into an initial one, i.e. with a global time set to 0. Therefore, we have that:

(P0;�
T1+
I0 [ �0; 0)

tr�2��!T1 (bend(v0, p0)c tav0 ] P 0;�0; t0)

where P 0 (resp. �0) coincides with P�2 (resp. �T1+
I0 [ �0 [ Shift(��2, �0)) up to local

clocks (resp. timestamps). Then, we apply Lemma 4.3 on T1 and (P0;�
T1+
I0 [�0; 0) with

H = {v0, p0}. We deduce that

(P0;�
T1+
I0 [ �0; 0)

tr�2��!T2 (bend(v0, p0)c tav0 ] P 0;�0; t0)

where T2 = ({v0, p0, i1, i2}, {i1, i2}, LocH , v0, p0) is the canonical topology associated to H

and Loc|H .

Step 4. To reduce the size of the initial frame, now we apply Lemma 4.4 on the configu-
ration K0

0 = (P0;�
T1+
I0 [�0; 0) using ⇢ : A ! A0

1 = {v0, p0, i1, i2} such that ⇢(a) = i1 for
any a 62 A0

1, and ⇢(a) = a otherwise. We have that:

(P0⇢;�
T1+
I0 ⇢ [ �0⇢; 0)

tr�2⇢���!T2 (bend(v0, p0)c tav0 ] P 0
⇢;�0

⇢; t0).
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One may note that we can shorten the distance between v0, i1 and p0, i2 and keep
the trace executable. The resulting topology, i.e. (A0

1, {i1, i2}, Loc, v0, p0) with Loc(v0) =
Loc(i1), Loc(p0) = Loc(i2) and DistT (v0, p0) = t0, corresponds to T t0

MF
.

To end this proof, it remains to turn (P0⇢;�
T1+
I0 ⇢[�0⇢; 0) into a valid initial config-

uration. To do that, we simply have to move frame elements (those that we have added
during Step 1 and moved during Step 3) located in v0 to i1 and those located in p0 to i2.
This will not change the underlying execution since i1 (resp. i2) is located at the same
place as v0 (resp. p0). In case there is no frame elements in i1 or i2 we add some elements,
more precisely we add Knows(I0, i1,A0

1) or Knows(I0, i2,A0
1). These additional elements

will not alter the underlying execution and the resulting frame corresponds to �T t0
MF

I0 up
to possibly many replicates of the initial knowledge of agent i1.

We may note that the process part P0⇢ of the configuration satisfies Definition 2.3.
Indeed, since K0 is valid, we have that bVend(v0, p0)c0v0 2 P0 and by construction P0⇢

still contains bVend(v0, p0)c0v0 . Moreover, for all bP 0c t
0

a0 2 P0⇢, by construction, we know
that a

0 2 {v0, p0} = A0
1 r M0

1. Finally, we have that there exists bP 00c t
0

a0 2 P0 such
that P

00 = V(a0, a1) (resp. P
00 = P(a0, a1)) and P

0 = P
00
⇢ = V(a0, ⇢(a1)) (resp. P

0 =

P
00
⇢ = P(a0, ⇢(a1))) with ⇢(a1) 2 A0

1. Therefore, we have that (P0⇢;�
T t0
MF

I0 [ �0; 0) =

(P0⇢;�
T t0
MF

I0 [ �0⇢; 0) is a valid initial configuration for Pdb w.r.t. T t0
MF

.
This concludes the proof.

As a direct corollary of the theorem above (applied with �0 = ;), we have that we
can restrict ourselves to consider the topology T t0

MF
when looking for a mafia fraud.

Corollary 4.1. Let I0 be a template, Pdb a protocol, and t0 2 R+ a threshold. We have
that (V, P) admits a mafia fraud w.r.t. t0-proximity if, and only if, there is an attack
against t0-proximity in the topology T t0

MF
, i.e., there exists a valid initial configuration K

for (V, P) w.r.t. T t0
MF

and ; such that:

K �!⇤
T t0
MF

(bend(v0, p0)c tvv0 ] P;�; t).

Theorem 4.1 also allows us to focus on a single topology when considering ter-
rorist fraud resistance. However, this requires us to show that we can restrict our-
selves to consider initial frames satisfying the hypothesis of Theorem 4.1, i.e. such that
names(�0) ✓ {v0, p0}.

Corollary 4.2. Let I0 be a template, (V, P) a protocol, and t0 2 R+ a threshold. We
have that (V, P) is terrorist fraud resistant w.r.t. t0-proximity if, and only if, for all semi-
dishonest prover Psd w.r.t. t0 with frame �sd such that names(�sd) ✓ {v0, p0}, there

exists a valid initial configuration K w.r.t. T t0
MF

and �T t0
MF

I0 [ �sd such that:

K �!⇤
T t0
MF

(bend(v0, p0)c t
0

v0
] P;�; t).
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Proof. The implication from right to left is almost trivial. We consider a semi-dishonest
prover Psd with frame �sd. If names(�sd) ✓ {v0, p0}, then we choose the topology
T t0
MF

2 Ct0
MF

and we conclude relying on our hypothesis. Otherwise, we consider a bijective
renaming � from agent names outside {v0, p0} to fresh constants in ⌃0 (i.e. never used in
(V, P)) and it is easy to see that Psd� with associated frame �sd� is also a semi-dishonest
prover. Now, we can rely on our hypothesis to obtain an execution trace in T t0

MF
(starting

with �sd�) and applying ��1 on it allows us to conclude.
Regarding the other implication, we consider a semi-dishonest prover Psd with a

frame �sd such that names(�sd) ✓ {v0, p0}. By hypothesis, there exists a valid initial
configuration K0 for Pdb w.r.t. T 2 Ct0

MF
and �T

I0 [ �sd such that:

K tr�!T (bend(v0, p0)c tvv0 ] P;�; t).

Theorem 4.1 applies since names(�sd) ✓ {v0, p0}, and thus we easily conclude.

4.2.2. Distance hijacking

Unfortunately, the reduction proposed in case of mafia and terrorist frauds does not
apply for distance hijacking attacks. Indeed, the third step of the reduction (Lemma 4.3)
consists in placing a dishonest agent close to each honest one. This step introduces
a dishonest agent in the vicinity of the verifier which is prohibited when considering
distance hijacking scenarios.

Nevertheless, we show that under reasonable assumptions, we can reduce towards
the topology T t0

DH
= (ADH,MDH, LocDH, v0, p0) which is composed of only three agents:

v0 and p0 who are far away, and e0 at the same location as p0. The topology is depicted in
Figure 4.3. More formally we have that ADH = {p0, v0, e0}, MDH = {p0}, LocDH(p0) =
LocDH(e0), and DistT t0

DH

(p0, v0) = t0.

malicious node
honest node

v0
e0

p0
t0

Figure 4.3: Topologies T t0
DH

where t0 is the proximity threshold.

Given a process P , we denote P the process obtained from P by removing reset in-
structions, and replacing each occurrence of in<t(x) by in(x). This notation is extended
to a multiset of (extended) processes by applying the transformation to each process.

Theorem 4.2. Let I0 be a template, (V, P) a protocol, and t0 2 R+ a threshold. If (V, P)
admits a distance hijacking attack w.r.t. t0-proximity, then there exists a valid initial
configuration K0 for (V, P) w.r.t. T t0

DH
and �T t0

DH

I0 such that K0 = ({bVend(v0, p0)c0v0} ]

P0;�
T t0
DH

I0 ; 0) and

({bVend(v0, p0)c0v0} ] P0;�
T t0
DH

I0 ; 0)
tr�!T t0

DH

(bend(v0, p0)c tvv0 ] P 0;�; t).
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Sadly, the resulting trace in the reduced topology T t0
DH

does not strictly appear as
a distance hijacking attack w.r.t. t0-proximity against the protocol. Indeed the initial
configuration must be weakened: all the reset commands and guarded inputs are re-
moved except those that belong to the target process, Vend(v0, p0). As we will see in
Chapter 5, this change is tight enough to not introduce false attacks and let us prove
distance hijacking resistance for many protocols.

The proof of this theorem is more complex than the one presented in the previous
section. The idea of this reduction is to move all the agents either at the same location
as v0, if he is in his vicinity or as p0 otherwise. Unfortunately, this may lengthen the
distance between agents and thus invalidate the witness trace of attack: it may break
the timing constraints that applies on the guarded input. To ease the manipulation of
the actions in a trace, we will first define more expressive labels, i.e. annotations, and
an untimed semantics. This last will provide us more flexibility to reorder actions in
the trace such that no remote agent execute actions during a challenge/response step.
Finally, we will show how to lift a trace in this untimed semantics into a trace in our
original timed semantics.

Annotations
We extend the existing labels with more informative annotations. More precisely,

the first annotation will identify which process in the multiset has performed the action
(session identifier). This will allow us to identify which specific agent performed some
action. We also annotate the label with the global time at which the action has been
done. In case of an output, we indicate the name of the handle w that has been used to
store the output in the frame too. Finally, in case of an input, we indicate by a triplet
(b, tb, R) the name b of the agent responsible of the corresponding output, the time tb at
which this output has been performed, as well as the recipe R used to build this output.

Formally, a label is either empty (for the TIM rule) or of the form a,↵ with ↵ 2
{⌧, out(u), in?(u)}, and thus an annotated label is:

• empty for the TIM rule;

• (a,↵, s, t,w) when the underlying action (a,↵) is of the form (a, out(u)). In such a
case, s is the session identifier of the agent responsible of this action, t is the global
time at which this output has been done, and w is the handle added in the frame;

• (a,↵, s, t, (b, tb, R)) when the underlying action (a,↵) is of the form (a, in?(u)). In
such a case, s is the session identifier of the agent responsible of this action, t is
the global time at which this input has been done, b is the agent responsible of
the corresponding output, tb the time at which this output has been done (tb  t),
and R the recipe that has been used to forge this output;

• (a,↵, s, t, ;) otherwise.

Thanks to these annotations, we are able to formally define dependencies between
actions. This will be useful when reordering actions.
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Definition 4.2. Given a topology T and an execution K0
L1�!T K1

L2�!T · · · Ln��!T Kn we
note Li = (ai,↵i, si, ti, ri) and Lj = (aj ,↵j , sj , tj , rj) for i, j 2 {1, . . . , n} and we say
that Lj is dependent of Li, denoted Lj ,! Li, if i < j, and:

• either si = sj (and thus ai = aj), and in that case Lj is sequentially-dependent
of Li, denoted Lj ,!s Li;

• or ↵i = out(v), ↵j = in?(u), and ri 2 vars(Rj) with rj = (bj , tbj , Rj). In that
case Lj is data-dependent of Li, denoted Lj ,!d Li.

We note ,!⇤ the transitive closure of ,! and Lj 6,!⇤
Li when Lj is not dependent of Li.

Note that if two actions are dependent, i.e. (aj ,↵j , sj , tj , rj) ,!⇤ (ai,↵i, si, ti, ri),
then either they have been executed by the same agent or enough time must have elapsed
between ti and tj in order to let a message travel from the location of agent ai to the
location of agent aj . This is formally stated in the following lemma.

Lemma 4.5. Let T be a topology, K0
tr1.....trn�����!T K1 be an execution, and i, j 2 {1, . . . , n}

be such that trj ,!⇤ tri. We have that tj � ti + DistT (ai, aj) where tri = (ai,↵i, si, ti, ri)
and trj = (aj ,↵j , sj , tj , rj).

Proof. By definition of ,!⇤, there exists k � 1 and i1, . . . , ik 2 {1, . . . , n} such that:

trj = tri1 ,! tri2 ,! . . . ,! trik = tri.

We do the proof by induction on the length of this sequence. If k = 1 then tri = trj ,
and thus ti = tj and ai = aj . The result trivially holds. Otherwise, relying on the
induction hypothesis, we deduce that ti2 � ti + DistT (ai, ai2). We distinguish two cases
depending on the nature of the dependency trj ,! tri2 .

Case trj ,!s tri2 . In such a case, we have that aj = ai2 and j � i2, and thus tj � ti2 .
Therefore, we have:

tj � ti2 � ti + DistT (ai, ai2) = ti + DistT (ai, aj).

Case trj ,!d tri2 . In such a case, we have that rj = (b, tb, R), ri2 = w and w 2 vars(R).
By definition of the IN rule we have that tj � tb+DistT (b, aj), and tb � ti2+DistT (ai2 , b).
Combining these inequalities with the one given by our induction hypothesis, we get:

tj � ti + DistT (ai, ai2) + DistT (b, aj) + DistT (ai2 , b).

Relying on the triangle inequality, we get tj � ti + DistT (ai, aj), and we conclude the
proof.
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Untimed semantics
To have more flexibility when reordering actions, we define an untimed semantics.

Given a configuration K = (P;�; t), we note untimed(K) the configuration associated
to K, i.e. untimed(K) = (P 0;�0) with:

• P 0 = {bP c
a
| bP c t

a
2 P for some t};

• �0 = {w a�! u | (w a,t�! u) 2 � for some t}.

The untimed semantics is then defined as follows: K a,↵,s,r

T K0 if there exist K0

and K0
0 such that K0

a,↵,s,t,r
0

�����!T K0
0 (for some rule other than the (TIM) rule) with

K = untimed(K0), K0 = untimed(K0
0), and r is equal to r

0 up to the time annotation t
b

in case of an input.
We may note that Definition 4.2 can be immediately adapted for untimed actions.

As mentioned above, this untimed semantics provides more flexibility to reorder actions
in a trace. Indeed, if two actions are independent, then we can swap them in the trace.

Lemma 4.6. Let T be a topology, and K0
L1

T K L2
T K2 be an execution such that

L2 6,! L1. We have that K0
L2

T K0 L1
T K2 for some configuration K0.

Proof. We consider K0 = (P0;�0), K = (P;�), and K2 = (P2;�2) three configura-

tions such that K0
L1

T K L2
T K2 with L2 6,! L1. Let L1 = (a1,↵1, s1, r1) and

L2 = (a2,↵2, s2, r2). Since L2 6,! L1 we have that s1 6= s2. Therefore, we have that P0 =
b↵1.P1ca1 ] b↵2.P2ca2 ]Q, P = bP 0

1ca1 ] b↵2.P2c↵2
]Q, and P2 = bP 0

1ca1 ] bP 0
2ca2 ]Q

for some actions ↵1 and ↵2.
In case ↵1 = out(v) and ↵2 = in?(u), we have that �2 = � = �0 ] {w a1�! v}.

Since L2 6,!d L1, we know that w /2 vars(r2), and thus vars(r2) ✓ dom(�0). Now,
let K0 = (b↵1.P1ca1 ] bP 0

2ca2 ] Q;�0). Relying on the fact that w /2 vars(r2) in case

↵1 = out(v) and ↵2 = in?(u), it is easy to see that K0
L2

T K0 L1
T K2. The other

cases can be done in a rather similar way.

Toward the proof of Theorem 4.2
This proof proceeds in five steps:

1. we show that an attack against t0-proximity for Pdb = (V(x0, x1), P(x0, x1)) in
a topology T remains a (weak) attack against t0-proximity for Pdb in T hav-
ing removed all the reset and guarded inputs in the initial configuration but in
Vend(v0, p0);

2. we consider the trace witnessing the attack into the untimed semantics to be able
to reorder its actions such that only agents close to v0 act between a reset action
and its following guarded input;

3. we move the agents close to the verifier v0 at his location and the agents far from v0

to p0’s location;
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4. we lift this new trace in the untimed semantics into a trace in the timed one;

5. we reduce the number of agent names that appear in the execution applying
Lemma 4.4

Amongst these five steps, we may note that the first, the third and the fifth ones are
almost immediate. Indeed, in the first step, we simply remove reset actions and replace
guarded inputs by standard inputs. These transformations enable more behaviours. In
the third step, the main point is that the topology is no longer relevant in the untimed
semantics. Finally, the fifth step is the same as the last step of the proof of Theorem 4.1
presented before.

Let us focus on the steps (2) and (4). The step (2) is a consequence of the conjunction
of Proposition 4.2 presented below and Lemma 4.5. The main idea of the proof of
Theorem 4.2 is to move all the actions that do not depend on the reset or the guarded
input outside the rapid phase. Then, applying Lemma 4.5 on the actions that remain
during the rapid phase, we deduce that they must be executed by agents close to the
verifier v0.

Finally in order to lift the trace in the timed semantics in step (4), we just notice
that since all the agents close to v0 has been moved at its location at step (3). The rapid
phase can thus be performed (almost) instantaneously. Indeed, messages take no time
to travel between agents who are involved during the rapid phase.

The main proposition used to clean the trace in between a reset command and the
following guarded input is Proposition 4.2. Its proof, together with the full proof of
Theorem 4.2, are available in Appendix B.

Proposition 4.2. Let T be a topology, and K0
tr1...trn

T Kn be an execution with n � 2.
We have that there exists a bijection ' : {1, . . . , n} ! {1, . . . , n} such that:

• K0
tr

0
1...tr

0
n

T Kn with tri = tr0
'(i) for all i 2 {1, . . . , n}; and

• for all j such that '(1) < j < '(n), we have that tr0
'(n) ,!

⇤ tr0
j
,!⇤ tr0

'(1).

This proposition will be applied on the sub-executions that correspond to rapid
phases, i.e. such that tr1 is a reset action and trn a guarded input. It allows to reorder
(note that ' is a bijection) the actions in a trace such that all the actions independent
of the first action are moved before (i.e. at the beginning of the execution) and all the
actions on which the last action does not depend on are moved after (i.e. at the end of
the execution).

4.2.3. About restricted agents

The reduction results presented in the two previous sections assume that an agent is
able to act as a verifier and as a prover at the same time. This assumption is evident
when looking at Lemma 4.4: the projection function ⇢ does not make any difference
between agent identities that execute prover roles or verifier roles.
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Depending on the application, it can happen that some scenarios are not realisable.
For example, few protocols, like SPADE [BGG+16] or EMV-payment protocols, have
been designed assuming that identities are correctly distributed by an authority, i.e. an
agent cannot simultaneously be a prover and a verifier. Fortunately our reduction results
can easily be adapted to handle this restriction. We obtain similar reduced topologies
in which almost all the agents must be duplicated in order to get one honest (resp.
dishonest) prover representative and one honest (resp. dishonest) verifier representative
at each location. These two topologies are presented in Figure 4.4.

All the results presented so far in this chapter apply modulo small changes: first, the
template I0 used to derive the initial knowledge of an agent should be split in order to
differentiate the knowledge of a prover from the verifier’s one. As expected Definition 2.3
must be adapted too in order to carefully fill the initial configuration depending on each
identity (either a prover of a verifier). Finally, amongst all the technical lemmas, only
Lemma 4.4 must be slightly modified in order to respect the status (prover/verifier) of
the agents when applying the projection function. The proof can be immediately adapted
keeping in mind that a prover (resp. verifier) identity must only be projected on another
prover (resp. verifier) identity.

Note that it is important to decide whether an agent is able to act as a prover
and a verifier at the same time or not. Indeed, depending on this choice of modelling,
protocols may be proved secure or not. An example of such a protocol is the SPADE
protocol [BGG+16] which can be proved mafia fraud resistant when distinguishing both
status, but suffers from a mafia fraud if an agent can act as a verifier and a prover at the
same time.

malicious node
honest node

v0 p0

v1 v2

p1 p2

t0
v0 p0t0

e0p1

v1
p2 v2

Figure 4.4: Topologies T t0
MFnew

, and T t0
DHnew

4.3. Reducing the set of semi-dishonest provers
When considering terrorist fraud, another reduction result is needed to get rid of

the infinite number of semi-dishonest provers that should be considered to model all the
possible collusion behaviours. This result only holds for a restricted class of protocols,
named well-formed distance-bounding protocols, that match few additional assumptions.
These assumptions rely on the existence of a unifier for a set U of equations and the notion
of quasi-free symbol of function. We first introduce these two notions before formally
defining the class of protocols we consider and stating the main reduction result.
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4.3.1. Preliminaries

As usual, given a convergent rewriting system, an equational theory E and a set U of
equations between terms, � is a (R, E)-unifier for U if u1�# =E u2�# and both u1�# and
u2�# are constructor terms for any u1 = u2 2 U . We denote by csuR,E(U) a minimal set
of (R, E)-unifiers for U which is also complete, i.e. such that for any � unifier of U , there
exists ✓ 2 csu(U) such that � =E ⌧ � ✓ for some ⌧ . When it is clear from the context, we
note csu(U) instead of csuR,E(U).

From now on, we assume that for all set of equations U , if csu(U) exists then it is
reduced to a singleton, and we note ✓U this element. Even if this assumption seems
very restrictive, it is satisfied as soon as the rewriting system contains only one rule per
destructor symbol which is often verified.

Example 4.3. Let us consider the set of equations that appear in the verifier role V(v0, p0)
presented in Example 4.1:

U = {y1 = adec(x1, sk(v0)),

y
1
check

= eq(proj1(y1), check(proj2(y1), spk(p0))),

x
0
H = prf(hproj1(y1), nV i),

x
1
H = proj1(y1)�mV � x

0
H ,

y
2
check

= eq(x2, answer(c, x
0
H , x

1
H)),

y
3
check

= eq(x3, prf(hproj1(y1), nV ,mV , c, x2i))
 
.

We have that csu(U) = {✓U}, where ✓U is the following substitution:

{x1 ! aenc(hxnP
, sign(xnP

, ssk(p0))i, pk(v0)),
y1 ! hxnP

, sign(xnP
, ssk(p0))i,

x
0
H ! prf(hxnP

, nV i),
x
1
H ! xnP

�mV � prf(hxnP
, nV i),

x2 ! answer(c, prf(hxnP
, nV i), xnP

�mV � prf(hxnP
, nV i)),

x3 ! prf(hxnP
, nV ,mV , c, answer(c, prf(hxnP

, nV i), xnP
�mV � prf(hxnP

, nV i))i),
y
1
check

! ok, y
2
check

! ok, y
3
check

! ok
 
.

We can note that all the message variables used to check term equalities (i.e., y1
check

,
y
2
check

and y
3
check

) are reduced to the public constant ok in order to obtain a constructor
term. Note that this computation is closely related to the notion of variants, or more pre-
cisely variantsC, introduced in Chapter 3. Indeed, the remaining variables are instantiated
so that all the destructor symbols can be reduced.

A symbol of function f 2 ⌃+
c is quasi-free if it occurs neither in the equations used

to generate the relation =E nor in the right-hand side of a rewriting rule. This implies
that such a symbol cannot be introduced during a normalisation.
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Since such symbols does not interact with the rewriting system and the equational
theory, we will be able to reduce the number semi-dishonest provers as soon as the
challenge only appears under quasi-free symbols of function in the answer.

To do so, we first need the following lemma: if a term u reduces to a term f(u1, . . . , uk)
with f a quasi-free symbol of function then it must contain f(u1, . . . , uk) as a subterm (up
to a normalisation). Informally this states that, if u is the answer to a challenge, then
each quasi free symbol of function that appears in its normal form u#, already appears
in u.

Lemma 4.7. Let u be a term such that u# =E f(u1, . . . , uk) with f a quasi-free function
symbol. We have that there exist u01, . . . , u0k such that f(u01, . . . , u0k) 2 st(u) and u

0
i
# =E ui

for any i 2 {1, . . . , k}.

Proof. Let u be a term, and u# its normal form. Therefore, we have that u ! t1 !
t2 . . . ! tn = u#. We prove the result by induction on the length n of this derivation.

Base case: n = 0. We have that u# = u, and thus u =E f(u1, . . . , uk). Since our theory
is non-trivial, and since f does not occur in equations in E, we have that there exists
u
0
1, . . . , u

0
k

such that f(u01, . . . , u
0
k
) 2 st(u) and u

0
i
=E ui for any i 2 {1, . . . , k}. Note that

u
0
1, . . . , u

0
k

are in normal form since u is in normal form, and thus the result holds.

Induction step. In such a case, applying our induction hypothesis, we know that there
exist u01, . . . , u0k such that f(u01, . . . , u0k) 2 st(t1) and u

0
i
# =E ui for any i 2 {1, . . . , k}. We

denote g(v01, . . . , v0`) ! v
0 the rewrite rule applied at position p to rewrite u in t1. We have

that there exists a substitution ✓ such that u|p =E g(v01, . . . , v
0
k
)✓ and t1 = u[v0✓]p. We

have that f(u01, . . . , u
0
n) 2 st(t1), and we distinguish two cases depending on the position

pf at which this subterm occurs in t1 = u[v✓]p:

1. pf is a position in u[_]p. In such a case, we have that either f(u01, . . . , u0n) 2 st(u[_]p)
(in case pf is not a prefix of p); or u|pf = f(u001, . . . , u

00
n) for some u

00
1, . . . , u

00
n, and

we have that u|pf ! f(u01, . . . , u
0
n) with u

00
i
= u

0
i

or u
00
i
! u

0
i
. Therefore, we have

that there exist u
00
1, . . . , u

00
n such that f(u01, . . . , u

0
n) 2 st(u) and u

00
i
# =E ui for any

i 2 {1, . . . , k}.

2. pf is a position below p, i.e. p is a prefix of pf . In such a case, since f does not
occur in v

0 (by definition of quasi-free), we have that f(u01, . . . , u
0
k
) 2 st(x✓) for

some x 2 vars(v0) ✓ vars(v01, . . . , v
0
`
). Therefore, we have that there exists t0 =E u|p

such that f(u01, . . . , u0k) 2 st(t0). Since we only consider non-trivial theory, and since
f does not occur in equations in E, we have that there exists u

00
1, . . . , u

00
k

such that
f(u001, . . . , u

00
k
) 2 st(u|p) and u

00
i
=E u

0
i

for any i 2 {1, . . . , k}. Note that u
00
1, . . . , u

00
k

are in normal form since any subterm of u|p is in normal form. Therefore, we have
that there exist u

00
1, . . . , u

00
n such that f(u001, . . . , u

00
n) 2 st(u) and u

00
i
# =E ui for any

i 2 {1, . . . , k}.

This concludes the proof.
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Example 4.4. In order to illustrate Lemma 4.7, let us consider f a quasi-free symbol
of function and the term u = adec(aenc(f(proj1(hx, yi)), pk(id)), sk(id)). We have that u
reduces to f(x), i.e. u# = f(x), which already occurs in st(u) up to normalisation. Indeed,
f(proj1(hx, yi)) 2 st(u) and f(proj1(hx, yi)) ! f(x).

Given an execution, we know that each input message can be forged by some recipes.
Assuming that u is a response to a challenge c, we can thus deduce that there exists a
recipe R which can be used to forge it. The following lemma allows us to decompose this
recipe in order to obtain sub-recipes that deduce the maximal subterms of u which do
not contain c.

Lemma 4.8. Let � be a frame and c 2 N such that c 62 st(img(�)), and �+ = � [
{wc

v0,t0���! c}. Let R be a recipe such that R�+# =E u. Let C be a context of minimal
size made of quasi-free public function symbols such that u = C[c, u1, . . . , uk] for some
u1, . . . , uk and c does not occur in st({u1, . . . , uk}). For any i 2 {1, . . . , k}, we have that
there exists Ri such that Ri�+# =E ui.

Proof. We prove this result by structural induction on the context C.

Base case: C is empty. In such a case, we have that either k = 0; or k = 1 with u1 = u.
In both case, the result trivially holds.

Inductive case: C = f(C1, . . . , Cp). In such a case, by minimality of C, we know
that c occurs in u. We have that u = f(u01, . . . , u

0
p) and for all i 2 {1, . . . , p} we

note {ui1, . . . , uipi} ✓ {u1, . . . , up} the set of terms involved in the sub-context Ci i.e.
Ci[ui1, . . . , u

i
pi
] = u

0
i
. Note that

S
1ip

{ui1, . . . , uipi} = {u1, . . . , up}.
Applying Lemma 4.7 on the term R�+, we deduce that there exist v1, . . . , vp such

that f(v1, . . . , vp) 2 st(R�+) and vi# =E u
0
i

for any i 2 {1, . . . , p}. Now, since c occurs
in u we have that there exists i0 2 {1, . . . , p} such that u

i0
1 = c. Therefore we have

that c occurs in vi0# because Ci0 only contains quasi-free function symbols (i.e. function
symbols which do not occur in E). By consequence we have that f(v1, . . . , vp) /2 img(�+)
and thus there exist R1, . . . , Rp such that f(R1, . . . , Rp) 2 st(R) with Ri�+# =E u

0
i

for
any 1  i  k.

Our induction hypothesis applies for any i 2 {1, . . . , p} and we obtain that for all
v 2 {ui1, . . . , uipi}, there exists a recipe Rv such that Rv�+# =E v. Considering the
previous remark stating that

S
1ip

{ui1, . . . , uipi} = {u1, . . . , uk}, this allows us conclude
the proof.

Example 4.5. In order to illustrate Lemma 4.8, we consider the frame � = {w0
a,ta��!

u1,w1
a,ta��! u2} and the term u = f(c, hu1, u2i) such that R(� ] {wc

v0,tv���! c})# = u with
R = f(wc, hw1,w2i). Thanks to Lemma 4.8, we have that R contains a subterm which
deduces hu1, u2i. Indeed, such a recipe is for example R

0 = hw1,w2i. This reasoning may
be applied to more complex terms whenever all the symbols on top of c in u are quasi-free.
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4.3.2. Most general semi-dishonest prover

We have now all the material needed to define the class of protocols for which we will
be able to reduce the number of semi-dishonest provers that must be considered.

Definition 4.3. A well-formed distance-bounding protocol is a protocol Pdb such that:

(i) The verifier and prover roles, resp. V(x0, x1) and P(x0, x1) have the form:

• V(x0, x1) = blockV .new c.reset.out(c).in<2⇥t0(x).block0
V
; and

• P(x0, x1) = blockP .in(yc).out(u).block0P

where blockX and block0
X

with X 2 {V, P} is a sequence of actions without
reset and guarded input instructions. Moreover, we assume that out(c) (resp.
in(yc)) corresponds to the i0

th communication action of V(x0, x1) (resp. P(x0, x1))
for some i0.

(ii) (beVc0
v0

] bePc0
p0
; ;; 0) tr�!T 0

basic

(b0c0
v0

] b0c0
p0
;�; 0) with:

tr =

8
<

:

(a1, out(m1)).(b1, in(m1)) . . . (ai0�1, out(mi0�1)).(bi0�1, in(mi0�1))
(v0, out(mi0)).(p0, in(mi0)).(p0, out(mi0+1)).(v0, in<2·t0(mi0+1))
(ai0+2, out(mi0+2)).(bi0+2, in(mi0+2)) . . . (an, out(mn)).(bn, in(mn))

up to ⌧ actions, and {ai, bi} = {v0, p0} for any i 2 {1, . . . , n}r {i0, i0 + 1}. The
processes eV (resp. eP) corresponds to V(v0, p0) (resp. P(p0, v0)) in which new com-
mands are removed, and T 0

basic
is the topology only composed of agents v0, p0 honest

and located at the same place.

(iii) Let U = {x = u | ”letmess x = u in ” occurs in V(v0, p0)} and {✓U} its complete
set of unifiers. We assume that (x1, . . . , xk)✓U#� =E mi1 , . . . ,mik

where x1, . . . , xk

are the variables occurring in input in the role V0(v0, p0), i1, . . . , ik are the indices
among 1, . . . , n corresponding to input performed by v0, and � is a bijective renaming
from variables to bn(P(p0, v0)).

(iv) We assume the existence of a context C made of quasi-free public function symbols
such that u = C[yc, u1, . . . , ul], and yc does not occur in u1, . . . , ul.

The first condition puts some syntactic restrictions on the form of each role. Indeed,
we assume that a well-formed DB protocol is a two-party protocol with rather simple
roles: the rapid phase of the verifier role consists in a single challenge/response exchange.
The second condition assumes that if no attacker interferes, these two roles together will
execute until the end. For sake of simplicity, we consider in item (ii) instances of the
roles in which bound names are not freshened. This is possible because we consider only
one instance of each role (and they do not share bound names). The third condition
gives us a constraint about exchanged messages. Even if it may seem restrictive this
is always verified. Otherwise, it would mean that some terms that are exchanged are
never checked, i.e. are useless. Finally, the fourth condition is used to ensure that there
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exists at least one semi-dishonest prover. This semi-dishonest prover will output the
terms u1, . . . , ul in advance to let his accomplice compute (as indicated by C) the answer
to the challenge from u1, . . . , ul and the challenge c

0 he will receive from the verifier.
Actually, the best strategy for the semi-dishonest prover will consist in considering CV,P

the smallest context (in terms of number of symbols) satisfying the requirements.

Example 4.6. The SPADE protocol described in Example 4.1 is a well-formed DB proto-
col. The roles V(x0, x1) and P(x0, x1) as described in Example 4.1 satisfy the requirements
stated in item (i). We may note that i0 = 3. Regarding item (ii), we can exhibit the
following trace (up to ⌧ actions):

tr = (p0, out(m1)).(v0, in(m1)).(v0, out(m2)).(p0, in(m2)).(v0, out(c)).(p0, in(c))

(p0, out(m4)).(v0, in
<2·t0(m4)).(p0, out(m5)).(v0, in(m5))

where the messages m1, m2, m3, m4, and m5 are as follows:

m1 = aenc(hnP , sign(nP , ssk(p0))i, pk(p0)),
m2 = hmV , nV i,
m4 = answer(c, prf(hnP , nV i), nP �mV � prf(hnP , nV i)), and
m5 = prf(hnP , nV ,mV , c, answer(c, prf(hnP , nV i), nP �mV � prf(hnP , nV i))i).

The set U described in item (iii) is exactly the same as the one presented in Example 4.3,
and thus we have:

✓U = {x1 ! aenc(hxnP
, sign(xnP

, ssk(p0))i, pk(v0)),
y1 ! hxnP

, sign(xnP
, ssk(p0))i,

x
0
H ! prf(hxnP

, nV i),
x
1
H ! xnP

�mV � prf(hxnP
, nV i),

x2 ! answer(c, prf(hxnP
, nV i), xnP

�mV � prf(hxnP
, nV i)),

x3 ! prf(hxnP
, nV ,mV , c, answer(c, prf(hxnP

, nV i), xnP
�mV � prf(hxnP

, nV i))i),
y
1
check

! ok, y
2
check

! ok, y
3
check

! ok
 
.

The substitution � is reduced to {x1 ! nP }. Finally, for item (iv), we can exhibit
the context C = answer(c, u1, u2) where u1 and u2 are the terms outputted by the semi-
dishonest prover described in Example 2.11. One may note that this context is the smallest
one that satisfies the requirements. Hence we have that C = CV,P.

Up to now, according to Definition 2.6 (and Corollary 4.2) we had to consider all the
possible semi-dishonest provers when verifying terrorist fraud resistance. Restricting our
analysis to well-formed distance-bounding protocols, we are now able to define the most
general semi-dishonest prover and prove that it is sufficient to focus our analysis on it.
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Definition 4.4. Let Pdb be a well-formed DB protocol. Following the notations of Defi-
nition 4.3, we note P⇤ the following process:

P⇤ =
�
blockP .out(u1) . . . out(ul).in(yc).out(u).block

0
P

�
{x0 7! p0, x1 7! v0}

where u1, . . . , ul are the terms such that u = CV,P[yc, u1, . . . , ul].

Example 4.7. If we consider the semi-dishonest prover presented in Example 2.12, one
can see that it corresponds to the process P⇤ defined above. One may note that this process
is actually a semi-dishonest prover for Pdb. This will be formalised through the following
lemma.

The behaviour of the most general semi-dishonest prover consists in providing to his
accomplice all the material needed to pass the rapid phase just before it starts. For this
purpose, he computes and sends the maximal sub-terms of u that do not contain the
challenge yc. His accomplice is then able to re-construct the response to the challenge
using the context CV,P composed of public function symbols.

As explicitly assumed in the speech up to now, we shall prove that the most gen-
eral semi-dishonest prover P⇤ is a semi-dishonest prover following Definition 2.5, i.e., put
together with bV(v0, p0)c0v0 the two processes can be fully executed. This result is imme-
diate from the definition of a well-formed distance-bounding protocol thanks to the close
correspondence between P⇤ and P(p0, v0).

Lemma 4.9. Let (V, P) be a well-formed DB protocol. The most general semi-dishonest
process P⇤ together with its associated frame �⇤ is a semi-dishonest prover. Moreover,
we can assume that the trace tr⇤ witnessing this fact is such that :

tr⇤ =

8
>>>><

>>>>:

(a1, out(m1)).(b1, in(m1)) . . . (ai0�1, out(mi0�1)).(bi0�1, in(mi0�1)).
(p0, out(m1

i0+1)). . . . .(p0, out(m
l

i0+1)).
(v0, out(mi0)).(v0, in

<2⇥t0(mi0+1))
(p0, in(mi0)).(p0, out(mi0+1)).
(ai0+2, out(mi0+2)).(bi0+2, in(mi0+2)) . . . (an, out(mn)).(bn, in(mn))

up to ⌧ actions where:

• {ai, bi} = {v0, p0} for any i 2 {1, . . . , n}r {i0, i0 + 1};

• mi0+1 = CV,P[mi0 ,m
1
i0+1, . . . ,m

l

i0+1]

• (x1, . . . , xk)✓U#� =E mi1 , . . . ,mik
where x1, . . . , xk are the variables occurring in

input in the role V(v0, p0) and i1, . . . , ik are the indices among 1, . . . , n corresponding
to input performed by v0, � is a bijective renaming from variables to bn(P⇤), and
U = {x = u | ”letmess x = u in ” occurs in V(v0, p0)}. This equality holds up to a
bijective renaming of names freshly generated along the execution.

We note �⇤ the initial frame associated to the most general semi-dishonest prover, i.e.
the frame resulting from the execution of tr⇤ in which all the annotated times are set to
0.
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Proof. This proof strongly relies on Definition 4.3. First, remark that tr⇤ corresponds to
the trace tr in which the extra outputs of P⇤ are executed just before the i0

th communi-
cation action i.e. the output of the challenge; and the answer to the challenge received
by v0 is anticipated. We show that this sequence of actions tr⇤ is an execution w.r.t. our
semantics:

• 1st line of actions: The actions can be executed following our semantics applying
a TIM rule with a delay � = t0 before each input. Indeed this delay enables the
agent bi to receive the message mi sent by ai. Moreover, since there is no guarded
input the IN rule always applies.

• 2nd line of actions: It only contains outputs and thus can trivially be executed.

• 3rd line of actions: Before executing the output, we apply a TIM rule to let available
all the previous messages (including m

1
i0+1, . . . ,m

l

i0+1) for the malicious agent p.
Since CV,P only contains public symbols of functions (otherwise there is a contradic-
tion with item (iv) of Definition 4.3), we have that R = CV,P[wi0 ,w

1
i0+1, . . . ,w

l

i0+1]

where wi0 is the frame variable binding mi0 and wj

i0+1, (1  j  l) is the frame
variable binding m

j

i0+1, is a recipe deducing mi0+1. Finally the guarded input can
be executed because w.l.o.g. we may assume that the reset action has been made
right before the output of mi0 .

• 4th and 5th lines of actions: These actions can be executed for the same reason as
the first line applying a TIM rule with a delay � = t0 before each input.

By construction we have that the first and the third item holds. Let us show that the
second one holds too. Denoting � the current frame when executing the guarded input,
we have that:

R�# = CV,P[wi0 ,w
1
i0+1, . . . ,w

l

i0+1]�#
= CV,P[wi0�,w

1
i0+1�, . . . ,w

l

i0+1�]#
= CV,P[mi0 ,m

1
i0+1, . . . ,m

l

i0+1]#.

Note that, by construction, since u (in Definition 4.3) is only composed of constructor
terms, the context CV,P cannot contain destructor symbols (equality in item (iv) holds
without normalisation). Hence we have that mi0+1 = R�# = CV,P[mi0 ,m

1
i0+1, . . . ,m

l

i0+1].
This concludes the proof.

A noteworthy point is the strong correspondence that exists between �⇤ and any
frame �sd associated to an arbitrary semi-dishonest prover Psd. Informally we prove
that any semi-dishonest prover must disclose, at least, as much information as P⇤. The
following lemma formalises this property: the two traces match up to a substitution �

that models the extra-leakage on Psd side.

Proposition 4.3. Let (V, P) be a well-formed DB protocol, P⇤ be its most general semi-
dishonest prover with �⇤ its associated frame and tr⇤ a trace witnessing this fact (as given
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in Lemma 4.9). Let Psd be a semi-dishonest prover for (V, P) together with its associated
frame �sd, and tr be a trace witnessing this fact.

We have that there exists a substitution � : N ! T (⌃+
c ,N [A) from names freshly

generated by P⇤ to constructor terms such that:

(i) if (v0, in?(u)) 2 tr⇤ (resp. (v0, in<t(u)) 2 tr⇤), then (v0, in?(u�)) 2 tr (resp.
(v0, in<t(u�)) 2 tr);

(ii) if (a, out(u)) 2 tr⇤ for some a 2 A, then R�sd# =E u� for some recipe R.

Proof. Along an execution, variables occurring in input as well as those occurring in a
let instruction are instantiated. We denote by ⌧tr (resp ⌧tr⇤) the substitution associated
to the given execution tr (resp. tr⇤).

Relying on Lemma 4.9, we note ⌧ : X ! N the bijective renaming from variables
to names freshly generated by P⇤ such that (x1, . . . , xk)✓U#⌧ =E mi1 , . . . ,mik

where
x1, . . . , xk are the variables occurring in input in V(v0, p0) and mi1 , . . . ,mik

are the in-
putted terms. By definition of ✓U we have that there exists �0 such that xj⌧tr# =E xj✓U�

0#
for any j 2 {1, . . . , k}. Moreover, for any j 2 {1, . . . , k} we have that xj⌧tr is a message
(and thus a constructor term) and we have also that xj✓U# is a constructor term (by
definition of ✓U ). Thus, for any j 2 {1, . . . , k} we have that xj⌧tr =E xj✓U#�0 for any
j 2 {1, . . . , k}.

We consider � = ⌧
�1
�
0 and establish each item separately.

Item (i): We consider V(v0, p0) = ↵1. . . . .↵k. First, because (v0, in?(u)) 2 tr⇤, we have
that there exists j 2 {1, . . . , k} such that ↵ij

= in?(xj) and xj⌧tr⇤ = u (= mij
). By

definition of ⌧ , we have that u = xj✓U#⌧ .
Then, we know that the process has been entirely executed in tr and therefore there

exists (v0, in?(u0)) 2 tr such that u
0 = xj⌧tr. By definition of �0, we have u

0 =E xj✓U#�0.
By consequence we obtain that u

0 = xj⌧tr =E xj✓U#�0 = (u⌧�1)�0 = u�. This concludes
the proof of item (i).

Item (ii): We have that (a, out(u)) 2 tr⇤. We distinguish several cases depending on the
origin of this output.

In case a = v0, it is an immediate corollary of item (i). Indeed, given exec⇤ (resp.
exec) an execution which matches with the trace tr⇤ (resp. tr) and witnesses the fact
that P⇤ (resp. Psd) is a semi-dishonest prover, we can prove by induction on the length
of tr that for each configuration K in exec, there exists a configuration K⇤ in exec⇤ such
that if we note V

⇤ the process executed by v0 in K⇤ then V
⇤
� is the process executed by

v0 in K.
Now, we assume that a = p0, and we distinguish two cases depending on whether

u = m
j

i0+1 (1  j  l) or not. If not, relying on Lemma 4.9, we have that (v0, in(u)) 2 tr⇤

(or (v0, in<t(u)) 2 tr⇤), and since item (i) holds we have now that (v0, in(u�)) 2 tr (or
(v0, in<t(u�)) 2 tr). We can thus deduce that exists a recipe R such that R�sd# =E u�.

Now, we assume that u = m
j

i0+1 for some j 2 {1, . . . , l}. Thanks to Lemma 4.9, we
know that (v0, in<2·t0(mi0+1)) 2 tr⇤ and mi0+1 = CV,P[mi0 ,m

1
i0+1, . . . ,m

l

i0+1] = x✓U#⌧
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where x in the variable occurring in the guarded input in V(v0, p0). According to item (i),
we have that (v0, in<2t0(mi0+1�)) 2 tr. Moreover, following the hypotheses on the
structure of V(v0, p0), we know that there is a unique output in tr that is executed by v0

before this guarded input and that contains the challenge mi0 (note that mi0 = mi0�

because � only applies on names generated by P⇤). In addition, p0 cannot receive the
challenge soon enough to make an output containing mi0 available to fill the guarded
input. Indeed, assume that it was possible, and let treset (resp. tout and tin) the time
when the reset action (resp. output of the challenge, reception of the guarded input) is
executed in tr then we have that:

tin � tout + 2⇥ DistT t0
s

(v0, p0) � treset + 2⇥ DistT t0
s

(v0, p0) = treset + 2⇥ t0.

This is in contradiction with the constraint imposed by the guarded input: tin� treset <

2 ⇥ t0. Finally, denoting �+ the current frame when executing the guarded input, we
deduce that �+ = �[ {w v0,tout����! mi0} for some sub-frame � such that mi0 62 st(img(�))
and there exists a recipe R such that R�+# =E mi0+1�. Lemma 4.8 applies and we
conclude that there exists a recipe Ru such that Ru�+# =E m

j

i0+1� = u� and thus
Ru�sd# =E u� since �sd contains �+. This concludes the proof.

4.3.3. Main result

We are now able to state and prove the main reduction result which allows us to get
rid of the universal quantification over the semi-dishonest prover by focusing on the most
general one.

Theorem 4.3. Let I0 be a template, Pdb be a well-formed DB protocol, and t0 be a
threshold. Let P⇤ be the most general semi-dishonest prover of Pdb together with its
associated frame �⇤. We have that Pdb is terrorist fraud resistant w.r.t. t0-proximity if,
and only if, there exists a topology T = (A0,M0, Loc0, v0, p0) 2 Ct0

MF
and a valid initial

configuration K0 for Pdb w.r.t. T and �⇤ [ �T
I0 such that:

K0
tr�!T (bend(v0, p0)c t

0

v0
] P;�; t).

Proof. The direct implication is trivial since P⇤ is a semi-dishonest prover (Lemma 4.9).
We concentrate on the other implication, and we have to show that the property holds
for any semi-dishonest prover. Let Psd be a semi-dishonest prover for (V, P) with its
associated frame �sd, and trsd be a trace witnessing this fact. We denote P⇤ the most
general semi-dishonest prover, �⇤ its associated frame, and tr⇤ a trace witnessing this
fact.

Applying Proposition 4.3, there exists a substitution � : N ! T (⌃+
c ,N [ A), from

names freshly generated by P⇤ in tr⇤ to constructor terms such that:

(i) if (v0, in(u)) 2 tr⇤, then (v0, in(u�)) 2 trsd.

(ii) if (a, out(u)) 2 tr⇤ for some a 2 A0, then R�sd# =E u� for some recipe R.
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By hypothesis, there exist a topology T 2 Ct0
MF

and a valid initial configuration K0

for (V, P) w.r.t. T and �⇤ [ �T
I0 such that

K0 = (Pinit;�
T
I0 [ �

⇤; 0)
tr�!T (bend(v0, p0)c t

0

v0
] P;�T

I0 [ �
⇤ [ �out; t)

for some frame �out. Without loss of generality, we may assume that the topology T =
(A0,M0, Loc0, v0, p0) is such that M0 6= ;. Otherwise, we add such a malicious agent,
and the trace remains executable. Applying the substitution � along this execution, we
obtain a valid execution (remember that our calculus does not feature else branches):

(Pinit�;�
T
I0� [ �⇤

�; 0)
tr���!T (bend(v0, p0)c t

0

v0
] P�;�T

I0� [ �⇤
� [ �out�; t).

Actually, since names occurring in dom(�) are names freshly generated by P⇤, we have
that Pinit� = Pinit, �T

I0� = �T
I0 , and therefore, we have that:

(Pinit;�
T
I0 [ �

⇤
�; 0)

tr���!T (bend(v0, p0)c t
0

v0
] P�;�T

I0 [ �
⇤
� [ �out�; t).

Finally, from item (ii), we have that for any u 2 img(�⇤), there exists a recipe R

such that R�sd# =E u�. We can thus deduce that for any term v and recipe Rv such
that Rv(�T

I0 [ �
⇤
�)# =E v we have that there exists R

0
v such that R

0
v(�

T
I0 [ �sd)# =E v.

Indeed, for any (w
aw,tw���! uw) 2 �⇤ there exists a recipe Rw such that Rw�sd# =E uw�.

We can thus define R
0
v = Rv{w ! Rw | w 2 dom(�⇤)}.

Starting by applying a TIM rule with a delay � equal to twice the greatest distance
between two agents in T , we have:

(Pinit;�
T
I0 [ �sd; 0)

tr���!T (bend(v0, p0)c t
0

v0
] P̃;�T

I0 [ �sd [ �0
out�; t+ �).

with �
0
out = {w a,t+����! u� | w a,t�! u 2 �out}. The delay � enables a dishonest agent

(there is one by assumption) to build any term occurring in �⇤
� from �sd. Remember

that even if this delay modifies the value of the local clocks the trace is still executable
thanks to Proposition 4.1 because each guarded input is preceded by a reset command
in the two roles V(x0, x1) and P(x0, x1). This concludes the proof.

The following corollary is immediate putting together Theorem 4.3 and Theorem 4.1.
It shows that when checking for terrorist fraud resistance, it is sufficient to focus on a
particular semi-dishonest prover and a particular topology.

Corollary 4.3. Let I0 be a template, (V, P) be a well-formed DB protocol, and t0 2 R+

be a threshold.. Let �⇤ be the frame associated to the most general semi-dishonest prover
of (V, P). We have that (V, P) is terrorist fraud resistant w.r.t. t0-proximity if, and only

if, there exists a valid initial configuration K0 for (V, P) w.r.t. T t0
MF

and �⇤ [ �T t0
MF

I0 such
that:

K0
tr�!T t0

MF

(bend(v0, p0)c t
0

v0
] P;�; t).
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Proof. We consider the first implication. If (V, P) is terrorist fraud resistant w.r.t. t0-
proximity then there exist a topology T 2 Ct0

MF
and a valid initial configuration K for

(V, P) w.r.t. T and �⇤ [ �T
I0 such that:

K tr�!T (bend(v0, p0)c tvv0 ] P;�; t)

Actually, this should be satisfied for any semi-dishonest prover and especially P⇤.
By definition of a protocol, we know that V and P are two I0-executable roles. Hence,

the two processes (V(v0, p0) and P(p0, v0)) which appear in the initial configuration that
leads to �⇤ cannot involve agent names different from v0 and p0. Moreover, the attacker p
cannot introduce new identities since the execution starts with an empty frame (agent
names are not publicly available to forge a recipe except if provided in the initial frame).
Finally we have that names(�⇤) \ A ✓ {v0, p0} and Theorem 4.1 applies in order to

obtain that there exits a valid initial configuration K0 for (V, P) w.r.t. T t0
MF

and �⇤[�T t0
MF

I0
such that:

K0
tr

0
�!T t0

MF

(bend(v0, p0)c t
0
v

v0
] P 0;�0; t0).

The other direction is an immediate application of Theorem 4.3 since the topology
T t0
MF

belongs to Ct0
MF

.

4.4. Conclusion
In comparison with standard security properties, mafia fraud, terrorist fraud or dis-

tance hijacking attack introduce new sources of unboundedness, and raise new challenges
when considering automatic verification. Indeed, for each class of attacks an infinite
number of topologies, here Ct0

MF
or Ct0

DH
, have to be considered. Moreover, in case of

terrorist fraud, the semi-dishonest prover, modelling the possible collusion behaviours, is
also arbitrary and leads to another source of unboundedness. In this chapter we proved
that, under few assumptions, we can get rid of these difficulties focusing our analysing on
two rather simple topologies, T t0

MF
and T t0

DH
, and a unique collusion behaviour, which we

call the most general semi-dishonest prover P⇤. These reductions results constitute a first
step for an automatic verification of distance-bounding protocols by removing sources of
unboundedness. Unfortunately, even one simple topology cannot be immediately mod-
elled in existing tools. In Chapter 5 we will explain how to encode the reduced topologies
in the existing verification tool Proverif. Thereafter we will be able to perform a large
case studies analysis considering both distance-bounding and payment protocols.





Implementations and case
studies 5

In this chapter, we implement the theoretical results obtained in Chapter 3 and 4 to anal-
yse many distance-bounding and contactless payment protocols. We first present several
generic abstractions made on the protocols in order to analyse them through our frame-
works. Then we explain how the procedure presented in Chapter 3 has been integrated
upon the Akiss tool [CCCK16]. Lastly relying on the reduction results, we leverage the
existing Proverif tool [Bla01] to allow the analyses of distance-bounding protocols. Both
approaches are accompanied with an analysis of case studies and a discussion about their
limitations. All the material is available at: https: // gitlab. inria. fr/ adebant/
verif-db/
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5.1. Few practical abstractions
The two approaches we developed require to make few abstractions on the protocols

we want to analyse. First, we recall the main abstraction mentioned in Chapter 2 applying
on the challenge/response exchange. Then, we discuss the classical problem in symbolic
models which is the modelling of the exclusive-OR operator. To perform our analyses,
we will have to model a weaker operator in order to match our theoretical development
(Chapter 3) or the underlying model of existing tools (Proverif).

5.1.1. A unique challenge/response exchange

In Chapter 1 we presented the SPADE protocol (see Figure 1.3) as originally de-
scribed in [BGG+16]. Similarly to almost all the distance-bounding protocols, the rapid
phase, used to estimate the distance between the verifier and the prover, is made of n
challenge/response exchanges. To minimise the computation time on the prover side and
minimise the variance of the transmission delay, each challenge and each response are
reduced to a bit, i.e. 0 or 1. This optimisation allows to compute a tighter bound of the
distance in practice.

Unfortunately, symbolic models and procedures do not allow us to model single bits.
Indeed since 0 and 1 are public values the attacker will be able to guess all the challenges
and mount an attack. Since models and procedures do not handle probabilities the at-
tack will always succeed, i.e. with probability 1. This is unrealistic in practice since an
attacker might, of course, guess a bit, but only with probability 1

2 which falls down the
probability of success of the attack (he might only guess all the bits with probability (12)

n).

To overcome this well-known limitation of symbolic models, the new commands allows
to pick a fresh name unknown from the attacker. However, since this name cannot
be guessed (even with probability 1

2), it do not faithfully model a single bit neither.
Hopefully, it can model a bit string that is long enough to be assumed unguessable.
We therefore collapse the n challenge/response exchanges into a single one in which the
challenge, i.e. the n-bits in a row, is modelled by a fresh name.

5.1.2. A weak exclusive-OR operator

Another abstraction applies to the exclusive-OR operator. When looking at symbolic
verification, modelling such an operator is a difficult task due to its associativity and
commutativity properties. Only very few existing tools handle it [BDGK17, DHRS18].

Unfortunately, the Proverif tool does not belong to this list 1 and thus, even if our
theoretical result presented in Chapter 4 is strong enough to support such an operator,
we have had to weaken it when performing the analysis of our case studies.

On the opposite, the Akiss tool has been recently updated to handle this opera-
tor [BDGK17], but we built on the original procedure (simpler and enough for a proof of
concept) which does not. We thus weakened the operator to conduct our analyses too.
1Note that the Proverif tool has been extended to handle the exclusive-OR operator in [KT11], but the
new procedure did not prove its efficiency in practice.
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In both analyses, the algebraic properties of the weaker exclusive-OR operator we
modelled are described through the following rules:

cancelXor(x� y, x) ! y

cancelXor(x� y, y) ! x

cancelXor(x, x� y) ! y

cancelXor(y, x� y) ! x.

The symbol cancelXor of arity 2 is a public symbol of function that an attacker can use
to extract part of a message. In the Proverif tool, we also consider the rule

commutXor(x� y) ! y � x

to strengthen our modelling. We do not in Akiss since it leads to non-termination issues.

Remark 5.1. It is important to note that these rules do not perfectly model the exclusive-
OR operator. Indeed, let us consider the rewriting system made of the previous rules and
note E� the equational theory of the exclusive-OR operator (see Example 2.2). We define
u = (x� y)� z. We have that:

u� y =E� x� z but (u� y)# 6= (x� z)#.

5.2. Integration in Akiss
In this section, we explain how the procedure presented in Chapter 3 has been inte-

grated into the existing tool Akiss and present our case studies. First, even if the input
syntax of the original procedure is close the one presented in Chapter 3, it must have
been slightly extended to model the topologies and the configurations under study in a
simple way. Second, since the last step of our new procedure consists in solving timing
constraints, we had to fix the form of the constraints that may appear in our protocols
to be able to implement a verification procedure.

5.2.1. A unique destructor symbol: eq
Our theoretical development allows to consider rather arbitrary sets of constructor

and destructor symbols. However, the original underlying calculus of Akiss does not
model constructor/destructor symbols. Instead it assumes that all the symbols are con-
structors and provides a specific command that allows equality tests. In order to be able
to build over the existing tool, we had to match this setting. Thus we will consider the
following restrictions:

• ⌃d = {eq/2}; and

• all the letmess commands have the form: letmess x = eq(v1, v2) with v1, v2 2
T (⌃+

,N [A [ R+ [ X ); and

• the variables bound in letmess commands do not appear elsewhere in the process.



5

104 5. Implementations and case studies

Even if these restrictions may appear restrictive they are not. As discussed in Re-
mark 2.2, modelling a primitive, e.g. an encryption scheme, through a rewriting system
or an equational theory provides a close semantics. Moreover, once all the symbols are
constructor ones but eq, the last restriction about bound variables does not alter the
expressiveness of the model: all the messages are constructor terms and can the bound
variable can thus be substituted by the term in the remaining of the process.

Example 5.1. To illustrate what this restriction implies, let us consider the following
trace:

T = (a1, in(x1)).
(a1, letmess x

1
2 = proj1(adec(x1, sk(a1)))).

(a1, letmess x
2
2 = proj2(adec(x1, sk(a1)))).

(a1, out(x12)).
(a1, out(x22)).

This trace models the behaviour of an agent a1 who waits for an encrypted message
that contains a pair. He then outputs its two components.

Modelling adec, proj1, and proj2 as destructor symbols ensures that x1 will always
be instantiated by a term aenc(hu1, u2i, pk(a1)) (with u1 and u2 two messages) during
an execution. Considering them as constructor symbols allows more executions. For
example, the first input might be filled by a constant n 2 ⌃0. The letmess commands will
no longer block the execution.

Accepting this change, i.e. we now view proj1 and proj2 as constructors, the trace can
be rewritten as follows to match the constraint about the letmess commands:

T
0 = a1, in(x1)).

(a1, out(proj1(adec(x1, sk(a1))))).
(a1, out(proj2(adec(x1, sk(a1))))).

5.2.2. An extended syntax

Verifying reachability properties in our timed model requires to define the topology
under study and the global time of the initial configuration. In addition to the usual
definitions which appear in the preamble of an Akiss file, we consider the two following
lines:

topology = [v0,(0,0,0),hon], [p0,(2,0,0),hon], [i1,(0,0,0),dis],
[i2,(0,0,0),dis].

initTime = 0.

This models the reduced topology T t0
MF

(with t0 = 2) made of four agents: v0 and p0 are
honest (hon), while the two agents i1 and i2 are dishonest (dis). The triplets (0,0,0)
and (2,0,0) defines the locations in the space of each agent. Thanks to this syntax,
arbitrary topologies can be modelled: one may consider an arbitrary number of honest
or dishonest agents, each located at arbitrary locations. Finally, the second line sets the
initial global time to 0.
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For sake of simplicity, the Akiss tool takes as input a process algebra that is richer
than ours: the parallel composition command P ||Q can be used to describe processes.
It avoids to let the user enumerate all the possible interleavings. For sake of simplicity
we decided to add this command too and, when analysing a configuration, apply our
procedure Reachability(T, t0, T0) to all the traces T that are obtained by interleaving
of the parallel processes. This computation can easily be automatised.

Unfortunately, computing all the possible interleavings turns out to lead to a huge
overhead of pre-computation. As a first approximation, when analysing the SPADE pro-
tocol (presented in Example 2.5) w.r.t. only one verifier session running in parallel with
one prover session, we obtain up to

�9+13
9

�
= 497420 interleavings. To limit this blow-up,

we implemented two partial order reduction (POR) techniques that are well-known to
be sound and complete when looking at reachability properties [MVB10, BDH17]. They
are as follows:

• the commands letmess, lettime, iftime, and out without timing annotations are
executed as soon as possible; and

• consecutive inputs without timing annotation are executed in a raw.

Note that we do not perform any optimisation on outputs and inputs with timing anno-
tation since it may break the completeness of the procedure. In practice, these optimi-
sations significantly reduce the number of traces that need to be analysed and make the
procedure practical.

Example 5.2. Let T = (a, in(x1)).(a, in(x2)).(a, out(u)) || (b, in(x3)).(b, out(v)). If we
naively compute all the interleavings we obtain 10 traces. Applying the first optimisation,
i.e. execute the outputs that do not contain time annotation as soon as possible, we reduce
this number to only 3. Indeed (a, in(x2)).(a, out(u)) and (b, in(x3)).(b, out(v)) can be
considered as two indivisible blocks.

Finally, the second optimisation allows to reduce again this number to 2. Indeed the
two first inputs executed by agent a do not contain annotation and thus can be executed
in a row. The two traces are:

T1 = (a, in(x1)).(a, in(x2)).(a, out(u)).(b, in(x3)).(b, out(v)) and

T2 = (b, in(x3)).(b, out(v)).(a, in(x1)).(a, in(x2)).(a, out(u)).

5.2.3. About the timing constraints

The procedure presented in Chapter 3 proceeds in three steps: first, it generates the
seed statements corresponding to the symbolic trace given in input. Then it performs
the saturation step in order to obtain a finite set of solved statements. Finally, the last
step consists in verifying the timing constraints induced by the reach statements which
belong to the saturated knowledge base.

Our procedure has been proved sound and complete as soon as there exists an algo-
rithm to decide whether a set of timing constraints is satisfiable during the last step. We
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were thus free to fix the type of timing constraints that are accepted in iftime commands
in our implementation and which algorithm will be used to check the satisfiability.

In Section 3.4.1 (Chapter 3 ) we presented how the set of timing constraints is gen-
erated. Since all the constraints, except those generated by iftime commands, are linear
ones, a first approach would be to allow any linear constraints in iftime commands and
implement the Simplex algorithm [Dan63]. However, even if this algorithm is known
to be efficient in practice, it may be exponential in worst case. We thus decided to be
slightly more restrictive on the form of the constraints that are accepted, and we rely
on a Difference Bound Matrix (DBM) [Dil89] to represent the set of constraints. The
satisfiability is then decidable in polynomial time.

We only accept timing constraints of the form zj � zi ⇠ij cij with zi, zj 2 Z,
cij 2 R [ {+1} and ⇠ij2 {<,}. Given a finite set of variables {z1, . . . , zn} ✓ Z,
a DBM M = ((⇠ij , cij))1i,jn is the adjacency matrix of the weighted graph
G = (V,E,!) with:

• V = {z1, . . . , zn}, the set of vertices;

• E = {(zi, zj)}1i,jn, the set of edges;

• !((zi, zj)) = (⇠ij , cij), with ! : Z⇥Z ! {<,}⇥R+[{+1} the weight function.

It cleverly represents the set of constraints S = {zj � zi ⇠ij cij | 1  i, j  n}. Then,
deciding whether S is satisfiable consists in deciding whether there is a cycle of negative
length in G. We have implemented the Floyd-Warshall algorithm which terminates in
O(n3) to detect such cycles. To apply the Floyd-Warshall algorithm, we consider the
lexicographical order on pairs assuming that < is smaller than , and the following
addition for weights:

(⇠i1j1 , ci1j1) + (⇠i2j2 , ci2j2) = (min(⇠i1j1 ,⇠i2j2), ci1j1 + ci2j2).

Example 5.3. Let M =

0

BB@

(, 4) (<,+1) (<,+1) (<, 3)
(<,+1) (<,+1) (, 5) (<,+1)
(<,+1) (<,+1) (<,+1) (, 1)
(<,+1) (<,�2) (<,+1) (<,+1)

1

CCA.

This is the adjacency matrix of the graph G depicted in Figure 5.1 and it represents
the set of the following constraints:

z2 � z1  4 z4 � z1 < 3 z3 � z2  5
z4 � z3  1 z2 � z4 < �2.

Applying the Floyd-Warshall algorithm on G, we can conclude that there is no cycle
of negative weight. Hence, the constraints are satisfiable. Indeed, a possible solution is:

z1 := 2, z2 := 0, z3 := 3, z4 := 4.
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z1 z2

z3z4

(, 4)

(, 5)(<, 3)

(, 1)

(<,
�2)

Figure 5.1: Graph representation of the DBM of Example 5.3.

5.2.4. Case studies and limitations

In this section, we demonstrate the usability in practice of our procedure. To do so,
we analysed several distance-bounding and contactless payments protocols w.r.t. mafia
frauds, terrorist frauds, and distance hijacking attacks.

Topology and initial configuration
Our procedure applies on a given topology and configuration. For the topology, we

decided to consider the reduced ones presented in Chapter 4. They have been proved
sufficient to capture all the possible attacks under some reasonable assumptions that are
satisfied by our protocols (except MasterCard-RRP for which our analysis is therefore
weaker). These two topologies, denoted T t0

MF
and T t0

DH
, are recalled in Figure 5.2.

malicious node
honest node

v0 p0

i1 i2

t0
v0

e0

p0
t0

Figure 5.2: Reduced topologies T t0
MF

and T t0
DH

The initial configuration defines three elements: the number of sessions of each role
that will be executed, the initial knowledge of the attackers, and the initial global time.
To match the definition of valid initial configuration presented in Chapter 2, this time
is set to 0. Again, to match the definition, the initial frame must contain the initial
knowledge of each malicious agent derived from a template I0. Since the soundness
and the completeness of our procedure assuming an empty initial frame, as explained in
Example 3.2, we follow the usual construction in symbolic verification which consists in
adding an extra process, solely made of outputs, that sends all the messages that belong
to these knowledges. Finally we are going to consider as many sessions of each role as
possible.

Case studies
We conducted our analyses on a standard laptop. As mentioned above, we consider

the reduced topologies made of, at most, four agents. Then we proceeded first by con-
sidering one session for each of the honest agents, and then adding as many sessions as
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possible. Note that when an attack is found, there is no need to consider more sessions.
We have been able to consider up to five sessions before being limited by the exponential
blow-up of the interleavings that causes non-termination in practice. When considering
terrorist fraud, we considered the most-general semi-dishonest prover defined in Chap-
ter 4. Note that a protocol is terrorist fraud resistant whenever a re-authentication is
possible; in that case the number of traces is no longer relevant. On the contrary, to prove
that a protocol suffers from a terrorist fraud, one may show that no re-authentication is
possible: we thus need to consider as many sessions as possible.

The results we obtained are presented in Table 5.1. Almost all the protocols, except
the Hancke and Kuhn [HK05] and Swiss-Knife [KAK+08] are subject to a mafia fraud
and/or a distance hijacking attack and/or a terrorist fraud. For example, we retrieve
the mafia fraud and the distance hijacking attack against the SPADE protocol we used
to illustrate our security properties in Chapter 2. As claimed in Example 2.12, we also
prove the fixed version of the SPADE protocol is mafia fraud resistant as expected. All
the results are coherent with the literature [CGdR+15, CdRS18, MSTPTR18] and those,
that will be presented in the next section, considering an unbounded number of sessions.

When looking at payment protocols (i.e. MasterCard RRP [EMV16] and PaySafe
[CGdR+15]) one may note that they all resist to mafia frauds but none of them resist to
distance hijacking attacks. Hopefully, in this context, mafia frauds are the most common
scenario of attacks, i.e. an attacker tries to pay something abusing a remote and honest
person. This is the attack that the EMV Co. specification explicitly mentions. However,
even if the distance hijacking scenarios do not appear in the specification, we do think that
payment protocol should resist against them. Indeed, a receipt for contactless payment
might be considered as a proof of location since the underlying protocols pretend to ensure
physical proximity. As an immediate consequence, an attacker may have incentives to
abuse honest agents in the vicinity of a reader/verifier to pay on his behalf and obtain
such an evidence. Regarding terrorist frauds, our procedure encountered non-termination
issues due to the large size of the terms involved in such protocols.

Limitations
Our case studies illustrate the efficiency in practice of our procedure to analyse pro-

tocols with small terms. Our framework is expressive enough to analyse many distance-
bounding protocols relying on the reductions results proposed in Chapter 4. Only the
Brands and Chaum protocol [BC93] cannot be analysed w.r.t. terrorist frauds since
the main theorem reducing the number of semi-dishonest provers dos not apply. How-
ever, when the protocols tend to involve more complex terms (e.g. made of complex
signatures and MAC messages as in the payment protocols), the procedure encounters
efficiency issues.

First, we can notice that the size of the terms significantly impacts the duration of
the saturation step. This may result from the update function which discards fewer
recipes than in the original procedure. Sadly, this limitation seems complex to overcome:
keeping more recipes tends to be inherent to our timed model, according to Example 3.7,
in order to get a procedure that is complete.
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Then, the size of the terms also impacts the duration of the last step of the procedure:
the larger a message is, the more recipes are available to an attacker to deduce it. This
may increase a lot the size of the sets Li. To overcome this limitation we could cleverly
tune our backtracking search relying on the partial order defined on frame variables to
look for asap recipes only. It would just require algorithmic and implementation stuff
since our theoretical development allows this.

Finally, the main limitation of the procedure lies in the quite small number of sessions
that can be analysed. The limitation does not come from the core procedure, presented
in Chapter 3, itself but rather from the number of interleavings blow-up. A first approach
to overcome this limitation would have been to parallelise the verification. Indeed each
trace can be analysed independently. Unfortunately this will not completely bridge the
gap since the computation of all the interleavings quickly becomes the main bottleneck.
An interesting solution would be to develop clever POR optimisations and prove their
correctness.

5.3. Verification using Proverif
While the definitions presented in Chapter 2 require to consider an infinite number of

topologies when analysing distance-bounding protocols, Chapter 4 establishes that it is
sufficient to focus on two rather simple topologies, T t0

MF
and T t0

DH
, recalled in Figure 5.2).

In this section, we will demonstrate how they can be encoded into the well-known auto-
matic verification tool Proverif [Bla01], in order to analyse a large number of case studies.
Indeed, even if the Proverif tool does not allow to faithfully model time, it implements a
notion of phases that will be sufficient to encode the reduced topologies and our timing
constraints.

5.3.1. Encoding of the topologies

We decided to rely on the Proverif tool to perform our case studies. It shares a lot of
similarities with our symbolic model presented in Chapter 2 and restrained in Chapter 4.
Proverif handles both equational and rewriting systems, and describes protocols through
a process algebra derived from the applied pi-calculus. The methodology we apply to
encode the reduced topologies builds on the following subset of the Proverif calculus:

P := 0 | in(x).P | out(u).P | letmess x = v in P | new n.P | i : P | !P.

Almost all the commands are similar to those defined in our timed semantics. The main
novelty is the phase command, denoted i : P . Informally phases model synchronisation
points in the execution of a protocol. An execution always starts at phase 0. It can
arbitrarily increase during the execution but, during phase i, only processes that are
actually at this stage can be executed. Another difference is the presence of the replication
!P command which was deliberately omitted in our timed model since an arbitrary
number of sessions may be added in a valid initial configuration. This syntactic sugar
will be useful to define the configuration under study in Proverif.

This new semantics is formally described by a relation ) over configurations. A
configuration is a tuple (P;�; i) where P is a multiset of processes, � is a standard frame
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Protocol Mafia fraud

# sessions # traces time status

SPADE [BGG+16] 2 � 2s ⇥
TREAD-Asym [ABG+17] 2 � 1s ⇥
TREAD-Sym [ABG+17] 4 7500 18min X
BC [BC93] 4 5635 37min X
Swiss-Knife [KAK+08] 3 1080 25s X

HK [HK05]
3 20 1s X
4 3360 58s X
5 30240 14min X

ISO/IEC 14443 protocols
MasterCard RRP [EMV16] 2 35 6min X
NXP [Jan17] 2 126 4s X
PaySafe [CGdR+15] 2 4 5min X

Protocol Distance hijacking

# sessions # traces time status

SPADE [BGG+16] 2 � 4s ⇥
TREAD-Asym [ABG+17] 2 � 1s ⇥
TREAD-Sym [ABG+17] 2 � 1s ⇥
BC [BC93] 2 � 1s ⇥
Swiss-Knife [KAK+08] 3 7470 4min X

HK [HK05]
3 20 1s X
4 3360 47s X
5 30240 12min X

ISO/IEC 14443 protocols
MasterCard RRP [EMV16] 2 � 8s ⇥
NXP [Jan17] 2 � 1s ⇥
PaySafe [CGdR+15] 2 � 3s ⇥

Protocol Terrorist fraud

# sessions # traces time status

SPADE [BGG+16] 2 � 3s X
TREAD-Asym [ABG+17] 2 � 1s X
TREAD-Sym [ABG+17] 4 � 3s X
BC [BC93] o.o.s. o.o.s. o.o.s. o.o.s.
Swiss-Knife [KAK+08] 2 - 1s X

HK [HK05]
2 20 1s ⇥
4 3360 76s ⇥
5 30240 27min ⇥

ISO/IEC 14443 protocols
MasterCard RRP [EMV16] 2 35 o.o.t. ⇥
NXP [Jan17] 2 126 13s ⇥
PaySafe [CGdR+15] 2 4 o.o.t. ⇥

Table 5.1: Results of the analyses considering a bounded number of sessions
(X: proved secure, ⇥: attack, o.o.s.: out of scope, o.o.t.: out of time).
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(without timing annotations) and i 2 N is the current phase of the system. All the rules
are given in Figure 5.3. One may note that, except the restriction about the current
phase, it matches the untimed semantics presented in Section 4.2.2 (Chapter 4).

In (i : in(x).P ] P;�; i)
in(u)
===) (i : P{x 7! u} ] P;�; i)

with u a constructor term such that
u = R�# for some recipe R

Out (i : out(u).P ] P;�; i)
out(u)
===) (i : P ] P;� ] {w 7! u}; i)

with w 2 W fresh

Let (i : letmess x = v in P ] P;�; i)
⌧
=) (i : P{x 7! v#} ] P ;�; i)

when v# 2 T (⌃c,N [A)

New (i : new n.P ] P;�; i)
⌧
=) (i : P{n 7! n

0} ] P;�; i) with n
0 2 N fresh.

Rep (i : !P ] P;�; i)
⌧
=) (i : P ] (i : !P ) ] P;�; i)

Move (P;�; i)
phase i

0
====) (P;�; i0) with i

0
> i.

Phase (i : i0 : P ] P;�; i)
⌧
=) (i0 : P ] P;�; i)

Figure 5.3: Semantics for the Proverif calculus

Our encoding
Given a DB protocol (V, P), we propose a transformation that encodes the reduced

topologies T t0
MF

and T t0
DH

into the Proverif calculus. However it requires that the role
Vend(x0, x1) is made of a unique challenge/response exchange, i.e. is of the form:

block1 . reset . out(u) . in<t(x) . block2 . end(x0, x1)

where blocki is a sequence of actions (only simple inputs, outputs, let, and new instruc-
tions are allowed).

The main idea for the transformation is to use the notion of phases provided by
Proverif to encode the critical phase, i.e. the challenge/response exchange. To do so,
we consider three phases: phase 0 before the critical phase, phase 1 that starts when
executing the reset action and stops just after the input of the response, i.e. the in<t(x)
action, and finally phase 2 to the remainder of the protocol. The two locations of the
reduced topologies are then modelled as follows: agents close the verifier are allowed to
execute actions during phase 1 while agents far away are not. Given a parametrised
role (with no reset and in<t(x) commands), the two corresponding transformations,
denoted F< and F�, are thus defined as follows:

• transformation F<: this transformation introduces the phase instructions with i =
0, 1 and 2 considering all the possible ways of splitting the role into three parts (0,
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1, and 2). Each phase instruction is placed before an in instruction. Such a slicing
is actually sufficient for our purposes.

• transformation F�: this transformation does the same but we forbid the use of the
instruction phase 1, jumping directly from phase 0 to phase 2.

The configuration, denoted F(T , (V, P),�0, t0), is the tuple (P;�; 0) where � is such
that img(�) = img(�0), and P is the multiset that contains the following processes:

• V0
end

(v0, p0) = block1. 1 : out(u).in(x) . 2 : block2.end(v0, p0);

• !R(a, b) when R(x0, x1) 2 F<(V) [ F<(P), a, b 2 A0, DistT (v0, a) < t0;

• !R(a, b) when R(x0, x1) 2 F�(V) [ F�(P), a, b 2 A0, DistT (v0, a) � t0;

where P (resp. P) is the parametrised process V (resp. P) in which all the reset actions
have been removed and all the guarded inputs replaced by simple ones.

We are now able to establish the following result that formally justifies the soundness
of our transformation, i.e. if there is an attack then Proverif will find it.

Proposition 5.1. Let t0 2 R+, I0 be a template, T = (A0,M0, Loc0, v0, p0) be a topology
and Pdb = (V(x0, x1), P(x0, x1)) a distance-bounding protocol such that Vend(z0, z1) has the
form:

block1 . reset . out(u) . in<t(x) . block2 . end(z0, z1)

with t  2⇥ t0.
Let K0 be a valid initial configuration for the Pprox w.r.t. T and an initial frame �0. If
K0 admits an attack w.r.t. t0-proximity in T , i.e.

K0
tr�!T (bend(v0, p0)c tvv0 ] P;�; t),

then we have that:

F(T ,Pprox,�0, t0)
tr

0
==) ({2 : end(v0, p0)} ] P;�; 2).

Moreover, in case there is no a 2 M0 such that DistT (a, v0) < t0, we have that for
any in(u) occurring in tr during phase 1, the underlying recipe R is either of the form
w 2 W, or only uses handles outputted in phase 0.

This proof relies on technical lemmas presented in Chapter 4 and proceeds in three
steps:

1. it cleans the trace in a similar way as what has been done to establish the reduction
results in case of distance hijacking attacks (Proposition 4.2). Only actions that
depends on the reset and on which the guarded input depends on remain between
these two actions.

2. relying on the dependency, it deduces timing constraints that prevent remote agents
to execute such actions during the rapid phase (Lemma 4.5).

3. it concludes by proving that F(T ,Pdb,�0, t0) subsumes all the possible valid initial
configurations (e.g. relying on the replication command).
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5.3.2. Proof of the soundness of the encoding

In this section, we present the formal proof of Proposition 5.1.

Proof. In the same spirit as the proof of Theorem 4.2, we are able to prove that:

eK?

0

tr
0
1.....tr

0
n

T (bend(v0, p0)cv0 ] eP; e�)

where eK?

0 (resp. eP, e�) is the untimed counterpart of K0 (resp. P, �) in which reset

commands have been removed and guarded inputs have been replaced by simple inputs
except in Vend(v0, p0).

Moreover if we note i0 (resp. j0) the index of the reset (resp. guarded input)
occurring in Vend(v0, p0) we have that:

(i) for all i 2 {i0, . . . , j0}, the action tr0
i

is executed by an agent ai 2 Close(v0), i.e.
DistT (ai, v0) < t0;

(ii) for all i 2 {i0, . . . , j0}, if tr0
i
is an input then the agent bi responsible of the output

is such that bi 2 Close(v0), i.e. DistT (bi, v0) < t0, or the recipe that is used to
trigger the input only contains handles binding outputs executed before the reset

command.

In the following we say that a process is initial if it starts by an input. Let s0 be
the session identifier of the process Vend(v0, p0). In the following we will prove that there
exists a trace preserving items (i) and (ii) and satisfying the following two properties:

(iii) all processes but s0 are either initial when executing the reset action or let un-
changed until the end of the execution, i.e. there is no action in trace corresponding
to this process after the reset action.

(iv) all processes but s0 are either initial when executing the in<t(u) action or let
unchanged until the end of the execution.

Item (iii): Assume that there exists a process in eK?
reset, the configuration just before the

reset command, with a session identifier sk 6= s0 that is not initial. Let k 2 {i0, . . . , n}
be the index of the first action corresponding to this process, i.e. tagged by the session
identifier sk in the remaining of the trace. If k does not exist then the process is let
unchanged and item (iii) is satisfied. Otherwise, we prove the following claim.

Claim. For all i 2 {i0, . . . , k � 1} we have that tr0
k
6,!⇤ tr0

i
.

Proof. We note tr0
k
= (ak,↵k, sk, rk) and tr0

i
= (ai,↵i, si, ti). Assume that tr0

k
,! tr0

i
. If

tr0
k
,!s tr0i then we have that si = sk. Contradiction. Otherwise we have tr0

k
,!d tr0

i
and

thus ↵k = in?(v). Contradiction since the process identified by sk in eK?
reset is assumed

to be not initial.
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Repeatedly applying Lemma 4.6 we are able to move the action tr0
k

just before eK?
reset.

Applying the same reasoning for all actions corresponding to sk until we reach an initial
process (and then to all processes that are not initial in eK?

reset) we obtain an execution:

eK?

0

tr
0
1.....tr

0
i0�1.

etri0 .....etri00�1

T K0
reset

etr
i
0
0
.....etr

j
0
0�1

T K0
in

etr
j
0
0
.....etrn

T (bend(v0, p0)cv0 ] eP; e�)

that matches item (iii) by construction. Moreover, items (i) and (ii) hold since we do
not introduce new actions between the reset and the guarded input (actually, we only
move actions before the reset).

Item (iv): We follow the same reasoning as for item (iii). Assume there is a process that
is not initial in K0

in and note sk its session identifier. Note k the index of the first action
corresponding to session sk after K0

in. If k does not exist then the process is not initial
in K0

reset and thus is let unchanged until the end on the execution according to item (iii)
that holds. For the same reasons as previously, we can establish that the following claim
holds.

Claim. For all i 2 {j00, . . . , k � 1} we have that etrk 6,!⇤ etri.

Again, applying Lemma 4.6 we are able to move action ftrk right before K0
in. We

obtain a trace that satisfies item (iv). Moreover, the three items (i), (ii) and (iii) are still
satisfied:

(i) all the actions we introduce between the reset and the guarded input are executed
by agents a 2 Close(v0). Indeed, we know that item (ii) holds and thus the process
identified by sk is initial when executing the reset action. Hence, we can deduce
that agent a must have executed an action in the meantime since it is no longer
initial when executing the guarded input. Relying on item (i) (that holds on the
previous trace) we deduce that a 2 Close(v0);

(ii) we do not introduce inputs between the reset and the guarded input;

(iii) the beginning of the trace (before the reset) is not modified (k > j
0
0).

To conclude, it remains to show that such a trace can actually be mimicked from the
configuration F(T , (V, P),�0, t0). Actually, the reset action is replaced by phase 1, and
the guarded input is replaced by a simple input followed by a phase 2 action.

Let bP c t
a

be a process occurring in eK?

0, we know that P = V(a, b) or P = P(a, b)
for some b 2 A0. We now consider all the actions performed by this process along the
execution, and in particular, we pay attention to the slicing of all these actions w.r.t.
reset action and the guarded input. This gives us the corresponding process that we
have to consider in our translation, so that it will be able to mimic all the actions of
bP c t

a
. Items (iii) and (iv) allow one to ensure that our slicing (just before the inputs)

is indeed sufficient. Our transformation F� also forbids actions to be executed during
phase 1, and this is justified by our item (i). Finally, item (ii) allows us to prevent the
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Proverif attacker from acting in phase 1 in case there is no dishonest participant in the
vicinity of v0.

5.3.3. Case study and limitations

We can now present our case studies. Thanks to the reduction results presented in
Chapter 4 and Proposition 5.1 we can analyse a DB protocol Pdb w.r.t. each class of
attacks separately by analysing a unique configuration in Proverif:

• Mafia fraud: the configuration F(T t0
MF

,Pdb,�
T t0
MF

I0 , 0);

• Distance hijacking: the configuration F(T t0
DH

,Pdb,�
T t0
DH

I0 , 0);

• Terrorist fraud: the configuration F(T t0
MF

,Pdb,�
T t0
MF

I0 [ �⇤
, 0) where �⇤ is the frame

associated to the most general semi-dishonest prover.
If the protocol is proved secure, then Pdb is resistant to the class of attacks we have
considered. Otherwise, the attack trace that is returned by Proverif must be analysed to
decide whether it is executable in our timed semantics, and thus corresponds to a real
attack. Indeed, our reduction result slightly modifies the initial configuration by remov-
ing reset commands and guarded inputs in processes other than Vend(v0, p0). Moreover,
Proverif might find false attacks due to some internal optimisations; in that case, Proverif
typically returns cannot be proved.

Remark 5.2. We noticed that Proverif was always returning false attacks when apply-
ing our methodology to distance hijacking scenarios, i.e. scenarios in which there is no
dishonest agents in the neighbourhood of the verifier. Indeed, even if we do not consider
dishonest agents executing roles of the protocol during phase 1, the underlying attacker of
Proverif is still able to interact with participants. To prevent such behaviours we slightly
modified the Proverif code: during phase 1 the attacker can only forward messages sent
by honest agents, or forge a new message, but only using the knowledge he got in phase 0.
More precisely, in Proverif the capabilities of the attacker are described by Horn clauses
made of a predicates attacker_pi(u) with i 2 N, which means that the term u is known
by the attacker in phase i. For example, to model that the attacker is able to build in
phase 0 an encrypted message aenc(x, y) whenever he knows the terms x and y, Proverif
considers the following clause:

attacker_p0(aenc(x, y)) ( attacker_p0(x) ^ attacker_p0(y).

The implementation of our restriction consists in removing almost all the clauses that
involve the predicate attacker_p1(·). We only keep the two following ones2:

(1) attacker_p1(x) ( attacker_p0(x)
(2) attacker_p2(x) ( attacker_p1(x).

2We did not remove the clause that let the attacker listen on all channel it has in phase 1 but this clause
is useless since we use a unique public channel.
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These two clauses transfer the knowledge of the attacker from one phase to the next.
Based on the extra property of Proposition 5.1, this modification should not miss any
attack: either the inputted message u has been sent in phase 1 and a clause of the protocol
will generate the predicate attacker_p1(u) or it is built from messages previously sent
during phase 0 and the procedure will generate the term in phase 0, i.e. attacker_p0(u),
and transfer it to phase 1 thanks to the Horn clause (1). Finally, the Horn clause (2) is
necessary to let the attacker re-use messages sent during phase 1 in the remaining of the
execution, i.e. in phase 2.

Results
We analysed more than 25 protocols and the results are presented in Table 5.2.

Proverif always returns in few seconds on a standard laptop, except for protocols marked
by an asterisk which require up to 80min. The results are coherent with the other case
studies in the literature [CdRS18, MSTPTR18, MSTPTR19].

Amongst these results, some of them are new. For example we found an attack
against the SPADE [BGG+16] and propose the first proof of security for the fixed version
of the SPADE protocols [Ger18] considering an unbounded number of sessions. This
fix, mentioned in Example 2.12 consists in adding the identity of the prover in the first
signature of the protocol. Another interesting result is the first analysis of the Meadows et
al.’s protocol instantiated with the answering function F (nV , P, nP ) = hnV �nP , P i. This
variant of the protocol, mentioned in the original paper, could not be analysed relying
on their authentication logic. From this aspect, our framework allows to automatically
analyse a wider class of protocols.

Limitations
The case studies prove the efficiency of this approach in practice. However, few

limitations exist. Indeed, while all the protocols satisfy the assumptions to be analysed
w.r.t. mafia fraud or distance hijacking, the requirements to analyse them w.r.t. terrorist
fraud are more restrictive. Two protocols, the Brands and Chaum’s and MAD (presented
in Figure 5.4), stays out of the scope of our reduction result that allows to define the most-
general semi-dishonest prover. The former does not satisfy item (iv) of Definition 4.3
since the response to the challenge c is c�m where � is not quasi-free since it appears in
the equational theory. The last does not satisfy item (i) due to a lack of freshness of the
challenge. Since these two protocols suffer from a terrorist fraud, we could retrieve this
vulnerability using our framework. Indeed, we can manually define the semi-dishonest
prover we know that leads to the attack, and then use Proverif to check that there is
no trace of re-authentication. Nevertheless, we note them "out of scope" in Table 5.2 to
underline this limitation of our approach.

Another limitation comes from the model itself. In order to establish the reduction
results we had to restrict our initial model by limiting the use of the iftime and lettime
commands. This has no impact for almost all the protocols we analysed except for the
NXP and MasterCard-RRP protocols. In these two protocols, the proximity check is
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Protocols MF DH TF
Basin’s toy example [BCSS11] X X X
Brands and Chaum [BC93]
• Signature X ⇥ o.o.s.
• Fiat-Shamir X ⇥ ⇥

CRCS No-revealing sign [RC10]
• No-revealing sign X X ⇥
• Revealing sign X ⇥ ⇥

Eff-PKDB [KV16]
• No protection X X X
• Protected X X X

Hancke and Kuhn 3 [HK05] X X ⇥
MAD (One-Way) [ČBH03] X ⇥ o.o.s.
Meadows et al. [MPP+07]
• f := hnV � nP , P i X(n) X(n) ⇥(n)

• f := hnV , nP � P i X ⇥ ⇥
• f := hnV , f(nP , P )i X X ⇥
• f := hnV , P, nP i X X ⇥

Munilla et al. [MP08] X X ⇥
SKI [BMV13] X X⇤ X
SPADE
• Original [BGG+16] ⇥ ⇥⇤ X
• Fixed [Ger18] X(n) ⇥⇤(n) X(n)

Swiss-Knife
• Original [KAK+08] X X X
• Modified version [FO13] X X ⇥

TREAD asymmetric [ABG+17, Ger18]
• Original (using idpriv) ⇥ ⇥ X
• Fixed (using idpriv) X(n) ⇥(n) X(n)

• Original (using idpub) ⇥ ⇥ X
• Fixed (using idpub) X(n) ⇥(n) X(n)

TREAD symmetric [ABG+17] X ⇥ X
ISO/IEC 14443 protocols
• MasterCard RRP [EMV16] X ⇥ ⇥
• NXP [Jan17] X ⇥ ⇥
• PaySafe [CGdR+15] X ⇥⇤ ⇥

1Following our abstractions, the protocols Tree-based [AT09], Poulidor [TRMA10], and Uni-
form [MTPTR16] have the same modelling as the Hancke and Kuhn protocol.

Table 5.2: Results on our case studies (⇥: attack found, X: proved secure, o.o.s.: out of scope)
We use the following abbreviations/annotations: MF = Mafia Fraud, DH = Distance Hijacking, TF =
Terrorist Fraud, ⇤ = returned in significantly more than few seconds, (n) = no symbolic analysis reported
before.
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Verifier Prover

pick mP , rP

fresh

commit(mP , rP )

pick c

fresh

c

c�mP

hrP , sign(hc, c�mP i, ssk(P ))i

open the

commitment

and

check the signature

(a) Brands and Chaum

Verifier Prover

pick s, s
0

fresh

pick r, r
0

fresh

commit(r, r0)

commit(s, s0)

r

s� r

hs0, mac(hV, P, r, si, shk(V, P ))i

open the

commitment

and

check the mac

(b) MAD

Figure 5.4: Descriptions of Brands and Chaum [BC93], and MAD [ČBH03] protocols.

performed w.r.t. to a time bound which is sent by the prover during the execution. This
implies that a message must contain a time (which is forbidden in our model). To model
this feature, we followed the approach proposed by Chothia et. al. [CdRS18]: we replace
the time-bound by an uninterpreted symbol of function timebound(id). We then prove
that this value is correctly authenticated during a session. To do so, we add the time
bound received by the verifier, and w.r.t. which the time check would be performed, in
the end command and check that it corresponds to the time-bound of the authenticated
prover. This is can be verified by the Proverif tool defining the following correspondence
property:

end(v0, p0, u) ) (u = timebound(p0)).

The two protocols satisfy this property.

5.3.4. Comparison with Mauw et al.’s framework

In this section, we come back to the framework proposed by Mauw et al. [MSTPTR18,
MSTPTR19] to conduct a deeper comparison. Even if our security definitions are in line
with theirs (as already discussed in Section 2.4.2 - Chapter 2), we would like to discuss
some verification aspects regarding each class of attacks separately.
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Mafia fraud
Mauw et al. proposed the following secure distance-bounding property:
A protocol is distance-bounding secure if for all trace of execution

tr1. . . . .trn.claim(V, P, x, y)

where V is an honest agent then there i, j 2 {1, . . . , n} such that:

• tri = x and trj = y; and

• (ty � tx)  2 · Dist(V, P 0) with P ⇡ P
0.

Remember that P ⇡ P
0 means P = P

0 if P is honest, and P
0 is any malicious agent

otherwise. As discussed in Section 2.4.2, this security property does not distinguish
between mafia and terrorist fraud. To do so, the authors proposed a slightly modified
property in which the agent P is assumed to be honest.

The main result presented in [MSTPTR18] consists in proving the distance-bounding
secure property equivalent to another property, solely relying on the order of the actions
in the traces of execution, which can be checked relying on existing tools. This new
property, called dbsec is as follows:

A protocol satisfies dbsec if for all untimed trace of execution

tr1. . . . .trn.claim(V, P, x, y)

where V is an honest agent then there i, j, k 2 {1, . . . , n} such that
i < k < j:

• tri = x and trj = y; and

• trk = (ak,↵k) with ak ⇡ P .

Informally, this property ensures that whenever a verifier V authenticates a prover
P , then agent P must have executed an action during the rapid phase, delimited by
actions x (= tri) and y (= trj). In case agent P is malicious, this action may have
been executed by another malicious agent (instead of himself). As previously, this se-
curity property can be slightly modified to focus on mafia fraud only. This variant is
called dbsec_hnst. Checking the dbsec_hnst property with the Tamarin verification
tool [MSCB13], Mauw et al. succeeded in proving the mafia fraud resistance of a number
of protocols.

Distance hijacking
As discussed in Section 2.4.2, Mauw et al. cannot focus on distance hijacking attacks

when a protocol suffers from a mafia fraud. However, when dbsec_hnst holds and dbsec

does not, the authors can conclude that the protocol that is studied admits a distance
hijacking attack.

Unfortunately, if the dbsec_hnst property can be immediately checked relying on ex-
isting tools, we do think that dbsec cannot. Actually, existing tools will check a close, but



5

120 5. Implementations and case studies

slightly different property when the agent P is malicious. Indeed, the underlying proce-
dures of existing tools implement some (crucial for termination purposes) optimisations
that enable the attacker to perform actions that are not visible in the traces.

To illustrate this gap, let us first consider the Brands and Chaum protocol [BC93]
presented in Figure 5.4a. The prover commits a value m to the verifier before the rapid
phase. This last starts when the verifier sends a challenge c and the prover must reply
c�m. Finally, to be authenticated, the prover signs a transcript of the session and sends
it to the verifier. As introduced in [CRSC12], this protocol admits a well-known distance
hijacking attack, presented in Figure 5.5.

The gap appears when analysing this protocol in which the verifier role is slightly
modified so that the challenge c is sent together with a dummy constant, i.e. hc, consti.
The prover role is left unchanged. In this situation, the verifier is sending a pair while the
prover is waiting for an atomic challenge. We can thus note that without the presence
of an attacker, who applies the first projection operator to remove the dummy constant,
the prover cannot receive the challenge and thus the verifier can not successfully end a
session with the prover (even if the prover is close to him). The help of the attacker is
needed.

This new protocol matches all the requirements to be analysed in their framework,
and the Tamarin tool returns that the dbsec property does not hold. Therefore, we
conclude that there is a mafia fraud or a distance hijacking attack. According to us,
there is none of them.

This gap has been acknowledged by the authors and simply requires to check whether
the trace returned by the verification tool is a valid witness of attack or not. Hopefully,
such situations have never been encountered when analysing existing distance-bounding
protocols.

Verifier Honest prover Dishonest prover

pick mP , rP fresh

commit(mP , rP )

pick c fresh

c

c�mP

hrP , sign(hc, c�mP i, ssk(P ))i

open the commitment

and

check the signature

Figure 5.5: Distance hijacking attack against the Brands and Chaum protocol.
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Terrorist fraud
Meanwhile we proposed our definition of terrorist frauds, Mauw et al. proposed

theirs [MSTPTR19] which turned out to be completely in line with ours. We already
discussed this in Section 2.4.2 but, here, we would like to discuss the analysis of the
property within Tamarin. Especially because, at a first sight, they do not restrict the
class of protocols which can be analysed, i.e. what we have called well-formed distance-
bounding protocols.

In our framework, this restriction is due to the reduction result that allows to reduce
the set of semi-dishonest provers. It turned out that they did not intend to perform
such a reduction. Instead, in their framework, a manual proof is needed to reduce the
possible collusion behaviours. This proof must be adapted for each protocol under study.
Therefore, they provide a semi-automatic framework only, to analyse distance-bounding
protocols w.r.t. terrorist fraud.

In some respects, our definition of well-formed distance-bounding protocols underlines
a set of assumptions that a protocol must satisfy to dispense with the manual proof.

5.4. Conclusion
In conclusion, we showed how the results developed in Chapters 3 and 4 are used

to analyse distance-bounding and contactless payment protocols. On a first hand, we
implemented the procedure developed in Chapter 3 on top of the Akiss tool. It allows
the analysis of protocols w.r.t. to a bounded number of sessions. This procedure has
been proved sound and complete and terminates on almost all our case studies. It allows
to look for attacks in a large class of protocols involving time but provides a limited
confidence when no attack is found, due to the limited number of sessions that can be
analysed. On the other hand, the framework based on the Proverif tool considers an
unbounded number of sessions and thus provide a stronger guarantee when a protocol is
proved secure. Unfortunately, this last requires more assumptions on the protocol under
study and few distance-bounding protocols do not match the requirements.

Some limitations of each approach could be overcome, e.g. using parallelisation in our
Akiss implementation. We could also probably relax the constraint about the freshness of
the challenge in the Proverif model. However, we are also faced to some more limitations
that seem to be more challenging to overcome: by-pass the interleaving blow-up by
developing new POR optimisations in Akiss or extend our new procedure to take into
account the exclusive-OR operator. This last is a cutting-edge area of research in symbolic
verification: Akiss [BDGK17] and Tamarin [DHRS18] have recently been extended in this
direction. On the first side, we hope that our procedure can be extended too but we fear
an important impact on its efficiency. On the other side, we unfortunately encountered
many non-termination issues due to the exclusive-OR operator when we tried to leverage
Tamarin, instead of Proverif, to perform our case studies analysis. It seems that Mauw et
al. have encountered similar issues when using the Tamarin tool to perform their analyses
since roughly half of the protocols have been analysed considering a weak operator as
described in Section 5.1.2. Improving the efficiency of existing procedure would thus be
of great significance.
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Analysis of two novel
EMV-payment protocols 6

In 2019, Chothia et al. [CBC19] proposed two novel EMV-payment protocols. They
claimed them resistant against relay attacks, even considering malicious readers. To
achieve this strong security property, the protocols build on two specificities: first on a
Trusted Platform Module (TPM) implemented on the reader side that is used to timestamp
the rapid phase, then on the possibility to move the proximity check on the card or the bank
side. Unfortunately, no existing model was suitable to analyse and prove the pretended
security of these protocols.
After a quick presentation of the two novel protocols, called PayBCR and PayCCR, we will
describe the model that will be used to analyse them. This last extends an existing one
proposed by Mauw et al. [MSTPTR18]. We allow the proximity check to be performed by
the reader (as usual), but also by the card or the bank. We also take into account mobility
allowing agents to move across an execution. Taking some inspiration in [MSTPTR18],
we define a security property solely relying on the causal order of the actions during an
execution, and prove it equivalent to the extended security property. Finally, we analyse
the two novel protocols and prove them secure.
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6.1. Two novel EMV-payment protocols
As mentioned in Chapter 1, one of the main security concerns in contactless payments

is relay attacks: an EMV reader should not authenticate an honest EMV card which is
far away, even if a man-in-the-middle attacker is located in-between and relays messages.
To mitigate relay attacks, after 2016, Mastercard’s EMV specification have included
a distance-bounding protocol called PayPass-RRP. This protocol has been successfully
proved secure against MiM attacks (i.e. mafia frauds) using symbolic models which
include the two frameworks developed in the first part of this manuscript [CdRS18,
DDW18, MSTPTR18, DD19].

The main underlying assumption of these analyses is that the reader behaves correctly
and effectively performs the time/proximity check. In [CBC19], authors underlined that
this assumption is too strong regarding payment protocols: a reader, i.e. a seller, may
have incentives to take the payment, be it honest, relayed, or fraudulent in any way. This
could lead to a new kind of collusion attacks in which the reader conspires with an attacker
to accept relayed payments. It is important to note that this fraud is undetectable from
the bank side since in the PayPass-RRP protocol, and in Visa’s solution to protect against
relays in contactless payments as well, the bank gets no evidence that the reader has
performed a proximity check.

In this context, Chothia et al. [CBC19] proposed two novel EMV-payment protocols
that build on the PayPass-RRP protocol. They have been designed to enforce physical
proximity even considering rogue readers. They achieve this goal relying on a Trusted
Platform Module (TPM) embedded in the reader to attest the timestamps used for the
proximity check. These timestamps are sent to the card, or the bank, which can do
the proximity check again, and thus prevent the reader from cheating (by detecting any
fraud).

6.1.1. TPMs in a nutshell

A Trusted Platform Module (TPM) is a tamper-resistant hardware chip providing var-
ious functionalities, mainly of cryptographic nature. The functionality the two protocols
rely on is the TPM2_GetTime command that is available since the TPM 2.0 specification
provided by the Trusted Computing Group (TCG) that is in charge of standardising
TPMs features. Given an input message u, the TPM2_GetTime command returns a sig-
nature over the message and an attested time:

sign(hu, TPM-AttesttedTimei, ssk(tpm))

with TPM-AttestedTime = (Clock, Time). Concretely, the TPM-AttestedTime is a timing
data-structure that the TPM keeps: with the first being a non-volatile representation of
the real time, set when the TPM is created [Gro16], and the second being a volatile
value corresponding to the time passed since the last boot-up of the TPM (see page 205
of [Gro16]).

Since all the attacks which might apply against the TPM-AttestedTime are arguably
impractical in practice, we assume that the timestamps given by the TPM via the com-
mand TPM2_GetTime are timing-secure, in the sense that an attacker cannot tamper the
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timing data-structure. In particular, we assume that a TPM always signs the correct
global time when requested.

6.1.2. Descriptions of PayBCR and PayCCR
The two novel EMV-payment protocols, called PayBCR and PayCCR, improve the

existing PayPass-RRP protocol relying on TPMs. In order to perform the proximity
check, the reader usually records the global time when outputting the challenge and
compare it to the global time when receiving the answer. In PayBCR and PayCCR the
reader makes two calls to a TPM which attests the two timestamps. These last are
then transmitted to the bank (in PayBCR) or the card (in PayCCR) to let them perform
the proximity check again. As an immediate consequence, if a reader decides to bypass
the proximity check and accept any transaction, then it runs the risk to be caught by
another party. Note that the authors proposed two protocols (instead of a unique one)
for compatibility purposes with the PayPass-RRP protocol: PayBCR does not require to
modify the card side, while PayCCR leaves the bank side unchanged.

Amongst the two protocols, we do think that PayBCR (which leaves the card side
unchanged) is more likely to be implemented in the future. Modifying the bank process
instead of the card one seems much less expensive for authorities. In the following of this
chapter we will thus discuss the PayBCR protocol in priority.

A description of this protocol is presented in Figure 6.1. The reader starts by a
query to the TPM to get a timestamp that initiates the rapid phase. This timestamp
is forwarded to the card which answers with a fresh nonce nC that will be given to the
TPM in order to get a second timestamp and stop the rapid phase. The proximity check
will be performed based on these two times t1 and t2. The remaining of the protocol is
standard when looking at EMV protocols: the reader and the card exchange certificates
and the card forges the AC and SDAD messages based on its private keys (i.e. its
asymmetric private signing key and the shared key with the bank). These two terms are
used to check the integrity of the data and ensure mutual authentication. The reader
then receives AC and SDAD and can check the validity of the signature. Finally, the
reader sends to the bank the AC message together with the necessary terms to check its
validity. In addition it sends the two timestamps �1 and �2 to let the bank perform the
proximity check again (in addition to standard verifications). At the end of a session, the
bank must accept if, and only if, the card and the reader (or more precisely the TPM)
were close during the transaction.

6.1.3. Existing models do not apply

As previously mentioned, the existing models do not apply to verify PayBCR and
PayCCR. Indeed, they all implicitly assume two-party protocols and a proximity check
entirely performed on the verifier, i.e. the reader, side. Obviously, the two-party protocol
assumption is not satisfied by PayBCR and PayCCR since the bank plays an important
role in the transactions. Moreover, the proximity check may be performed by either the
card or the bank. Regarding the underlying model of the reduction results presented in
Chapter 4, we cannot model checks performed by agents other than the verifier. Indeed,
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Bank
Cert(spk(tpm))

KM = shk(bk, card)

TPM
ssk(tpm)

Reader
spk(card)

Card
td, ssk(card),
KM = shk(bk, card),
Cert(spk(bk)),
Cert(spk(card))

TPM2_GetTime(nR)

t1 := TPM-AttestedTime;
�1 = sign(ht1, nRi, ssk(tpm))

pick nC 2R {0, 1}32

t1, �1
�1

nC , td

TPM2_GetTime(nC)

timed

t2 := TPM-AttestedTime;
�2 = sign(ht2, nCi, ssk(tpm))

t2, �2
READ RECORD

Certs

GEN AC, data, . . .

KS = senc(ATC,KM )
AC = mac(hATC, data,�1, ..i,KS)
SDAD = sign(hAC,nC , td,�1, . . . i, ssk(card))

SDAD , AC

Check SDAD
AC, t1, t2, �1, �2, td, SDAD , Certs,. . .

Check t1 in �1, t2 in �2

Check �1,�2 and nC , nR, td in

SDAD
Check AC, Check t2 � t1  td

Figure 6.1: PayBCR [CBC19]: description of the protocol.

the proximity check is modelled by a reset action and the following guarded inputs.
This enforces the agent performing the check to be the agent generating the timestamps.
Unfortunately this is not what happens in PayBCR and PayCCR since, following its spec-
ification, a TPM cannot perform time checks.

When looking at Mauw et al. [MSTPTR18] model, this limitation is less clear but
exists too. Indeed, to get rid of time and locations, thanks to the causality-based se-
curity property, authors require the claim event and the two timestamped actions to be
executed by the same agent, i.e. the verifier. However, this security property appears
more amendable than ours. In this chapter we will thus extend the result presented
in [MSTPTR18].
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6.2. A security model with mobility
In order to model such protocols, we are going to introduce in this section a calculus

that embeds all the required features. This calculus is close to the one presented in Chap-
ter 2. We therefore decided to solely focus on the differences. In particular, we will take
mobility into account, i.e. we will assume that agents can move at anytime. Moreover
we will present the security property proposed in [MSTPTR18] extended according to
this new setting.

6.2.1. Messages and protocols

Regarding the way agents/messages are modelled, this is in line with what has been
presented in Chapter 2. We assume, for sake of simplicity, that A are public constants
and thus available to the attackers. We note ⌃+

0 = ⌃0 ]A to make this clear.

Regarding the protocol description, we define a process algebra close to the one
introduced in Chapter 2:

P,Q := 0
| new n.P

| in(x).P
| out(u).P
| letmess x = v in P

| gettime(x).P
| check(u1, u2, u3).P
| claim(u1, u2, u3, u4).P

where x 2 X , n 2 N , v 2 T (⌃,N [ ⌃+
0 [ X [ R+), and u, u1, . . . , u4 2 T (⌃c,N [ ⌃+

0 [
X [ R+).

Most of the commands remain the same compared to Chapter 2. We can note three
differences: first, two new commands, check(u1, u2, u3) and claim(u1, u2, u3, u4), are de-
fined. These are events as usually defined in symbolic models. They will be used to state
the security property presented below. Informally, the check(u1, u2, u3) command will
model that an agent would have performed the time check u2 � u1  u3 in real world (it
thus replaces the iftime command), and the claim(u1, u2, u3, u4) command means that
a session has been successfully executed between agents u1 and u2 using the two times-
tamps u3 and u4 to perform the proximity check. The second difference lies in the input
command. Indeed, the input/output commands are no longer annotated with a time
variable to bind the current time when the action is executed. Instead, a new command
gettime is defined for this purpose.

We then extended the definition of distance-bounding protocols considering multi-
party protocols, i.e. any finite set of parametrised processes P(x0, . . . , xn). In order to
ensure that elements in R+ occurring in an execution have been either introduced by
our gettime instruction, or by the attacker, we assume that the parametrised processes
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do not contain any element in R+. This assumption will allow us to replace times by
constants when getting rid of time.

Example 6.1. The TPM functionality that is involved in the PayBCR and PayCCR pro-
tocols allows to get a signature of a pair made of an attested time and a message u given
as input. It can be modelled through our syntax as follows:

TPM(x0) = in(xn).
gettime(xt).
out(sign(hxt, xni, ssk(x0))).
0

The parameter x0 will be instantiated by an agent name. Such a process is waiting for
a message, and outputs its signature. The signature is done using the key ssk(x0) and a
timestamp is added into the signature. The current time is obtained using the gettime

instruction.
Similarly, we can define the roles Bank(x0), Reader(x0, x1, x2), and Card(x0, x1, x2)

which respectively represent the commands executed by the bank, the reader and the card.

6.2.2. Mobility

In order to faithfully model the fact that transmitting a message takes time, the notion
of topology has been defined in Chapter 2. It mainly defines the set of honest/dishonest
agents involved in the configuration, and the location function Loc : A ! R3. Since
we aim at modelling mobility, this location function must be extended to enable agents
to move. We call a mobility plan a function that maps agent names and times to a
location in the space. Moreover, to avoid unrealistic behaviours, like teleportation, we
must ensure that agents do not move faster than the transmission speed, here the speed
of light c0. In the following definition we extend the notion of distance and locations
introduced in Chapter 2.

Definition 6.1. We note Dist : R3 ⇥ R3 ! R+ the distance function such that for any
`1, `2 2 R3 we have:

Dist(`1, `2) =
k`2 � `1k

c0
where k·k is the Euclidean norm.

A mobility plan Loc is a function Loc : A ⇥ R+ ! R3 such that for any a 2 A and
t1, t2 2 R+ such that t1  t2 we have:

Dist(Loc(a, t1), Loc(a, t2))  t2 � t1.

Example 6.2. To illustrate the notion of mobility plan, we may consider the function
Loc0 such that Loc(tpm0, t) = (0, 0, 0), and Loc(bk0, t) = (100, 0, 0), and Loc(card0, t) =
(|10 � t|, 0, 0), and for any t 2 R+, and Loc(a, t) = (0, 0, 0) otherwise (i.e., for any
a 2 A r {tpm0, card0, bk0}). This mobility plan models a configuration in which all the
agents are static except the card that is located at (10, 0, 0) at time 0, then moves to the
TPM’s location, i.e. (0, 0, 0), and finally leaves this location to come back at its original
location and then keeps on moving in this direction.
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6.2.3. Semantics

Similarly to the semantics presented in Chapter 2, our new semantics is given by a
labelled transition system over configurations (P;�; t) that manipulates a multiset P of
extended processes, an extended frame � (as introduced in Chapter 2), and the global
time. However, to ease the formal development presented below, we immediately consider
annotated labels (as introduced in Section 4.2.2 - Chapter 4). An extended process is
thus denoted by bP c s

a
with a 2 A and P a process such that fv(P ) = ;, and s a unique

session identifier. In addition, in order to indicate that a message is known by any agent,
the elements in the extended frame can be annotated by the special symbol ? . This will
be used to define the initial frame. A formal definition is provided below.

Definition 6.2. A configuration K is a tuple (P;�; t) where:

• P is a multiset of extended processes bP c s
a

such that each session identifier s

appears only once in P;

• � = {w1
a1,t1���! u1, . . . ,wn

an,tn���! un} is an extended frame, i.e., a substitution such
that wi 2 W, ui 2 T (⌃c,N [ ⌃+

0 [ R+), ai 2 A [ {?} and ti 2 R+ for 1  i  n;

• t 2 R+ is the global time of the system.

Example 6.3. A typical configuration for the PayBCR protocol is K0 = (P0;�0; 0) with:

P0 = {bTPM(tpm0)c
s1
tpm0

; bBank(bk0)c s2bk0 ; bCard(card0)c
s3
card0

}.

This simply models a scenario where tpm0, bk0, and card0 execute a single session of
their role. Regarding the initial frame, we may assume that it contains the private key of
a malicious card att0 and its certificate built by the bank together with those of the honest
card and the honest TPM. Formally, the initial frame is:

�0 = { w1
?,0��! ssk(att0),

w2
?,0��! sign(hcardCert, hatt0, spk(att0)ii, ssk(bk0))

w3
?,0��! sign(hcardCert, hcard0, spk(card0)ii, ssk(bk0))

w4
?,0��! sign(htpmCert, htpm0, spk(tpm0)ii, ssk(bk0))}.

The terms cardCert and tpmCert are public constants from ⌃0 used to avoid a possible
confusion between the two kinds of certificates (the one issued by the bank to certify a
card, and the one used to certify a TPM). In case such a confusion is possible, we may
model the two types of certificates relying on the same constant cert.

Before we present our operational semantics we must define the deduction capabilities
of an agent which is necessary to define the semantics of the input command. Since
messages take time to travel from one location to another, messages are not immediately
available to any agent through the frame. The set of terms that an agent is able to
deduce depends on the extended frame but also the mobility plan. Given an extended
frame �, and a mobility plan Loc, we say that a term u is deducible from � by b 2 A at
time tb using the recipe R, denoted � `R

u by b at time tb w.r.t. Loc, if R�# =E u, and
for all w 2 vars(R) we have that (w

c,t�! v) 2 � for some v, and
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• either c = ?;

• or tb � t+ Dist(Loc(c, t), Loc(b, tb)).

In other words, u has to be forgeable by the agent b at time tb and thus messages needed
to forge u have to be available in due time. This definition is in line with the one intro-
duced in Chapter 2, taking care of the time at which each message has been outputted
to consider the corresponding locations.

TIM (P;�; t) �!Loc (P;�; t+ �)
with � > 0

NEW (bnew n.P c s
a
] P;�; t)

a,⌧,s,t,;�����!Loc (bP{n 7! n
0}c s

a
] P;�; t)

with n
0 2 N fresh

OUT (bout(u).P c s
a
] P;�; t)

a,out(u),s,t,w��������!Loc (bP c s
a
] P;� ] {w a,t�! u}; t)

with w 2 W fresh

LET (bletmess x = v in P c s
a
] P;�; t)

a,⌧,s,t,;�����!Loc (bP{x 7! v#}c s
a
] P;�; t)

when v# 2 T (⌃c,N [ ⌃+
0 [ R+)

CLM (bclaim(u1, u2, u3, u4).P c s
a
] P;�; t)

a,claim(u1,u2,u3,u4),s,t,;���������������!Loc (bP c s
a
] P;�; t)

CHK (bcheck(u1, u2, u3).P c s
a
] P;�; t)

a,check(u1,u2,u3),s,t,;��������������!Loc (bP c s
a
] P;�; t)

GTM (bgettime(x).P c s
a
] P;�; t)

a,gettime,s,t,;���������!Loc (bP{x 7! t}c s
a
] P;�; t0)

with t
0
> t

IN (bin(x).P c s
a
] P;�; t)

a,in(u),s,t,(b,tb,R)�����������!Loc (bP{x 7! u}c s
a
] P;�; t)

when u 2 T (⌃c,N [ ⌃+
0 [ R+) and there exist b 2 A, and tb 2 R+ such that

t � tb + Dist(Loc(b, tb), Loc(a, t)) and:

• either b 2 ArM and there exists (w
b,tb��! u) 2 �, i.e. � `R

u with R = w;

• or b 2 M and � `R
u by b at time tb w.r.t. Loc for some recipe R.

Figure 6.2: Semantics of our calculus parametrised by the mobility plan Loc.

The semantics of processes, presented in Figure 6.2, is in line with the one presented
in Chapter 2. We can nevertheless make some comments. First, one may note that the
check and claim commands are executed as events, i.e. they can always be executed
and do not modify the current configuration. They simply add a visible action in the
trace. Then, another noticeable point is the gettime command. As expected it binds the
variable x to the current global time t but it also enforces the global time to elapse, i.e.
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t
0
> t. This restriction imposes that two gettime commands cannot be executed at the

exact same time. It helps us to establish the soundness of our main result (see Section 6.3)
by making it possible for us to get rid of time by replacing real numbers issuing from
a gettime instruction by different public constants. Note that this does not seem too
restrictive thanks to the high accuracy of the TPM’s clock in real applications. Finally,
the labels are more expressive than those presented in Chapter 2. They correspond to
the annotations introduced in Chapter 4. A label is thus a tuple (a,↵, s, t, r) where a

is the name of the agent executing the action ↵ from the extended process identified by
the session identifier s at time t. Moreover, when ↵ is an output then x = w the frame
variable that is bound, and when ↵ is an input then r = (b, tb, R) where R is the recipe
used by the agent b at time tb to forge the input message. Otherwise, r = ;.

Example 6.4. To illustrate the semantics, we consider the simple configuration made
of a unique session of a TPM, and the initial frame as defined in Example 6.3, i.e.
K0

0 = (bTPM(tpm0)c
s

tpm0
;�0; 0). We also consider the mobility plan Loc0 as given in

Example 6.2. We may obtain the following execution:

K0
0 �! (bTPM(tpm0)c

s

tpm0
;�0; 1.1)

tpm0,in(ok),s,1.1,(c,1.1,ok)������������������! tpm0,gettime,s,1.1,;��������������! (bout(m)c s
tpm0

;�0; 2)
tpm0,out(m),s,2,w5�������������!Loc0 (b0c s

tpm0
;�1; 2)

where:

• m = sign(h1.1, oki, seck(tpm0)), and

• �1 = �0 [ {w5
tpm0,2����! m}.

The first input is possible since �0 `ok ok by any c 2 M at time 1.1. Actually such a
constant is even deducible at time 0.

We may note that m is deducible from �1 by tpm0 at time 2. Actually any agent other
than card0 and bk0 are able to deduce m at time 2. Remember that Loc0(a, t) = (0, 0, 0)
for any t and any a different from card0 and bk0. The agent bk0 has to wait t = 100 to
be able to receive message m, and agent card0 has to wait t = 6.

6.2.4. Distance-bounding security

In order to prove secure EMV-payment protocols, we aim at defining a security prop-
erty that is able to detect relay attacks/mafia frauds. Moreover, the security property
must handle the use of TPMs and proximity checks performed by an agent different from
the verifier.

Before we give the formal definition of our security property, we need to define the
set of initial configurations with respect to which the protocols will be analysed. Such
configurations should only involve an initial frame, i.e. a frame that contains the initial
knowledge of the dishonest agents. Unlike in the previous model, we do not make any
assumption on this knowledge. Therefore, an initial frame is simply an extended frame �0

such that a = ? and t = 0 for any (w
a,t�! u) 2 �0.
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Definition 6.3. A configuration K = (P0;�0; 0) is a valid initial configuration for
a set of roles R, if �0 is an initial frame, and for each bP c

a
2 P0, there exists

R(x0, x1, . . . , xk) 2 R and a1, . . . , ak 2 A such that P = R(a, a1, . . . , ak).

Roughly, we consider initial configurations made up of instances of the roles of the
protocols, and we only consider roles executed by agents located at the right place,
i.e., the agent a who executes the role must correspond to the first argument of the
parametrised process. Note that, according to the definition above, a single agent can
play different roles (e.g., the bank and the card role by a unique agent).

Example 6.5. The frame �0 described in Example 6.3 is an initial frame, and the
configuration K0, as well as the configuration K0

0 given in Example 6.4, are valid initial
configurations for the protocol PayBCR. Although valid, these configurations are rather
poor and additional scenarios will be considered when performing the security analysis.
Typically, we will consider many agents, and we will assume that each agent can execute
the protocol many times.

The security property, we are going to present in Definition 6.4, relies on two events:

• check(t1, t2, �) means that the timing constraint t2 � t1  � has been verified by
some honest agent;

• claim(tpm0, card0, t
0
1, t

0
2) means that an honest agent (typically a bank) finishes the

protocol, seemingly with the two agents tpm0 and card0 which pretend be close
between the two times t

0
1 and t

0
2.

Our result applies on all the valid initial configurations. However, to give the possi-
bility to precisely define the set of initial configurations we want to consider during the
security analysis, our definition is thus parametrised by a set S of valid initial configura-
tions.

Definition 6.4. A protocol Pdb is DB-secure w.r.t. a set S of valid initial configurations
if for all K0 2 S, for all mobility plans Loc, and for all executions exec such that:

K0
(a1,↵1,s1,t1,r1)...(an,↵n,sn,tn,rn)·(b0,claim(b1,b2,t01,t

0
2),s,t,r)�������������������������������������!Loc K

we have that:

• either b1 2 M, or b2 2 M;

• or ↵k = check(t01, t
0
2, t

0
3) for some k  n such that:

t
0
2 � t

0
1 � Dist(Loc(b1, t01), Loc(b2, t)) + Dist(Loc(b2, t), Loc(b1, t02))

for some t
0
1  t  t

0
2.
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Informally, this security property ensures that whenever an agent b0 (typically a bank)
ends the protocol with two agents b1 (the TPM) and b2 (the card) then they must have
been close during the two times t

0
1 and t

0
2, and a time check must have been performed

using this two times.
One may note that the security property trivially holds when agents b1 and/or b2 are

dishonest. This would represent scenarios in which the TPM and/or the card are mali-
cious. In the first case, the malicious TPM is able to tamper the generated timestamps.
No guarantee can thus be ensured. In the second case, the card is able to collude with
any other malicious agent and, in particular, with such an agent that is in the vicinity
of the TPM. Hence, no guarantee can be ensured neither.

Comparison to Mauw et al.’s definition As previously mentioned, this security
property extends Mauw et al.’s [MSTPTR18]. We note two differences:

• Due to mobility, we must be more precise when talking about the distance from b1

and b2. Therefore the security says that between the two times t01 and t
0
2, the agent

b2 has been close to the location of b1 at time t
0
1 and the location of b1 at time t

0
2.

These two locations might be different.

• In standard distance-bounding protocols, the verifier is the agent who initiates the
rapid phase, performs the time checks, and makes the final claim. Unfortunately,
the PayBCR and PayCCR do not follow this structure. The rapid phase is initiated
by the TPM, the time check is either performed by the bank or the card, and the
final claim is made by the bank. In order to model these two protocols we thus
allow to consider three different agents, i.e. b0, b1 and b2, to execute these actions.

6.3. Getting rid of time and locations
In this section we will define the causality-based security property against which the

protocols will be analysed. This property solely relies on the order of the actions in
an execution, and is out of time and location considerations. We can thus express this
property in an untimed semantics to get as close as possible to the existing tools, e.g.
Proverif, that will be used to analyse protocols. Once formally defined, we will prove its
equivalence to the secure-DB property introduced in Definition 6.4.

6.3.1. Causality-based security

The untimed semantics operates over untimed configurations, i.e. pairs of the form
(P;�) where P is a multiset of extended processes and � is a frame (i.e. an extended
frame without time annotations). Since the multiset of extended processes P must not
contain times, i.e. non negative real numbers, the gettime command is replaced by a
timestamp(cx) event where cx 2 ⌃spe

0 a subset of ⌃0 which contains specific variables used
to abstract times.

Given a configuration K = (P;�; t), for sake of simplicity, we assume that variables
occurring in P are at most bound once and we note · the transformation such that
K = (P0;�0) where:
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• P0 is the untimed counterpart of P, i.e. each gettime(x) instruction occurring in
P is replaced by timestamp(cx) where cx 2 ⌃spe

0 , and the occurrences of x in the
remaining process are replaced by cx;

• �0 is the untimed counterpart of �, i.e. �0 = {w �! u | (w c,t�! u) 2 �}.

The untimed semantics
The untimed semantics presented in Figure 6.3 is a labelled transition system over

untimed configurations. Comparing to the timed semantics, presented in Figure 6.2, the
TIM rule does not exist anymore. The rules NEW, OUT and LET are straightforwardly
adapted removing the global time from the configuration (and the time annotation from
frame for the OUT rule). The rule GTM is modified to become a simple event instruction.
Finally, the IN rule no longer cares about time.

We note that the untimed semantics embeds annotated labels of the form (a,↵, s, r)
where a is a name of the agent executing action ↵ from the process identified by the
session identifier s. Moreover, when the action is an output then r = w the frame
variable which is bound, and when the action is an input then r = (b, R) where b is
the agent who forges the input message and R the recipe that is used. These annotated
labels are the untimed counterpart of the timed labels.

Causality-based security
We are now able to define a security property that solely relies on the order of the

actions during an execution. This property, inspired from [MSTPTR18], claims a protocol
secure if, whenever two agents b1 and b2 are authenticated relying on the two abstracted
times c1 and c2, a time check must have been performed and agent b2 must have been
active between the two events.

Definition 6.5. A protocol Pdb is causality-based secure w.r.t. a set S of valid initial
configurations, if for all K0 2 S, for all execution exec such that:

K0
(a1,↵1,s1,r1)...(an,↵n,sn,rn)·(b0,claim(b1,b2,c1,c2),s,r)

(P 0;�0)

we have that either b1 2 M, or b2 2 M, or there exist i, j, k, k0  n with i  k
0  j, and

u 2 T (⌃c,N [ ⌃+
0 ) such that:

• ↵k = check(c1, c2, u);

• (ai,↵i) = (b1, timestamp(c1));

• (aj ,↵j) = (b1, timestamp(c2)); and

• ak0 = b2.

This property is closely related to the DB-secure property presented in Definition 6.4.
The difference lies in the fact that the proximity is no longer enforced by checking the
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NEW0 (bnew n.P c s
a
] P;�)

a,⌧,s,;
(bP{n ! n

0}c s
a
] P;�)

with n
0 2 N fresh

OUT0 (bout(u).P c s
a
] P;�)

a,⌧,s,w

(bP c s
a
] P;� ] {w ! u})

with w 2 W fresh

LET0 (bletmess x = v in P c s
a
] P;�)

a,⌧,s,;
(bP{x ! v#}c s

a
] P;�)

when v# 2 T (⌃c,N [ ⌃+
0 )

CLM0 (bclaim(u1, u2, u3u4).P c s
a
] P;�)

a,claim(u1,u2,u3,u4),s,;
(bP c s

a
] P;�)

CHK0 (bcheck(u1, u2, u3).P c s
a
] P;�)

a,check(u1,u2,u3),s,;
(bP c s

a
] P;�)

GTM0 (btimestamp(cx).P c s
a
] P;�)

a,timestamp(cx),s,;
(bP c s

a
] P;�)

IN0 (bin(x).P c s
a
] P;�)

a,in(u),s,(b,R)
(bP{x 7! u}c s

a
] P;�)

when R�# =E u for some recipe R

when u 2 T (⌃c,N [ ⌃+
0 )S and there exist b 2 A, such that:

• either b 2 ArM R = w such that (w
u�!) 2 �;

• or b 2 M and R�# =E u for some recipe R.

Figure 6.3: Untimed semantics

distance of the agents, but ensuring that agent b2 has been active between the two events.

This property requires the existence of timestamp events as soon as a claim appears
in an execution to identify the subpart of the execution which corresponds to the rapid
phase of the protocol. We introduce such a requirement as an hypothesis. Note that
we do not explicitly require the uniqueness of these events since it is enforced by the
semantic rules: the global time must increase when executing a gettime command.

Definition 6.6. A protocol Pdb is well-timed w.r.t. a set S of valid initial configurations
if for all K0 2 S, for all execution exec such that:

K0
(a1,↵1,s1,r1)...(an,↵n,sn,rn)·(b0,claim(b1,b2c1,c2),s,r)

(P 0;�0)

we have that there exist i, j  n such that:

• (ai,↵i) = (b1, timestamp(c1));

• (aj ,↵j) = (b1, timestamp(c2)).
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We are now able to state our main result that establishes the equivalence between
the two properties, i.e. DB-security and causality-based security. The purpose of the
next two sections is to prove this theorem.

Theorem 6.1. Let Pdb be a protocol and S be a set of valid initial configurations. As-
suming that Pdb is well-timed w.r.t. S, we have that:

Pdb is DB-secure w.r.t. S
if, and only if,

Pdb is causality-based secure w.r.t. S.

6.3.2. From distance-bounding security to causality-based security

This section is devoted to the proof of the first implication of the main theorem.

Proposition 6.1. Let Pdb be a protocol and S be a set of valid initial configurations.
Assuming that P is well-timed w.r.t. S, and Pdb is DB-secure, we have that Pdb is
causality-based secure.

Intuitively, the proof of this proposition is quite easy and consists in re-timing a wit-
ness of attack w.r.t. the causality-based security. Such a re-timing process consists in
assigning a time to each action occurring in the execution. This assignment must satisfy
a set of constraints that can be derived from the execution and the mobility plan in
which we aim at re-timing the execution. We introduce the notion of timed formula CLoc

exec

associated to an annotated untimed execution exec, and a mobility plan Loc.

Given a trace tr1 . . . trn we note IN(tr1 . . . trn) the set of all the indices corresponding
to input actions. Similarly we note TS(tr1 . . . trn) the set of all the indices corresponding
to timestamp events. Given a set S we note #S its size. Finally, we note orig(i) the
index of the ith output in the trace.

Given an annotated execution exec = K0 = (P0;�0)
tr1.....trn Kn of size n (with

tri = (ai,↵i, si, ri) for 1  i  n and ri = (bi, Ri) for i 2 IN(tr1, . . . , trn)) and a mobility
plan Loc, the timed formula CLoc

exec, built upon the set of variables Z = {z1, . . . , zn} [
{zb

i
| i 2 IN(tr1, . . . , trn)}, is the conjunction of the following formulas:

• 0  z1  z2  . . .  zn;

• zi < zi+1 for all i 2 TS(tr1, . . . , trn�1);

• zi � z
b

i
+ Dist(Loc(ai, zi), Loc(bi, zbi )) for all i 2 IN(tr1, . . . , trn);

• for all i 2 IN(tr1, . . . , trn), for all j such that wj 2 vars(Ri)r dom(�0),

z
b

i � zorig(j) + Dist(Loc(bi, zbi ), Loc(aorig(j), zorig(j))).

The first item models that the global time cannot decrease along an execution. The
second item ensures that the global time increases when executing gettime commands
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as required in the semantic rule. The third and the fourth items gather the timing
constraints corresponding to the input rule: the third item ensures that the input message
can be forged soon enough, and the fourth item ensures that the agent who forges the
input message can receive all the material on time.

Since this formula has been defined to contain all the timing constraints that an
assignment must satisfy to lift a trace from the untimed to the timed semantics, the
following lemma holds.

Lemma 6.1. Let Pdb be a protocol and K0 = (P0;�0; 0) be a valid initial configuration.
Let Loc be a mobility plan.

For any execution exec = K0
tr1...trn Kn with tri = (ai,↵i, si, ri) and function '

satisfying CLoc
exec we have K0

tr
0
1...tr

0
n����!Loc K0

n with:

tr0i =

(
(ai, gettime, si,'(zi), ;) if ↵i = timestamp(ci)

(ai,↵i'c, si,'(zi), ri'c) otherwise

and 'c(ci) = '(zi) for all i 2 TS(tr1 . . . trn). Moreover, K0
n'c = Kn.

Proof. The proof follows the definition of CLoc
exec. Indeed this formula contains all the

timing constraints required to trigger each action. Moreover, by definition of CLoc
exec we

obtain that 'c is a bijective function as soon as variables are bound at most once in K0.
This preserves equalities and inequalities between the untimed and the timed execution.

Proof of Proposition 6.1

Proof. Relying on the previous lemma, we are able to prove Proposition 6.1. Assuming
that the protocol Pdb is not causality-based secure, the proof proceeds in three steps
depending on which item of the definition is falsified.

Since Pdb is not causality-based secure, we know that there exist a valid initial con-
figuration K0 = (P0;�0; 0) 2 S and an execution exec such that:

exec = K0
tr1...trn.(b0,claim(b1,b2,c01,c

0
2),s,;) (P 0;�0)

with tri = (ai,↵i, si, ri) (1  i  n) and b1 /2 M, b2 /2 M and either:

1. there is no k  n such that ↵k = check(c01, c
0
2, u) for some u 2 T (⌃c,N [ ⌃+

0 ); or

2. there is no i  n (resp. j  n) such that (ai,↵i) = (b1, timestamp(c01)) (resp.
(aj ,↵j) = (b1, timestamp(c02))); or

3. there exist i0, j0, k0  n and u 2 T (⌃c,N [ ⌃+
0 ) such that ↵k0 = check(c01, c

0
2, u),

(ai0 ,↵i0) = (b1, timestamp(c01)), and (aj0 ,↵j0) = (b1, timestamp(c02)) but there is no
i0  k

0  j0 such that ak0 = b2.
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Let trn+1 = (b0, claim(b1, b2, c01, c
0
2), s, t, r). We consider each case separately.

Case 1: Let Loc be the mobility plan such that Loc(a, t) = (0, 0, 0) for any a 2 A and
t 2 R+. Since the location of each agent does not depend on time, for sake of readability,
we write Loc(a) instead of Loc(a, t).

Let ' be the function such that:

• '(zi) = #TS(tr1 . . . tri�1) for i 2 {1, . . . , n+ 1},

• for all i 2 IN(tr1 . . . trn), we have that:

– '(zb
i
) = '(zorig(j)) if bi /2 M and Ri = wj ,

– '(zb
i
) = '(zi) otherwise.

We can show that this function ' satisfies CLoc
exec. Indeed, we have that:

• 0  '(z1)  '(z2)  . . .  '(zn);

• '(zi) < '(zi+1) for i 2 TS(tr1, . . . , trn�1);

• for all i 2 IN(tr1, . . . , trn), we have that either '(zb
i
) = '(zorig(j))  '(zi) for some

j such that orig(j)  i, or '(zb
i
) = '(zi). In both cases, we have that:

'(zi) � '(zbi ) + Dist(Loc(ai), Loc(bi))

since Dist(Loc(ai), Loc(bi)) = 0. Remember that all the agents are at the same
location.

• for all i 2 IN(tr1, . . . , trn), for all j such that wj 2 vars(Ri) r dom(�0), we have
that orig(j) < i, and thus '(zorig(j))  '(zi). Therefore, we have that:

'(zbi ) � '(zorig(j))

and this allows us to conclude since Dist(Loc(bi), Loc(aorig(j))) = 0. Remember
that all the agents are at the same location.

Finally, applying Lemma 6.1 we obtain that the execution can be lifted into the timed
semantics. This timed execution immediately falsifies the DB-secure property because
there is no check event in the timed execution. Indeed the timed execution is equal to
the untimed one up to the times and the bijective function 'c defined in Lemma 6.1.

Case 2: since Pdb is well-timed w.r.t. S, this case is not possible.

Case 3: Let Loc be the mobility plan such that everyone but b2 is located at (0, 0, 0).
Agent b2 is located at (1, 0, 0). We formally define Loc as follows:

• Loc(a, t) = (0, 0, 0) for any a 6= b2, and any t 2 R+;
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• Loc(b2, t) = (1, 0, 0) for any t 2 R+.

Since the location of each agent does not depend on time, for sake of readability, we write
Loc(a) instead of Loc(a, t).

Let ' be the function such that '(zi) is as follows:

• 2 ·#IN(tr1 . . . tri) + #TS(tr1 . . . tri�1) for i < i0;

• '(zi0�1) + 1 + 1
c0·n#TS(tri0 . . . tri�1) for i0  i  j0;

• '(zj0) + 2 ·#IN(trj0+1 . . . tri) + #TS(trj0+1 . . . tri�1) for 1 > j0.

Informally, for all actions outside the rapid phase delimited by indices i0 and j0, we
apply a delay of 2 before each input, and a delay of 1 after each timestamp. This allows
any agent to receive any message forgeable from the frame at each step of the execution.
During the critical phase we do not apply delay before inputs and only apply a short
delay of 1/(c0 · n) after each timestamp to ensure that time increases as required by the
semantics. The delay introduced between the two gettime (or timestamp) commands
will thus be small.

In addition, for all i 2 IN(tr1 . . . trn), if bi /2 M then '(zb
i
) = '(zorig(j)) where

Ri = wj , otherwise:

'(zbi ) =

(
'(zi)� 1 if i < i0 or i > j0

'(zi) if i0  i  j0.

We can show that this function ' satisfies CLoc
exec. Indeed, we have that:

• 0  '(z1)  '(z2)  . . .  '(zn);

• '(zi) < '(zi+1) for i 2 TS(tr1, . . . , trn�1);

• Regarding the remaining constraints in CLoc
exec, we consider i 2 IN(tr1, . . . , trn), and

we distinguish two sub-cases:
Case i < i0 or j0 < i: if the agent bi forging the received message is honest then we
have that ri = wj for some j such that orig(j) < i and aorig(j) = bi. Therefore,
we have that:

'(zi) � '(zi�1) + 2
� '(zorig(j)) + 2
= '(zb

i
) + 2

� '(zb
i
) + Dist(Loc(aorig(j)), Loc(bi))

Moreover, we have '(zb
i
) = '(zorig(j)) + Dist(Loc(aj), Loc(bi)) since aorig(j) = bi.

Otherwise, we have that bi 2 M, and we have that '(zi) = '(zb
i
) + 1 by definition

of ', and since Dist(Loc(bi), Loc(ai))  1, this allows us to conclude that:

'(zi) � '(zbi ) + Dist(Loc(bi), Loc(ai)).
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Now, let wj 2 vars(Ri). We have that:

'(zb
i
) � '(zi)� 1

� '(zi�1) + 2� 1
� '(zorig(j)) + 1
� '(zorig(j)) + Dist(Loc(bi), Loc(aorig(j))).

Case i0  i  j0: if the agent bi forging the received message is b2 (b2 is honest)
then we have that ri = wj for some j such that orig(j) < i0 (remember that no
action of b2 occurs between i0 and j0). Therefore, we have that:

'(zi) � '(zi0�1) + 1
� '(zorig(j)) + 1
= '(zb

i
) + Dist(Loc(bi), Loc(ai)).

By definition of ', we have that '(zb
i
) � '(zorig(j)), and thus

'(zbi ) � '(zorig(j)) + Dist(Loc(bi), Loc(aorig(j)))

since Dist(Loc(bi), Loc(aorig(j))) = 0 (we have that bi = aorig(j).)

Otherwise, if bi is honest but different from b2, then we have that:

'(zi) � '(zi�1)
� '(zorig(j))
= '(zb

i
) + 0

= '(zb
i
) + Dist(Loc(bi), Loc(ai)).

By definition of ', we have that '(zb
i
) = '(zorig(j)), and thus

'(zbi ) � '(zorig(j)) + Dist(Loc(bi), Loc(aorig(j)))

since Dist(Loc(bi), Loc(aorig(j))) = 0 (we have that bi = aorig(j).)

Now, if bi 2 M, we have that Loc(bi) = Loc(ai) (since b2 is the only agent not
located at the same place of the others, b2 62 M and we know that there is no
occurrence of an action performed by b2 between i0 and j0, thus ai 6= b2). We have
that '(zi) = '(zb

i
) by definition of ', and since Dist(Loc(bi), Loc(ai)) = 0, this

allows us to conclude that:

'(zi) � '(zbi ) + Dist(Loc(bi), Loc(ai)).

Now, let wj 2 vars(Ri). In case aorig(j) 6= b2, we have that the distance between
bi and aorig(j) is equal to 0 and thus:

'(zbi ) � '(zorig(j)) + Dist(Loc(bi), Loc(aorig(j)))
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In case aorig(j) = b2, we know that orig(j) < i0, and thus

'(zorig(j))  '(zi0)� 1  '(zi)� 1

Thus, we have that:

'(zb
i
) = '(zi)

� '(zorig(j)) + 1
� '(zorig(j)) + Dist(Loc(bi), Loc(aorig(j)))

Now, we have shown that ' satisfies CLoc
exec, we can apply Lemma 6.1 to re-time the

execution. We obtain that:

K0
tr

0
1...tr

0
n.(b0,claim(b1,b2,c01'c,c

0
2,'c),s,;)������������������������!Loc K0

n+1

with:

tr0i =

(
(ai, gettime, si,'(zi), ;) if ↵i = timestamp(ci)

(ai,↵i'c, si,'(zi), ri'c) otherwise

and 'c(ci) = '(zi) for all i 2 TS(tr1 . . . trn).
By construction, we have that 'c(c01) = '(zi0), 'c(c02) = '(zj0), and, by definition of

', we have that '(zi+1) � '(zi)  1/(c0 · n) when i 2 {i0, . . . , j0 � 1}. Therefore, we
have that:

'(zj0)� '(zi0)  (j0 � i0 + 1)/(c0 · n)
 1/c0
< 2/c0
 2⇥ Dist(Loc(b1), Loc(b2))

Hence, we have that Pdb is not DB-secure.

This proves Proposition 6.1 and thus the first direction of Theorem 6.1. In the next
section we are going to focus on the proof of the other direction.

6.3.3. From causality-based security to distance-bounding security

This section is devoted to the proof of the following proposition.

Proposition 6.2. Let Pdb be protocol and S a set of valid initial configurations. If Pdb

is causality-based secure w.r.t. S then Pdb is DB-secure w.r.t. S.

This implication is more complex than the previous one. Even if the full proof is
presented in Appendix C, we provide a flavour of it and recall the main intermediate
lemmas.

The proof starts with an attack trace w.r.t. DB-security, i.e. such that t
0
2 � t

0
1 <

Dist(Loc(b1, t01), Loc(b2, t)) + Dist(Loc(b2, t), Loc(b1, t02)) for any t
0
1  t  t

0
2 and then

follows the following steps:
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1. We first weaken the trace in the untimed semantics (see Lemma 6.2).

2. Then, we clean up the trace between the two timestamp actions (see Proposi-
tion 6.3). Intuitively, we remove all the actions that do no depend on the first
timestamp and on which the second timestamp does not depend on. This trans-
formation is similar to the reordering performed in Section 4.2.2 (Chapter 4) when
reducing the topologies for distance hijacking attacks.

3. We apply Lemma 6.1 to lift this execution in the timed model keeping the value
t
0
2 � t

0
1 unchanged.

4. Assuming that the protocol is causality-based secure, there is still an action ex-
ecuted by the prover between the two timestamps. By construction this action
depends on the first timestamp and the second timestamp depends on this action.
We can thus deduce a timing constraint which contradicts the fact that the initial
trace was a witness of attacks w.r.t. DB-security (see Lemma 6.3). Intuitively, if an
action depends on another, then enough time must have elapsed to let a message
travel between the two agents executing the actions.

The first step of the proof consists in weakening a timed trace into the untimed
semantics. This is permitted thanks to Lemma 6.2. Even if this transformation can be
done in a rather straightforward way, we state it with some details in order to maintain
a strong link between the two executions.

To do so, we first precise the transformation · presented in Section 6.3.1. When we
apply this transformation, we rely on the function �spe : X ! ⌃spe

0 which is used to
replace an action of the form gettime(x) by the action timestamp(�spe(x)).

Similarly, given an execution exec = K0
tr�!Loc Kn, we denote �time : X ! R+ the

function that associates to each variable occurring in a gettime instruction, the current
time at which this instruction has been executed.

Lemma 6.2. Let Pdb be a protocol and K0 be a valid initial configuration for Pdb.
For any execution

exec = K0
tr1...trn�����!Loc Kn

such that tri = (ai,↵i, si, ti, ri) for i 2 {1, . . . , n}, we have that K0
tr

0
1...tr

0
n K0

n where
K0

n = Kn� and for any i 2 {1, . . . , n}, we have that:

tr
0
i =

8
><

>:

(ai, timestamp(ti�), si, ;) if ↵i = gettime

(ai,↵i�, si, (bi, Ri�)) if ri = (bi, tbi , Ri)

(ai,↵i�, si, ri�) otherwise

where � = �spe � ��1
time

assuming that �spe is the function used to transform K0 into K0

and �time is the one associated to the execution exec.

Proof. This proof is immediate because the configurations only differ from the bijective
function � (the equalities are thus preserved) and the rules in the untimed semantics are
less restrictive than the rules in the timed semantics
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The second step of the proof cleans up the trace between the two timestamps so that
only actions that depend on the first timestamp event and on which the last timestamp
event depends on remain. This cleaning is very similar to the one done in Section 4.2.2
(Chapter 4) when reducing the topologies for distance hijacking attacks. It relies on a
notion of data/sequence dependency between actions. Since our models are similar, the
proofs can be easily adapted. Hence, we only recall some of the key points. Remember
the notation tr2 ,!⇤ tr1 when the action tr2 depends on tr1, and tr2 6,!⇤ tr1 otherwise.

Proposition 6.3. Let T be a topology, and K0
tr1...trn

T Kn be an execution with n � 2.
We have that there exists a bijection ' : {1, . . . , n} ! {1, . . . , n} such that:

• K0
tr

0
1...tr

0
n

T Kn with tri = tr0
'(i) for all i 2 {1, . . . , n}; and

• for all j such that '(1) < j < '(n), we have that tr0
'(n) ,!

⇤ tr0
j
,!⇤ tr0

'(1).

Moreover, for all j1, j2 such that '(1)  j1 < j2  '(n), we have that '�1(j1) < '
�1(j2).

Proof. This proposition is almost the same proposition as Proposition 4.2 that is stated
and proved in Chapter 4. In this lemma we just state the new property: for all j such
that '(1) < j < '(n), we have that tr0

'(n) ,!
⇤ tr0

j
,!⇤ tr0

'(1).
Thanks to the close link between our two untimed semantics (they mainly differ from

the agent mobility and the timestamp(cx) commands which are simple events), the same
proof applies and we can easily establish this property.

The third step of the proof lifts the trace in the timed semantics thanks to Lemma 6.1.
Finally, in step 4 we establish a contradiction assuming that the protocol is causality-
based secure. Indeed, regarding this assumption, there exists an action executed by agent
b2 between the two timestamp (or gettime) commands. Therefore, this action depends
on the first timestamp, and the last timestamp depends on this action. A contradiction
can thus be derived from the following lemma which provides a timing constraint that
must be satisfied by any dependent actions.

Lemma 6.3. Let Loc be a mobility plan, and exec = K0
tr1.....trn�����!Loc K1 be an execution

with tri = (ai,↵i, si, ti, ri) for i 2 {1, . . . , n}. Let i, j 2 {1, . . . , n} such that trj ,!⇤ tri.
We have that:

tj � ti + Dist(Loc(ai, ti), Loc(aj , tj)).

Proof. A proof similar of Lemma 4.5 can be done here. Indeed, the two lemmas are
the same, up to the mobility here which requires to precise the locations with the corre-
sponding time.

Proof of Proposition 6.2
The full proof of Proposition 6.2 is presented in Appendix C. Here we give a flavour

of it.
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Proof. (Sketch of proof)

Assuming that Pdb is not DB-secure, there exists an execution exec such that:

K0
(a1,↵1,s1,r1)...(an,↵n,sn,rn)·(b0,claim(b1,b2,c1,c2),s,r)

(P 0;�0)

with b1 2 M, and b2 2 M, and one of the two following cases applies:

1. there is no index k  n such that trk = (ak, check(t01, t
0
2, t

0
3), sk, tk, ;); or

2. for any t with t
0
1  t  t

0
2, we have that:

t
0
2 � t

0
1 < Dist(Loc(b1, t01), Loc(b2, t)) + Dist(Loc(b2, t), Loc(b1, t02)).

Case 1: we apply Lemma 6.2 to weaken the given execution in the untimed semantics.
Since this transformation only applies a bijective renaming to times, we obtain that the
untimed trace does not contain a check which corresponds to the claim and thus the
causality-based security is immediately falsified.

Case 2: as previously, we first apply Lemma 6.2 to weaken the given execution in the
untimed semantics. Then, applying Proposition 6.3, we transform the trace so that any
action executed between the two timestamps depend on them. Assuming that the two
timestamps are identified by tr0

i0
and tr0

j0
in the resulting trace tr01 . . . tr

0
n, we have that

for any k 2 {i0, . . . , j0}:
tr0j0 ,!

⇤ tr0
k
,!⇤ tr0i0 .

Assuming that Pdb is causality-based secure, we know that there is such an action exe-
cuted by agent b2, i.e. there exists k0 2 {i0, . . . , j0} such that tr0

k0
= (b2,↵k0).

The last step of the proof consists in re-timing the trace. Let us distinguish three
parts in the trace: before the first timestamps, after the second timestamps and between
the two. To re-time before and after the timestamps, we simply let enough time elapse
between two actions to ensure that all the messages can be received on time. The critical
part is located between the two timestamps. To re-time this part of the execution, we
apply the same delays as in the original execution exec between each action. Note that,
since did not introduce new actions between the timestamps (we only removed ones), the
timing constraints will be satisfied.

In addition, following the original execution to re-time the trace gives us a strong
link between the times when the gettime commands are executed: the delay between
the two timestamps remains unchanged.

Finally, in order to reach a contradiction, we apply Lemma 6.3 to tr0
j0
,!⇤ tr0

k
and

tr0
k
,!⇤ tr0

i0
and obtain that:

t
0
2 � t

0
1 � Dist(Loc(b1, t01), Loc(b2, tk)) + Dist(Loc(b2, tk), Loc(b1, t02)).

where tk is the time when the action tr0
k0

is executed. Contradiction.
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6.4. Case studies
Theorem 6.1, proved in the previous section, allows us to use existing tools to analyse

the security of the two protocols PayBCR and PayCCR w.r.t. the DB-security property.
Indeed, the causality-based security property has been proved equivalent to DB-secure
and solely relies on the order of the actions in untimed traces. We decided to use the
ProVerif tool [Bla01] to verify this correspondence property. All the Proverif models
mentioned in this section are available at: https://gitlab.inria.fr/adebant/verif-
db/.

6.4.1. ProVerif models and scenarios under study

We model the PayBCR protocol following the description given in Figure 6.1. Regard-
ing PayCCR, presented in Figure 6.4, it is actually not possible to state the causality-based
security property (and even more the DB-security property). The problem is that, in
PayCCR, the bank never receives the reader/TPM identity nor the two timestamps. The
proximity re-check is performed by the card which is assumed honest. The bank can thus
trust the card and does not need to receive this information. Unfortunately, these last
are needed to state the final claim. To overcome this limitation, we propose a slightly
modified version of the protocol named PayCCR++ in which the TPM identity and the
two timestamps are added in the AC message1. More formally, we have that:

ACPayCCR++ = mac(KS , ATC, data,�1, tpm, t1, t2)

with KS = senc(ATC, shk(card, bk)) as presented in Figure 6.4.

The causality-based security property allows to analyse protocols w.r.t. an arbitrary
set of valid initial configurations. We decided to consider scenarios with an arbitrary
number of banks, cards, and TPMs. We do not model the readers which is assumed
to be dishonest, and thus fully executable by the underlying attacker of the Proverif
tool. More precisely, the role of the bank is played by many possible entities and each
bank issues many cards and many TPMs. Among these cards and these TPMs, some
are honest, and some are dishonest meaning that their credentials are revealed to the
attacker. As usually assumed in payment protocols, we do not consider scenarios in which
an honest entity acts as a card and a TPM as the same time. In order get close the the
reality and thus prevent a dishonest participant from acting as a card and a TPM at
the same time, it is important to differentiate the two corresponding certificates: given
a bank name bk, a TPM certificate of agent a, noted certT (a), is

sign(hTPMCert, a, spk(a)i, ssk(bk))

whereas a card certificate, certC(a) will be

sign(hcardCert, a, spk(a)i, ssk(bk)).
1In practice, this is feasible via optional fields inside the AC, which issuing-banks already use for further
data-collection.

https://gitlab.inria.fr/adebant/verif-db/
https://gitlab.inria.fr/adebant/verif-db/


6.4. Case studies

6

149

Bank
KM = shk(B, card)

TPM
ssk(tpm)

Reader
spk(card)

Card
td, ssk(card),
KM = shk(bk, card),
Cert(spk(card)),
Cert(spk(tpm))

pick nR 2R {0, 1}32

TPM2_GetTime(nR)

t1 := TPM-AttestedTime;
�1 = sign(ht1, nRi, ssk(tpm))

pick nC 2R {0, 1}32

t1, �1
�1

nC , td
TPM2_GetTime(nC)

timed

t2 := TPM-AttestedTime;
�2 = sign(ht2, nCi, ssk(tpm))

t2, �2
t2,�2, t1, nR, Cert(spk(tpm))

Certs

GEN AC, data, . . .

Check t1 in �1, t2 in �2

Check t2 � t1 < td

Check Certs

KS = senc(ATC,KM )
AC = mac(hATC, data,�1, ..i,KS)
SDAD = sign(hAC,nC ,

td, nR, . . . i, ssk(card))

SDAD , AC

Check SDAD
AC, nR, nC , td, SDAD , Certs,. . .

Check nR, nC and td in SDAD
Check AC

Figure 6.4: PayCCR [CBC19]: description of the protocol.

During our analyses, we considered initial frames that contain the initial knowledge
of dishonest agents composed of:

• spk(a) for any agent a, and his associated certificate certX(a);

• ssk(a) and shk(a, bk) when the agent a is dishonest.

6.4.2. Two extra authentication properties

Besides the causality-based security property we introduced in Definition 6.5 to verify
whether a protocol ensures the physical proximity of the agents, we will analyse the
protocols w.r.t. two extra authentication properties.
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First, we consider a property that expresses the fact that, when the bank ends a
session apparently with two agents tpm0 and card0, then tpm0 is a TPM identity whereas
card0 is a card identity. The property relies on two events TPM(x) and CARD(x) that are
triggered when an identity is created to model that x is either a TPM identity or a card
identity. The security property is then as follows:

query tpm0:bitstring, card0:bitstring, t1:bistring, t2:bitstring;
event(claim(tpm0,card0,t1,t2)) ==> (event(TPM(tpm0)) && CARD(card0)).

The second authentication property we consider deals with the time-bound td against
which the times are checked to define the reader/TPM’s proximity. This bound is specific
to each card and sent by the card in the SDAD message. In this context, an attacker may
try to replace it by an excessively large value to make the bank accept the transaction.
To avoid this undesired behaviour, we model this bound by an uninterpreted symbol of
function timebound(x), where x is an agent name, and we add at the end of the bank
process a new event receivedBound(card0, td) and check the following extra property
for any honest agent card0:

query card0:bitstring, timeboundinfo:bitstring;
event(receivedBound(card0, timeboundinfo))

==> timeboundinfo = timebound(card0).

6.4.3. Verification results

The protocols have been analysed w.r.t. the causality-based security property and the
two authentication properties mentioned above. To make Proverif conclude, we added
additional data in the check and timestamp events (e.g., the fresh nonce nC generated by
the card during a session). In addition, to highlight the actions performed by the card (i.e.
b2 in Definition 6.5), we added a new event proverAction in the role of the card. One
may note that if a protocol satisfies the resulting query then it is causality-based secure.
Indeed, the more precise the events are the stronger the security property is. Similarly,
since only a unique action of agent b2 is made visible through the proverAction event,
the security property is even more difficult to satisfy. The query we are considering is:
query bankID:bitstring, t1:bitstring, nR:bitstring, t2:bitstring,

nC:bitstring, timeboundinfo:bitstring;
event(claim(tpm0, card0, t1, t2))

==> (event(checkTimes(t1, t2, timeboundinfo, nC, bankID))
==> (event(timeStamp(tpm0,t2, nC))

==> (event(proverAction(card0,sign((t1,nR), secKey(tpm0))))
==> (event(timeStamp(tpm0,t1, nR)))))).

where tpm0 and card0 ar two honest identities. It relies on nested correspondences to
model sequential relations between actions.

Proverif always returns in less than 1s on a standard laptop. All the results are pre-
sented in Table 6.1. As expected the two protocols are causality-based secure, i.e., the
physical proximity of the two agents involved in a transaction is ensured, as soon as the
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TPM is not corrupted and the card is honest. Moreover, note that, for such transac-
tions, if time-bound authentication holds, then this inherently implies that the check of
timestamps occurring in the causality-based property had been correctly performed.

However, if the PayBCR protocol satisfies role authentication, PayCCR++ does not.
This means that, in PayCCR++, a bank may accept a rogue transaction, for instance one
involving a card acting as a TPM (or inversely). This weakness is however not surprising.
Indeed, checking the TPM certificate is part of the card’s role in PayCCR++, while it
is performed by the bank in PayBCR. This means that certificates may not have been
checked if the card’s role is executed by a malicious agent in PayCCR++, whereas in
PayBCR they will be always correctly checked since the bank is assumed honest.

Protocol Role Time-bound Causality-based
authentication authentication security

PayCCR++ ⇥ X X
PayBCR X X X

Table 6.1: Results of the security analyses of PayBCR and PayCCR++.

6.5. Conclusion
In this chapter, we managed to model and prove the security of the two novel EMV-

payment protocols PayBCR and PayCCR. This required first to extend an existing model
and an existing security property to handle TPMs and rogue readers. In addition, we pro-
posed a modelling for agent mobility to faithfully model real-world applications. Finally,
we have proved an equivalence between our new security property, called DB-secure,
and a causality-based property that can be checked by existing tools. The DB-secure
and causality-based secure properties draw their inspiration from the original framework
proposed by Mauw et al. [MSTPTR18].

Regarding the two protocols that have been analysed, one may note that the DB-
security/causality-based security definitions do not apply for analysing the PayCCR pro-
tocol. Indeed, these are quite strong properties which requires to link the card’s ID and
the TPM’s ID together with the specific timestamps, inside the claim event. Another
approach would be to link the claim to the check event through a session identifier (e.g.
nC or nR). Following this approach, the claim event would thus be claim(b1, b2, sid) and
the check event check(sid, t01, t02, t03). Such an approach would be necessary to model pro-
tocols in which the card and the reader do not want to reveal any timing information to
the bank: such a leakage may appear as a privacy issue. Unfortunately, following this
new approach, our proof technique does not apply anymore in case several check events
happen for a given session. It would thus be interesting to see how to overcome such a
limitation.





Conclusion 7
This manuscript has been dedicated to the symbolic verification of distance-bounding

protocols with a particular interest in contactless payment protocols. This work has
proceeded in two steps: first we have addressed modelling issues to formally describe the
distance-bounding protocols and the security properties that are relevant. Then, we have
proposed procedures and theoretical results that allow an automatic verification.

7.1. On modelling of distance-bounding protocols
To address the analysis of these protocols we have first proposed a new symbolic

model which faithfully models physical constraints, i.e. time and locations. The main
novelty is the modelling of the transmission delay from one location to another. Unlike
usual symbolic models, messages cannot be instantaneously sent and received over the
network, enough time must have elapsed to let the message reach its destination. In
addition, we have also introduced the notion of mobility, i.e. agents can move during a
session of the protocol, in order to faithfully model real-world applications.

Once the model has been defined, we have proposed formal definitions of the three
classes of attacks against which distance-bounding are usually analysed. In particular,
our definitions encompass the infinite number of topologies/configurations that may hap-
pen in practice. A specific interest has been paid on the definition of terrorist fraud for
which modelling the collusion behaviour was a challenging problem.

Open problems and future work

In this manuscript (but also in the literature) two approaches have been proposed to
model distance-bounding protocols: the first one, presented in Chapter 2 and developed
across Part I, relies on blocking commands, iftime, to represent timing constraints. It
faithfully models the actual behaviour of a user who will immediately stop the protocol
as soon as a constraint is not satisfied. The second approach is less restrictive about
the semantics, and abstracting the timing constraints by simple events, and encodes the
meaning of a constraint in the security property under study. This approach appears to
be more convenient for verification.

Precisely comparing the two approaches to understand in which context they are
equivalent would thus be interesting. Moreover it might allow to unify the two ap-
proaches which would be an elegant contribution.
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Another interesting contribution would be to improve the modelling of the rapid phase
in distance-bounding protocols. For efficiency purposes, the rapid phase often relies on
bit-level operations, and the modelling of bit-messages is a well-known open problem in
symbolic models. Indeed, to avoid unrealistic attacks due to the too powerful Dolev-Yao
attacker model, symbolic models completely abstract such operations through names and
symbols of functions. This modelling this may thus miss attacks. Providing a framework
that faithfully models bit messages would thus be of great interest for distance-bounding
protocols.

Recently, Chadha et al. [CSV17] proposed a symbolic model that builds on prob-
abilistic commands (e.g. outputs), and could thus model bit-level operations avoiding
the unrealistic attacks. However, even if this is a promising model, it also opens chal-
lenging problems. Indeed, the rapid phase, which relies on bit-level operations, is not
isolated from the rest of the protocol. i.e. it may share data, keys... How to model the
interactions between bit-messages and the standard term algebra remains unclear.

7.2. On verification of distance-bounding protocols
Once these models and security properties were properly defined, we proposed in this

manuscript three approaches to verify them. As a first approach we extended the under-
lying procedure of the Akiss tool to take these new features, i.e. time and locations, into
account, and be able to analyse protocols considering a bounded number of sessions. We
have managed to prove the correctness (soundness and completeness) of the new pro-
cedure. We have implemented it and have managed to analyse some distance-bounding
protocols.

Due to the inherent weakness of the first approach, which only applies for a bounded
number of sessions, we have then proposed reduction results to make easier the verifica-
tion. We have reduced the number of relevant topologies to only two, one for mafia and
terrorist fraud, and one for distance hijacking. In addition, we have proved that, under
few assumptions, there exists a best collusion strategy for the semi-dishonest prover, on
which the analyses can focus on. Thanks to these reductions results we have been able to
leverage existing tools, like Proverif or Tamarin, to perform a large case studies analysis
considering an unbounded number of sessions. It required to encode the reduced topolo-
gies and it has been performed relying on the Proverif tool and its embedded notion
of phases. Up to our knowledge this is the most advanced framework that allows for
distance-bounding protocols analyses: it handles the unboundedness of topologies and
collusion behaviours to provide a fully automated verification.

Finally, we have proved the security of two novel EMV-payment protocols that pre-
vent relay attacks, even considering malicious readers/verifiers. Indeed, a reader may
have incentives to by-pass the proximity check and accept any transaction. In order to
perform this analysis w.r.t. to this strong threat model, we have extended the security
properties and the theoretical result presented in [MSTPTR18]. The causality-based
security property has then been checked relying on the Proverif tool.
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Open problems and future work

Despite the pretty good results obtained when analysing the numerous distance-
bounding protocols, each approach suffers from limitations. Each of them are precisely
discussed at the end of the chapters across the manuscript. Here, we prefer to discuss
two general open problems about symbolic verification of distance-bounding protocols.

First, none of the existing frameworks allow to faithfully model the exclusive-OR op-
erator, even though it is almost always used during the rapid phase of a distance-bounding
protocol. Neither our new procedure implemented on top of Akiss, nor Proverif’s ap-
proaches, nor the Tamarin’s ones proposed by Mauw et al., allow to faithfully model this
operator when verifying protocols. Regarding our new procedure (based on the Akiss
tool), the limitation comes from the model itself. The Akiss procedure has recently
been extended [BDGK17] to handle the exclusive-OR, and we hope that our procedure
could be extended too. Nevertheless, we expect that it will strongly impact the effi-
ciency of the procedure. Regarding the Proverif’s approaches, i.e. ours and the one
developed by Chothia et al., the two models, and our reduction results, are generic
enough to handle such an operator. The limitation comes from the tool, i.e. Proverif.
Indeed, even if it has been extended to handle the exclusive-OR [KT11] operator, the
new procedure has not proved its efficiency in practice. Finally, the Tamarin’s frame-
work [MSTPTR18, MSTPTR19] is certainly the most advanced framework to precisely
model the exclusive-OR operator in distance-bounding protocols. However, this does not
seem to be the panacea neither because of the Tamarin tool. Indeed, even if the Tamarin
tool officially handles the exclusive-OR operator, it lacks efficiency when analysing pro-
tocols involving this operator. For example, we tried to perform our case studies relying
on this tool but we faced up many non-termination issues. The same behaviours seem
to have appeared in [MSTPTR18, MSTPTR19] since some protocol models implement a
weak exclusive-OR symbol to make the analyses possible (as in our Proverif framework).
Much work remains to do be done for modelling the exclusive-OR in automatic symbolic
verification tools.

Finally, assuming that the open problems related to the modelling of protocols in a
probabilistic model have been solved, the automatic verification in such models is another
challenging problem. For example, Chadha et al.’s model [CSV17] completely misses au-
tomation. Again, we do think that existing procedures (especially for a bounded number
of sessions) could be extended but it would strongly impact the efficiency. Proposing an
efficient procedure for such models would be a giant leap for symbolic verification.





Proofs of Chapter 3 A
In this chapter we provide the omitted proofs in Chapter 3.

Completeness of the saturation step
Lemma 3.9. Let exec = (T0; ;; t0)

`1,...,`p����!T (S;�; t) be an execution with input recipes
R1, . . . , Rk forged by b1, . . . , bk and such that each Rj with j 2 {1, . . . , k} is uniform
w.r.t. �. Let K = sat(Kinit(T0)), and g = (H ( B1, . . . , Bn) 2 K be such that u0, the
underlying world of H, is locally closed. Let � be a grounding substitution for g such that
skl(g�) is in normal form, and g and � match with exec and R1, . . . , Rk.

Moreover, in case H is of the form H = ku0(RH , tH), we assume that u0� =
`1, . . . , `q�1 for some q 2 Rcv(p) and RH� is asap w.r.t. b|Rcv(q)| and exec.

Assuming that Bi� 2 H(solved(K)) with a proof tree ⇡i matching with exec and
R1, . . . , Rk for each i 2 {1, . . . , n}, and {⇡1, . . . ,⇡n} is uniform, then we have that H� 2
H(solved(K)) with a proof tree ⇡

0 matching with exec and R1, . . . , Rk, and such that
nodes(⇡0) ✓

S
i2{1,...,n} nodes(⇡i) [ {H�}.

Proof. We prove this result by induction on the sum of the sizes of the proof trees
witnessing that B1�, . . . , Bn� 2 H(solved(K)). If g is solved, then since g 2 K, we
conclude by choosing ⇡0 to be ⇡1, . . . ,⇡n on which we apply Conseq with g and �.

Otherwise, i.e. g is not solved. Let Bj = sel(g) = kuj
(Xj , tj). By hypothesis, we

have that Bj� 2 H(solved(K)) with a proof tree ⇡j matching with exec and R1, . . . , Rk

as input recipes. Therefore, ⇡j is ending with a statement

h = ku0
0
(R0, t0) ( B

0
1, . . . , B

0
m 2 solved(K)

and a substitution �0 grounding for h such that ku0
0
(R0, t0)�0 = kuj

(Xj , tj)� and B
0
i
�
0 2

H(solved(K)) for i 2 {1, . . . ,m} with a proof tree ⇡0
i
(subtree of ⇡j) matching with exec

and R1, . . . , Rk.
Moreover, we have that the sum of the size of the proof tree witnessing that B

0
i
�
0 2

H(solved(K)) for i 2 {1, . . . ,m} is smaller than the size of the proof tree ⇡j . Let H0 =
ku0

0
(R0, t0). We apply the Resolution rule between g and h. Since � ] �0 unifies H0

and kuj
(Xj , tj), there is ! = mgu(H0, kuj

(Xj , tj)) and ⌧ such that � ] �0 = !⌧ . Let g
0

be the resulting statement. We have that:

g
0 = H! ( B1!, . . . , Bj�1!, Bj+1!, . . . , Bn!, B

0
1!, . . . , B

0
m!.
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In order to conclude relying on our induction hypothesis, we distinguish two cases.
Case 1: g0+c is added to the knowledge base by the update function. We conclude rely-
ing on our induction hypothesis considering g

0+c and ⌧ . We have that u0! is locally
closed. We have that skl(g0+c⌧) is in normal form since skl(g�) and skl(h�0) are in
normal form. The recipe occurring in H!⌧ = H� (if any) is asap w.r.t. b|Rcv(q)| and
exec and all the antecedents of g

0+c⌧ are in H(solved(K)) with a proof tree matching
with exec and R1, . . . , Rk. Finally we have that the set made of all the proof trees
{⇡1, . . . ,⇡j�1,⇡j+1, . . . ,⇡n,⇡

0
1, . . . ,⇡

0
m} is uniform. It remains to show that g

0+c and
⌧ match exec and R1, . . . , Rk. To do so we first show that g

0 and ⌧ match exec and
R1, . . . , Rk.

Given a world u, i.e. a sequence of actions possibly followed by a variable, we denote
by |u| the number of actions in the sequence u. By definition of the RES rule and the
form of the statement, we have that :

a) either |uj!| = |uj |, and thus |u0!| = |u0|;

b) or |uj!| > |uj |, and in such a case, we have that u0! = uj! = u
0
0!.

We consider these two cases separately. In the first case, we will rely on the fact that g

and � match with exec and R1, . . . , Rk, whereas in the second case, we will rely on the
fact that h and �0 match with exec and R1, . . . , Rk,

Case a): |u0!| = |u0|. By hypothesis, we have that g and � match with exec and
R1, . . . , Rk, thus we know that there exist recipes R̂1, . . . , R̂k0 such that:

• R̂j({Xi ! ti | 1  i  n} ] �(u0))+ = vj for j 2 {1, . . . , k0};

• R̂j� = Ri for j 2 {1, . . . , k0}; and

• u0� v `1, . . . , `p

where v1, . . . , vk0 are the terms occurring in input in u0.
To establish that g

0 and ⌧ match with exec and R1, . . . , Rk, we consider the recipes
R̂1!, . . . , R̂k0!. Let v1, . . . , vk0 be the terms occurring in input in u0!, and let us denote
B

0
i
= k_(X 0

i
, x

0
i
) for 1  i  m. The only difficult point is to show that:

R̂j!({Xi ! ti! | 1  i  n and i 6= j} ] {X 0
i ! x

0
i! | 1  i  m} ] �(u0!))+ = v

0
j

Let j 2 {1, . . . , k0}. By hypothesis, R̂j({Xi ! ti | 1  i  n} ] �(u0))+ = vj , and
thus, since vj! is in normal form, we have that:

(R̂j{Xj ! tj!})({Xi ! ti! | 1  i  n and i 6= j} ] �(u0!))+ = vj!

By definition of being a statement (invariant applied on h), we have that:

R0({X 0
i ! x

0
i | 1  i  m} ] �(u00))+ = t0
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Applying ! (note that R0! = R0), we deduce that:

R0({X 0
i ! x

0
i! | 1  i  m} ] �(u00!))+ = t0!

Therefore, we have that:

R̂j!({Xi ! ti! | 1  i  n and i 6= j} ] {X 0
i
! x

0
i
! | 1  i  m} ] �(u0!))+

= (R̂j{Xj ! R0})

0

@
{Xi ! ti! 1  i  n and i 6= j}
] {X 0

i
! x

0
i
! | 1  i  m}

] �(u0!)

1

A+

= (R̂j{Xj ! R0{X 0
i
! x

0
i
! | 1  i  m}})

✓
{Xi ! ti! 1  i  n and i 6= j}
] �(u0!)

◆
+

= (R̂j{Xj ! t0!})({Xi ! ti! | 1  i  n and i 6= j} ] �(u0!))+
= (R̂j{Xj ! tj!})({Xi ! ti! | 1  i  n and i 6= j} ] �(u0!))+
= vj! = v

0
j

We have that g
0 and ⌧ match with exec and R1, . . . , Rk.

Case b): u0! = u
0
0!. By hypothesis, we know that h and �

0 match with exec and
R1, . . . , Rk, thus we know that there exist recipes R̂

0
1, . . . , R̂

0
k0 such that:

• R̂
0
j
({X 0

i
! x

0
i
| 1  i  m} ] �(u00))+ = vj for j 2 {1, . . . , k0};

• R̂
0
j
�
0 = Ri for j 2 {1, . . . , k0}; and

• u
0
0�

0 v `1, . . . , `p.

where v1, . . . , vk0 are the terms occurring in input in u
0
0 and B

0
i
= k_(X 0

i
, x

0
i
) for 1  i 

m. To establish that g0 and ⌧ match with exec and R1, . . . , Rk, we consider R̂0
1!, . . . , R̂

0
k0!.

Let v01, . . . , v0k0 be the terms occurring in input in u0!. The only difficult part is to show
that:

R̂j!({Xi ! ti! | 1  i  n and i 6= j} ] {X 0
i ! x

0
i! | 1  i  m} ] �(u0!))+ = v

0
j

By hypothesis, we have that R̂j({X 0
i
! x

0
i
| 1  i  m} ] �(u00))+ = vj , and thus,

since vj! is in normal form, Xi /2 vars(R̂j) for all i 2 {1, . . . , n}, and dom(!)\Y = {Xj},
we have that:

R̂j!({Xi ! ti! | 1  i  n and i 6= j} ] {X 0
i
! x

0
i
! | 1  i  m} ] �(u0!))+

= R̂j({X 0
i
! x

0
i
! | 1  i  m} ] �(u00!))+ = vj! = v

0
j

We have that g
0 and ⌧ match with exec and R1, . . . , Rk.

In both cases we have that g
0 and ⌧ match with exec and R1, . . . , Rk. Moreover, be-

cause ⇡01, . . . ,⇡0m are subtrees of ⇡j we have that {⇡1, . . . ,⇡j�1,⇡j+1, . . . ,⇡n,⇡
0
1, . . . ,⇡

0
m}

is uniform.
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Claim. We have that g0+c and ⌧ match with exec and R1, . . . , Rk.

Proof. This claim is proved by induction on the number p of application of the rule
Remove. In case p = 0, we have that g

0 = g
0+c and the result is immediate. Now,

we assume that the body of g
0 contains two predicates kw(X,u) and kw(Y, u). Since

{⇡1, . . . ,⇡j�1,⇡j+1, . . . ,⇡n,⇡
0
1, . . . ,⇡

0
m} is uniform we know that X⌧ = Y ⌧ and thus we

can replace X by Y in a recipe without changing the term that it deduced. Hence we
have that the resulting statement after the application of the Remove rule still match
with exec and R1, . . . , Rk and we conclude relying on the induction hypothesis.

Our induction hypothesis applies and we obtain that H!⌧ 2 H(solved(K)) with a
proof tree ⇡0 matching exec and R1, . . . , Rk and such that:

nodes(⇡0) ✓
S

i2{1,...,n}\{j} nodes(⇡i) [
S

i2{1,...,m} nodes(⇡
0
i
) [ {H!⌧}

✓
S

i2{1,...,n} nodes(⇡i) [ {H�}

because for all i 2 {1, . . . ,m} we have that ⇡0
i
is a subtree of ⇡j . This concludes the first

case of this proof.

Case 2: g0+c is not added to the knowledge base by the update function.
Let H = ku0(RH , tH). In such a case, we know that g

0+c is a solved deduction state-
ment, and since such a statement has been discarded, it means that tH! is a variable x.
Let g

0+c = ku0!(RH!, x) ( k_(Z1, z1), . . . , k_(Zq, zq). First, following the same reason-
ing as previously we have that g0+c match with exec and R1, . . . , Rk. We note R̂1, . . . , R̂k

the symbolic recipes that are used to establish this fact. Moreover, by definition of being
a statement, we know that RH!({Zi ! zi | 1  i  q} ] �(u0!))+ = x.

Either, the variable x has been introduced by {Zi ! zi} for some i such that zi = x,
and Zi occurring in RH!. In such a case, we have that Zi is a strict subterm of RH!

since RH! is not a variable, and therefore Zi⌧ <exec RH!⌧ . Otherwise, x is introduced
by a frame element w ! t with x 2 vars(t), and w 2 vars(RH!). Therefore, we have
that w exec RH!⌧ . Because u0! is locally closed, we know that x occurs in an input in
u0! (the action `i = (ai, in(vi))), and we have that Ri <exec w.

Claim. There exists i0 2 {1, . . . , q} such that x = zi0 and Zi0⌧ exec R̂i!⌧ = Ri <exec

w exec RH!⌧ .

Proof. We prove this claim by induction on i. If `i is the first input in u0!. We have
that R̂i!⌧ = Ri and since Ri only uses frame elements occurring before the first input,
this is the same for R̂i and thus �(u0!) will not introduce any variable. Therefore x is
introduced by {Zi0 ! zi0} for some i0 such that zi0 = x and Zi0 occurs in R̂i and thus
Zi0⌧ exec R̂i!⌧ = Ri <exec w exec RH!⌧ .

Otherwise, if `i is not the first input then either x has been introduced by {Zi0 ! zi0}
and the same reasoning applies, or it is introduced by a frame element w0 exec R̂i. Since
u0! is locally closed then x occurs in another input j < i and Rj = R̂j⌧ <

in
exec w

0.
Applying our induction on j < i we obtain there exists i0 such zi0 = x and Zi0 exec R̂j⌧

and we conclude by transitivity of exec.
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Therefore, in both cases, we have that there exists i0 2 {1, . . . , q} such that x = zi0

and Zi0⌧ <exec RH!⌧ . Thanks to Theorem 3.3, we know that Zi0⌧ is a recipe for x⌧ .
If RH!⌧ 2 W we immediately contradict that RH!⌧ = RH� is asap w.r.t. b|Rcv(q)| and
exec. Otherwise, applying Lemma 3.6 we obtain that Zi0⌧ <

b|Rcv(q)|
exec RH!⌧ and this leads

to a contradiction with the fact that RH!⌧ = RH� is supposed to be asap w.r.t. b|Rcv(q)|
and exec. This conclude the whole proof.

Executions with asap recipes
Lemma 3.12. Let exec = K0

`1,...,`n����!T0 (S;�; t) be an execution. We may assume
w.l.o.g. that exec involves input recipes R1, . . . , Rk forged by agents b1, . . . , bk and Ri is
asap w.r.t. bi and exec for each i 2 {1, . . . , k}.

Proof. We consider that the execution exec is done with input recipes R1, . . . , Rk, forged
by agents b1, . . . , bk. We assume that for all i 2 {1, . . . , k}:

• if bi 2 M0 then there is no recipe R that can fill the input (i.e. satisfying the domain
restrictions and the timing constraints of the input) and such that R�+ = Ri�+
and R <

bi
exec Ri;

• if bi /2 M0 then there is no recipe R that can fill the input and such that R�+ =
Ri�+ and R <exec Ri.

We prove that R1, . . . , Rk are asap recipes w.r.t. b1, . . . , bk and exec by induction on
the length n of the execution.
Base case: n = 0. In such a case, the result is immediate.
Induction step. In such a case, we have

exec = (T ; ;; t0)
`1,...,`n�1������!T0 (S0;�0; t0)

`n�!T0 (S;�; t)

together with recipes R1, . . . , Rk forged by b1, . . . , bk that satisfy our assumption. We
note exec0 the sub execution from (T ; ;; t0) to (S0;�0; t0). We distinguish two cases
depending on the action `n.
Case `n is not an input. Thanks to our induction hypothesis, we know that Ri (1  i 
k) is asap w.r.t. bi and exec0. Then, we complete this execution exec0 performing the
action `n, and we obtain exec = (T ; ;; t0)

`1,...,`n����!T0 (S;�; t) with input recipes R1, . . . , Rk

such that Ri is asap w.r.t. bi and exec0 for any i 2 {1, . . . , k}. It remains to show that
R1, . . . , Rk are still asap when considering the full execution exec. Let us distinguish two
cases:

If Ri 2 W: Since the relation <exec0 induced by exec0 is the same as the one induced
by exec on recipes built using dom(�0), we have that Ri is still asap w.r.t. bi and exec.

If Ri /2 W: for all recipe R such that R�+ = Ri�+ we have that if vars(R) ✓ dom(�0)
then Ri bi

exec0
R and thus Ri bi

exec R. Otherwise, we have that there exists a unique
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w 2 vars(R) \ (dom(�) \ dom(�0)) and time(w) = t
0. Such a w corresponds to the

handle bound by `n when `n is an output action. For any w0 2 vars(Ri), we have that:
time(w0) + DistT0(agent(w), bi)  time(w), and thus time(w0) + DistT0(agent(w), bi) 
time(w) + DistT0(agent(w0), bi). To conclude it is sufficient to notice that either it is a
strict inequality and thus we immediately have that w0

<
bi
exec w or we have an equality

but since w0 has been outputted before w in exec we have that w0
<

bi
exec w too. Finally we

have that such a recipe R which contains w can not be smaller than Ri, i.e. R ⌅bi
exec Ri.

Case `n is an input, i.e. `n = (a, inz(u)). Thanks to our induction hypothesis, we know
that Ri (1  i  k � 1) is asap w.r.t. bi and exec0. Then, we complete this execution
exec0 performing the action `n = (a, inz(u)) with recipe Rk forged by bk, and we obtain

exec = (T ; ;; t0)
`1,...,`n����!T0 (S;�; t)

with input recipes R1, . . . , Rk�1, Rk. First because � = �0 we have that <exec0 and <
a
exec0

for any a 2 A, the relations induced by exec0, are the same as the ones induced by exec.
Therefore we have that Ri (1  i  k � 1) is still asap w.r.t. bi and exec. To conclude,
it remains to establish that Rk is asap w.r.t. bk and exec.

Following the semantics of the IN rule, we know that there exists tb 2 R+ such that
tb  t� DistT0(bk, a) and

• if bk 2 A0 r M0 then Rk 2 W ] ⌃0 ] R+. In addition, if Rk = w then w 2
dom(b�0c tb

bk
);

• if bk 2 M0 then for all w 2 vars(Rk), there exists c 2 A0 such that w 2
dom(b�0c tb�DistT0 (c,bk)

c
).

Let us assume that Rk is not asap w.r.t. bk and exec.

• Case bk 2 M0. We have that Rk /2 ⌃0 [R+ and there exists R0
k

such that R0
k
�+ =

Rk�+ and either R0
k
<exec Rk or R0

k
<

bk
exec Rk. Applying Lemma 3.6 we obtain that

in both cases R
0
k
<

bk
exec Rk and by consequence we have that multiW(R0

k
) bk

exec

multiW(Rk). By definition of the multiset order, we deduce that for all w0 2
vars(R0

k
), there exists w 2 vars(Rk) such that w0 bk

exec w. By definition of the
order over frame variables we have:

time(w0) + DistT0(agent(w
0), bk)  time(w) + DistT0(agent(w), bk).

Since we have that w 2 dom(b�0c tb�DistT0 (agent(w),bk)
agent(w) ), we know that time(w) 

tb�DistT0(agent(w), bk). Therefore, we have that for all w0 2 vars(R0
k
), there exists

w 2 vars(Rk) such that:

time(w0) + DistT0(agent(w0), bk)  tb � DistT0(agent(w), bk)
+DistT0(agent(w), bk)

) time(w0)  tb � DistT0(agent(w0), bk)

and hence the IN rule can be executed using R
0
k

forged by bk at time tb. This
contradicts the assumption on Rk.
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• Case bk 2 A0 rM0. In that case, Rk 2 W [R+ and since Rk is not asap, we know
that there exists R

0
k
<exec Rk such that R

0
k
�0+ = Rk�0+. We consider the chain

R
0
k
<exec . . . <exec Rk (each step corresponding to a step of <in

exec or <
sub
exec under a

context) witnessing the fact that R0
k
<exec Rk. Let w0 2 W be the smallest variable

w.r.t. <
in
exec such that w0

<
in
exec . . .w

00
<

in
exec w. In case such a w0 does not exist, we

consider that w0 = w.
We show, by induction on the length l of w0

<
in
exec . . .w00

<
in
exec w that if w 2

dom(b�0c t1
b1
) for some b1 and t1 then w0 2 dom(b�0c tb�DistT0 (b2,b1)

b2
for some b2.

Indeed, if l = 0 then choosing b2 = b1, we immediately conclude. Otherwise,
since w is outputted at time t1 (at least) by b1 then the input recipe w00 has
been built by some agent b

00 at time t
00
b

 t1 � DistT0(b00, b1). We have that
w00 2 dom(b�0c t1�DistT0 (b

00
,b1)

b00 ). We apply the induction hypothesis using t1 �
DistT0(b00, b1), w00 and b

00 to obtain that w0 2 dom(b�0c t1�DistT0 (b
00
,b1)�DistT0 (b2,b

00)
b2

)

for some b2. Therefore we have that w0 2 dom(b�0c t1�DistT0 (b2,b1)
b2

).

Applying this property to w0
<

in
exec . . .w00

<
in
exec w, tb and bk, we obtain that w0 2

dom(b�0c tb�DistT0 (b
0
,bk)

b0 ) for some b
0. Therefore, because the message u is received

by the agent a at time t
0 and u is forged by bk at time tb, we have that:

tb  t
0 � DistT0(bk, a)

) tb � DistT0(b0, bk)  t
0 � (DistT0(bk, a) + DistT0(b0, bk))

) tb � DistT0(b0, bk)  t
0 � DistT0(b0, a)

If R0
k
= w0 then this last inequality give us that the rule IN can be triggered with

the recipe w0 considering the output is performed by b
0 at time tb � DistT0(b0, bk).

This contradicts that Rk is asap w.r.t. bk and exec.
Otherwise, we have that there exists R

00
/2 W such that R

0
k
<exec R

00
<

in
exec w0.

This input received by b
0 (the same agent as the one who sent w0) has been built

by some b
00 at time t

00
b
. Since R

00, built by b
00, is received by b

0 before outputting
w0 (available in b

0 at time tb � DistT0(b0, bk)), we have that t
00
b
+ DistT0(b00, b0) 

tb � DistT0(b0, bk). Moreover, we have that for all w 2 vars(R00), there exists c 2
A0 such that w 2 dom(b�0c t

00
b
�DistT0 (c,b

00)
c

). Thanks to Lemma 3.6 we have that
R

0
k

<
b
00
exec R

00 and thus multiW(R0
k
) b

00
exec multiW(R00). Therefore, for all wk 2

vars(R0
k
), there exists w00 2 vars(R00) such that wk b

00
exec w00. We thus have that

time(wk) + DistT0(agent(wk), b00)  time(w00) + DistT0(agent(w00), b00) and thus wk 2
dom(b�0c t

00
b
�DistT0 (agent(wk),b00)

agent(wk)
) because time(w00)  t

00
b
� DistT0(agent(w00), b00).

This allows us to obtain that the rule IN can be triggered with recipe R
0
k

/2 W
considering the message is built by b

00 and time t
00
b
. Indeed, we have that:

tb  t
0 � DistT0(bk, a)

) tb � DistT0(bk, b0)  t
0 � DistT0(b0, a) as before

) t
00
b
+ DistT0(b00, b0)  t

0 � DistT0(b0, a)
) t

00
b

 t
0 � DistT0(b00, a).
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This contradicts the assumption on Rk because R
0
k
<exec Rk.

In conclusion, in all cases we obtain a contradiction with the initial assumption.
Therefore we conclude that Rk is asap w.r.t. bk and exec.



Proofs of Chapter 4 B
In this chapter we provide the omitted proofs in Chapter 4.

B.1. Proof of Proposition 4.2
Proposition 4.2. Let T be a topology, and K0

tr1...trn
T Kn be an execution with n � 2.

We have that there exists a bijection ' : {1, . . . , n} ! {1, . . . , n} such that:

• K0
tr

0
1...tr

0
n

T Kn with tri = tr0
'(i) for all i 2 {1, . . . , n}; and

• for all j such that '(1) < j < '(n), we have that tr0
'(n) ,!

⇤ tr0
j
,!⇤ tr0

'(1).

Proof. We split the proof in two parts: first we prove that there exists a bijection '1

cleaning the trace between tr1 and trn moving actions independent from tr1 before it.
Then we prove that there exists a bijection '2 cleaning the trace moving actions from
which trn does not depend on after it. Considering ' = '2 � '1 we will be able to
conclude.

Claim. Let K0
tr1...trn

T Kn be an execution with n � 1. There exists a bijection '1 :
{1, . . . , n} ! {1, . . . , n} such that:

• K0
tr

0
1...tr

0
n

T Kn with tri = tr0
'1(i)

for all i 2 {1, . . . , n}; and

• for all j > '1(1), tr0j ,!⇤ tr0
'1(1)

.

Proof. We show this claim by induction on the length of the execution. If n = 1 then the
results holds considering '1 = id and tr01 = tr1. Otherwise, we have that K0

tr1...trn
T

Kn

trn+1

T Kn+1, and by induction hypothesis we have that there exists a bijection
' : {1, . . . , n} ! {1, . . . , n} such that:

• K0
tr

0
1...tr

0
n

T Kn with tri = tr0
'(i) for all i 2 {1, . . . , n}; and

• for all j such that '(1) < j  n, we have tr0
j
,!⇤ tr0

'(1).

165



B

166 B. Proofs of Chapter 4

If trn+1 ,!⇤ tr0
'(1)(= tr1) then we consider the bijection '1 = ' [ {n + 1 7! n + 1}

and this allows us to conclude. Otherwise, we have that trn+1 6,!⇤ tr0
'(1)(= tr1) and, by

induction hypothesis, we have trn+1 6,!⇤ tr0
j

for any '(1) < j  n. Repeatedly applying
Lemma 4.6 we obtain that

K0

tr
0
1...trn+1tr'(1)...tr

0
n

T Kn+1.

Considering the bijection '1 defined as follows:

'1(i) =

8
><

>:

'(i) if '(i) < '(1)

'(i) + 1 if '(i) � '(1)

'(1) if i = n+ 1

we prove the claim.

Claim. Let K0
tr1...trn

T Kn be an execution with n � 1. There exists a bijection '2 :
{1, . . . , n} ! {1, . . . , n} such that:

• K0
tr

0
1...tr

0
n

T Kn with tri = tr0
'2(i)

for all i 2 {1, . . . , n}; and

• for all j < '2(n), we have that tr0
'2(n)

,!⇤ tr0
j
.

Proof. Similarly to the proof done for the previous claim, we first apply the induction
hypothesis to K1

tr2...trn+1

T Kn+1 and we obtain ' : {2, . . . , n} ! {2, . . . , n} (a shift
of 1 has been applied to ease the reasoning). If tr1 ,!⇤ tr0

'2(n)
(= trn) then we conclude

considering '2 = ' [ {1 7! 1}. Otherwise, by repeatedly applying Lemma 4.6, we move
tr1 at the right place in the trace, i.e. just after tr0

'2(n)
.

We are now able to prove the corollary combining these two claims. First we apply
Claim 1 considering the trace K0

tr1...trn�1

T Kn�1. We obtain the existence of '1 :
{1, . . . , n� 1} ! {1, . . . , n� 1} and a new execution

K0

tr
0
1...tr

0
n�1

T Kn�1
trn

T Kn

such that:

• tri = tr0
'1(i)

for all i 2 {1, . . . , n� 1}; and

• for all j such that '1(1) < j < n, we have that tr0
j
,!⇤ tr0

'1(1)
(= tr1).

For sake of uniformity, let tr0n = trn, and we extend '1 on {1, . . . , n} as follows:
'1(n) = n.
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Then we apply Claim 2 on the resulting execution starting at tr0
'1(1)+1 to obtain that

there exists a bijection '2 : {'1(1) + 1, . . . , n} ! {'1(1) + 1, . . . , n} and an execution

K0

tr
0
1...tr

0
'1(1)

·tr00
'1(1)+1···tr

00
n

T Kn

such that:

• tr0
i
= tr00

'2(i)
for all i 2 {'1(1) + 1, . . . , n}; and

• for all j such that '1(1) + 1  j < '2(n), we have that trn = tr0n = tr00
'2(n)

,!⇤ tr00
j
.

For sake of uniformity, let tr001 . . . tr00'(1) = tr01 . . . tr
0
'(1), and we extend '2 on {1, . . . , n}

as follows: '2(i) = i for all i 2 {1, . . . ,'(1)}.
We now show that the bijection ' = '2 � '1 satisfies the requirements, i.e.:

1. tri = tr00
'(i) for all i 2 {1, . . . , n};

2. for all j such that '(1) < j < '(n), we have that tr00
'(n) ,!

⇤ tr00
j
,!⇤ tr00

'(1).

First, we note that:

• '(n) = '2(n); and

• '(i) = '1(i) when '1(i)  '1(1).

Now, we establish that the 2 requirements are satisfied:

1. First, we have that trn = tr0n = tr00
'2(n)

= tr00
'(n). Otherwise, considering i 2

{1, . . . , n� 1}, we have that tri = tr0
'1(i)

. Now, we distinguish two cases:

• '1(i)  '1(1): we have that tr00
'1(i)

= tr0
'1(i)

, and thus tri = tr00
'1(i)

= tr00
'(i).

• '1(i) > '1(1): we have that tr0
'1(i)

= tr00
'2('1(i))

= tr00
'(i), and thus tri = tr00

'(i).

2. We have shown that:

• for all j such that '1(1) < j < n, we have that tr0
j
,!⇤ tr0

'1(1)
= tr00

'1(1)
, and

thus for all j such that '1(1) < j < '2(n), we have that tr00
j
,!⇤ tr0

'1(1)
= tr00

'(1)

since '1(1) = '(1) and

{tr0
'1(1)+1, . . . , tr

0
n�1} ◆ {tr00

'1(1)+1, . . . , tr
00
'2(n)�1}

• for all j such that '1(1) + 1  j < '2(n)(= '(n)), we have that

trn = tr0n = tr00
'2(n)

,!⇤ tr00j .

This concludes the proof.
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B.2. Proof of Theorem 4.2
Given a configuration K = (P;�; t) (resp. K = (P;�)), we note �(K) its associated

frame, i.e. �(K) = �.

Theorem 4.2. Let I0 be a template, (V, P) a protocol, and t0 2 R+ a threshold. If (V, P)
admits a distance hijacking attack w.r.t. t0-proximity, then there exists a valid initial
configuration K0 for (V, P) w.r.t. T t0

DH
and �T t0

DH

I0 such that K0 = ({bVend(v0, p0)c0v0} ]

P0;�
T t0
DH

I0 ; 0) and

({bVend(v0, p0)c0v0} ] P0;�
T t0
DH

I0 ; 0)
tr�!T t0

DH

(bend(v0, p0)c tvv0 ] P 0;�; t).

Proof. Let T = (A0,M0, Loc, v0, p0) 2 CDH and K0 = (P0;�T
I0 ; 0) be a valid initial

configuration for (V, P) w.r.t. T and �T
I0 such that

K0
tr�!T (bend(v0, p0)c tvv0 [ P;�; t) = Kend

where tr is a sequence of annotated labels.

Step 1: We first remove reset commands and replace guarded inputs occurring in pro-
cesses other than Vend(v0, p0) by simple inputs. Denoting K?

0 (resp. K?

end
), the counterpart

of K0 (resp. Kend) in which reset commands have been removed and guarded inputs have
been replaced by simple inputs but the occurrences occurring in Vend(v0, p0), following
the same trace as before, we have that:

K?

0
tr1.....trn�����!T K?

end
.

Indeed, all the required conditions to trigger a simple input will be satisfied since a
guarded input is like a simple input with a constraint regarding time. We denote K?

i

with i 2 {0, . . . , n} the intermediate configurations, and thus we have that K?

end
= K?

n.

Step 2: By definition of the untimed semantics we have that:

eK?

0

ftr1
T eK?

1

ftr2
T . . .

ftrn
T eK?

end
= eK?

n

where eK?

end
, eK?

i
, and etri are the untimed counterparts of K?

end
, K?

i
and tri.

Due to the specific shape of the process Vend(v0, p0), we know that tr1. . . . .trn contains
subsequences tri0 . . . . .trj0 such that tri0 corresponds to a reset action and trj0 to a guarded
input. Note that these two actions tri0 and trj0 are performed by v0. Moreover we
know that for all index i in between i0 and j0 we have that tri is not a guarded input.
Applying Proposition 4.2 to such a subsequence we obtain that there exists a bijection
' : {i0, . . . , j0} ! {i0, . . . , j0} such that:

• eK?

i0�1

tr
0
i0
.....tr

0
j0

T eK?

j0
with etri = tr0

'(i) for all i 2 {i0, . . . , j0}; and
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• for all j such that '(i0) < j < '(j0), we have that tr0
'(j0)

,!⇤ tr0
j
,!⇤ tr0

'(i0)
.

We are now showing that any agent involved in an action between tr0
'(i0)

and tr0
'(j0)

in the new resulting trace is actually in the vicinity of v0, i.e. an agent in the set:

Close(v0)
def
= {a 2 A0 | DistT (v0, a) < t0}.

Let j be such that '(i0) < j < '(j0). Since we have that tr0
'(j0)

,!⇤ tr0
j
,!⇤ tr0

'(i0)
,

we deduce that etrj0 ,!⇤ etr'�1(j) ,!⇤ etri0 and thus trj0 ,!⇤ tr'�1(j) ,!⇤ tri0 . Denoting
tri = (ai,↵i, si, ti, ri) for all i 2 {1, . . . , n}, and applying Lemma 4.5 twice, we obtain
that:

tj0 � t'�1(j) + DistT (a'�1(j), v0) and t'�1(j) � ti0 + DistT (v0, a'�1(j)).

Therefore, we have that tj0 � ti0 � 2Dist(v0, a'�1(j)), and exploiting the shape of
Vend(v0, p0) we deduce that 2 ⇥ t0 > tj0 � ti0 � 2Dist(v0, a'�1(j)). In summary we
have that all the actions executed between tr0

'(i0)
and tr0

'(j0)
are executed by agents

a 2 Close(v0).
Similarly, for any index j such that '(i0) < j < '(j0) and ↵'�1(j) = in(u) we

have that either b 2 Close(v0) or vars(R) ✓ �( eK?

i0�1) where r'�1(j) = (b, tb, R). Indeed,
assume that there exists w 2 vars(R)\dom(�( eK?

i0�1)). We note i the index corresponding
to this output and we have that '(i0) < i < '(j0). Thus, we have that:

tr0
'(j0)

,!⇤ tr0j ,!d tr0i ,!⇤ tr0
'(i0)

.

Lemma 4.5 and the definition of ,!d give us the following equations:

• tj0 � t'�1(j) � DistT (a'�1(j), v0),

• t'�1(j) � tb � DistT (b, a'�1(j)),

• tb � t'�1(i) � DistT (a'�1(i), b), and

• t'�1(i) � ti0 � DistT (v0, a'�1(i)).

Relying on the triangle inequality, this leads to 2 ⇥ t0 > tj0 � ti0 � 2DistT (v0, b), and
this allows us to deduce that b 2 Close(v0).

Step 3: We consider the topology T 0 = (A0,M0, Loc0, v0, p0) such that Loc0(v0) =
Loc(v0), and Loc0(p0) is such that DistT 0(v0, p0) = t0 and:

Loc0(a) =
⇢

Loc0(v0) if a 2 Close(v0)
Loc0(p0) otherwise.

In this topology, the agents far away from v0 are moved to p0, and agents in the neigh-
bourhood of v0 are moved to v0. We denote etri = tr0

i
for i 2 {1, . . . , i0 � 1, j0 +1, . . . , n},

i.e. those not affected by Step 2. In this topology T 0, we only have two locations, and
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we have that eK?

0

tr
0
1.....tr

0
n

T 0 eK?

end
since the locations of the agents are no longer relevant

in the untimed semantics.

Step 4: We now show that we can come back to a timed execution, i.e. one executable in
the timed semantics by induction on the number of guarded inputs in the trace. Given a
configuration cK0 such that untimed(cK0) = eK?

0, we show that there exists a configuration
cKn such that untimed(cKn) = eK?

n = eK?

end
. To show this result, we split our execution

trace eK?

0

tr
0
1.....tr

0
n

T 0 eK?
n on several blocks of actions: a block is either a trace with no

guarded input, or a sequence of actions starting with a reset and ending at the next
occurrence of a guarded input. Note that the block of the first kind can easily be lifted
to the timed semantics. Regarding the block of the second kind, we show that the lifting
is possible thanks to the properties established at Step 2.

To conclude this step, we now show how to exploit properties established at Step 2
to lift a block starting with a reset instruction and ending with a guarded input.

Let eK?
reset

tr
0
i0
.....tr

0
j0

T 0 eK?
in be such a block, and let bK be such that untimed( bK) =

eK?
reset, and let bt the global time of configuration bK. We have to show that there exists dKin

such that bK
dtri0 .....dtrj0������!T 0 dKin, with tr0

i
the untimed counterpart of ctri and untimed(dKin) =

eK?
in. We start by applying the rule TIM with the delay � equals to 2⇥ t0. Let cK+ be the

resulting configuration. Then we have to show that the sequence of actions tr0
i0
. . . . .tr0

j0

can be executed without introducing any delay. Moreover, we show that the resulting
configuration dKin is such that untimed(dKin) = eK?

in. Actually, the correspondence between
timed and untimed configurations is maintained along the trace. The only difficult part
is when the underlying action is an input. We know that this input is performed by
a 2 Close(v0). Let in?(u) be an input occurring in the block and let �0 the current
frame in the untimed semantics when this action occurs and b� its corresponding frame
in the timed trace. By definition of the untimed semantics, we know that there exists a
recipe R such that R�0# = u. Thus, we know that Rb�# = u. To conclude, it remains to
show that the timing constraints are satisfied. We distinguish two cases:

• The input has been forged by an agent b 2 Close(v0). Any w used in the recipe R

is either in dom(�( eK?
reset)) or outputted after tr0

i0
by an agent located at the same

place as v0. In both cases, since the global time has elapsed of 2t0 between bK and
cK+, we know that all these w will be available at time bt + 2t0 for b. Since a and
b are located at the same place, we also have that this input can be done at time
bt+ 2t0.

• The input has been forged by an agent b 62 Close(v0). In such a case, we know
that vars(R) ✓ dom(�( eK?

reset)), and thus thanks to the delay of 2t0 that has been
applied between bK and cK+, we know that the input can be received at time bt+2t0.
Indeed, b can forge the message at time bt+ t0 and thus it can be received at time
bt+ 2t0.

Note that, regarding the guarded input, the guard is trivially satisfied since no time



B.2. Proof of Theorem 4.2

B

171

has elapsed since the reset has been performed. In summary we have:

cK0
ctr1.....ctrn�����!T 0 cKn

with eK?
n the untimed counterpart of cKn and thus, we have that:

cKn = (bend(v0, p0)c
btv
v0

[ bP; c�n; btn) for some bP, c�n, btv and btn.

Step 5: In order to finish the proof, it remains to reduce the topology T 0 to the topology
T t0
DH

= (ADH,MDH, LocDH, v0, p0). Let us consider the renaming:

⇢(a) =

8
<

:

v0 if a 2 Close(v0)
p0 if a /2 Close(v0) and a 2 M0

e0 if a /2 Close(v0) and a 62 M0.

Since LocDH(⇢(a)) = Loc0(a) for any a 2 A0, and ⇢(a) 2 MDH if, and only if a 2 M0,
thanks to Lemma 4.4, we have that:

cK0⇢
ctr0⇢.....ctrn⇢�������!T t0

DH

cKn⇢.

We can assume w.l.o.g. that cK0 has global time 0, and only contain frame elements at
time 0. Let �0 = �(cK0). Thus, to conclude, it remains to show that the frame associated
to cK0⇢, i.e. �(cK0⇢), is the expected one. Thus, we have to establish that:

• img(b�(cK0⇢)c
0

v0
) = img(b�(cK0⇢)c

0

e0
) = ;, and

• img(b�(cK0⇢)c
0

p0
) = Knows(I0, p0, {v0, p0, e0}).

Relying on the fact that any agent a such that ⇢(a) = v0 is honest, we have that:

img(b�(cK0⇢)c
0

v0
) = img(b�0⇢c0v0)

=
S

{a2A0 | ⇢(a)=v0} img(b�0c0a)⇢
=

S
{a2A0 | ⇢(a)=v0} ;

= ;

Actually, the same reasoning applies regarding e0. Then, we have that:

img(b�(cK0⇢)c
0

p0
) =

S
{a2A0 | ⇢(a)=p0} img(b�0c0a)⇢

=
S

{a2A0 | ⇢(a)=p0} Knows(I0, a,A0)⇢

=
S

{a2A0 | ⇢(a)=p0} Knows(I0, ⇢(a), ⇢(A0))

=
S

{a2A0 | ⇢(a)=p0} Knows(I0, p0, {p0, v0, e0})

This allows us to conclude.





Proofs of Chapter 6 C
In this chapter we provide the proof of the second direction of Theorem 6.1 presented

in Chapter 6.

Proposition 6.2. Let Pdb be protocol and S a set of valid initial configurations. If Pdb

is causality-based secure w.r.t. S then Pdb is DB-secure w.r.t. S.

Proof. We assume that Pdb is not DB-secure, and thus there exist a valid initial config-
uration K0 2 S and an execution exec such that:

exec = K0
tr1...trn.(b0,claim(b1,b2,t01,t

0
2),s,t,;)���������������������!Loc Kn+1

with b1 /2 M and b2 /2 M and either:

1. there is no index k  n such that trk = (ak, check(t01, t
0
2, t

0
3), sk, tk, ;); or

2. for any t with t
0
1  t  t

0
2, we have that:

t
0
2 � t

0
1 < Dist(Loc(b1, t01), Loc(b2, t)) + Dist(Loc(b2, t), Loc(b1, t02))

Below, we note tri = (ai,↵i, si, ti, ri) for i 2 {1, . . . , n}. First, we apply Lemma 6.2.
Therefore, we have that:

exec0 = K0
tr

0
1...tr

0
n.(b0,claim(b1,b2,t01�,t

0
2�),s,;) K0

n+1

where K0
n+1 = Kn+1� and for any i 2 {1, . . . , n+ 1}, we have that:

tr0i =

8
><

>:

(ai, timestamp(ti�), si, ;) if ↵i = gettime

(ai,↵i�, si, (bi, Ri�)) if ri = (bi, tbi , Ri)

(ai,↵i�, si, ri�) otherwise

where � = �spe � ��1
time

assuming that �spe is the function used to transform K0 into K0

and �time is the one associated to the execution exec.
We assume by contradiction that Pdb is causality-based secure, thus we know that

there exist i0, j0, k, k
0  n with i0  k

0  j0, and u 2 T (⌃c,N [ ⌃+
0 ) such that:

173
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• ↵k� = check(t01�, t
0
2�, u�);

• (ai0 ,↵i�) = (b1, timestamp(t01�));

• (aj0 ,↵j�) = (b1, timestamp(t02�)); and

• ak0 = b2.

By definition of exec0, we have that trk = (ak, check(t01, t
0
2, u), sk, tk, ;) for some time

tk 2 R+, and this leads to a contradiction with item 1). Thus, we can assume from now
that the condition stated in item 2) holds.

Now, we apply Proposition 6.3 to the sub-execution K0
i0�1

tr
0
i0
...tr

0
j0 K0

j0
of exec0, and

we obtain that there exists a bijection '↵ : {i0, . . . , j0} ! {i0, . . . , j0} such that:

• tr0
i
= tr00

'↵(i)
for all i 2 {i0, . . . , j0};

• for all j such that '↵(i0) < j < '↵(j0), we have that tr00
'↵(j0)

,!⇤ tr00
j
,!⇤ tr00

'↵(i0)
;

• for all j1, j2 such that '↵(i0)  j1 < j2  '↵(j0), we have that '�1
↵ (j1) < '

�1
↵ (j2);

and

• K0
i0�1

tr
00
i0
...tr

00
j0 K0

j0
.

We have thus an execution exec00 such that:

exec00 = K0

tr
0
1...tr

0
i0�1

K0
i0�1

tr
00
i0
...tr

00
j0 K0

j0

tr
0
j0+1...tr

0
n.(b0,claim(b1,b2,t01�,t

0
2�),s,;)

K0
n+1.

For sake of simplicity, for i < i0 and i > j0 we define tr00
i
= tr0

i
. For all i 2 {1, . . . , n}

we define a
00
i

the name of the agent executing tr00
i
. If i 2 IN(tr001 . . . tr

00
n), we also define

R
00
i

(resp. b
00
i
) the recipe (resp. agent name) occurring in tr00

i
. We have that a

00
'↵(i)

= ai,
R

00
'↵(i)

= Ri� and b
00
'↵(i)

= bi.

In the following we aim at re-timing the trace exec00 without changing the amount
of time that elapses between the two timestamps instructions. Once this is done, the
dependencies

tr00
'↵(j0)

,!⇤ tr00j ,!⇤ tr00
'↵(i0)

for any j such that '↵(i0) < j < '↵(j0) together with the fact that there exists such a
j such that aj = b2 (since Pdb is assumed to be causality-based secure) will lead us to
a contradiction thanks to Lemma 6.3. The remaining of the proof is there to formalise
this idea.

We start by defining a function ' and a mobility plan Loc0 such that ' satisfies
CLoc0
exec00 . Let A0 be the set of all the agents involved in the execution exec00 (i.e. executing

an action or forging a message used to fill an input). We denote �(t) the maximal distance
w.r.t. Loc between two agents in A0 at time t, i.e.

�(t) = max{Dist(Loc(a, t), Loc(b, t)) | a, b 2 A0}.
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We define ' as follows for i 2 {1, . . . , n+ 1}:

'(zi) =

8
>>>>>><

>>>>>>:

2⇥ �(ti0)⇥#IN(tr001 . . . tr
00
i
) + #TS(tr001 . . . tr

00
i�1) if i < '↵(i0)

t
'
�1
↵ (i) +� if '↵(i0)  i  '↵(j0)

'(z'↵(j0)) + 1 + 2⇥ �(tj0)⇥#IN(tr00
'↵(j0)+1 . . . tr

00
i
)

if i > '↵(j0)
+#TS(tr00

'↵(j0)+1 . . . tr
00
i�1)

with � = '(z'↵(i0)�1) + 2⇥ �(ti0) + 1.

In addition, for all i 2 IN(tr001 . . . tr
00
n), if b00

i
2 A\M, we define '(zb

i
) = '(zorig(j)) with

j such that R
00
i
= wj . Otherwise, we note �00

'↵(i0)�1 the current frame when executing
the action tr

00
'↵(i0)

in exec00 and we define '(zb
i
) as follows:

'(zbi ) =

8
>>>>>><

>>>>>>:

'(zi)� �(ti0) if i < '↵(i0)

'(z'↵(i0))� �(ti0) if '↵(i0)  i  '↵(j0) and vars(R00
i
) ✓ dom(�00

'↵(i0)�1)

t
b

'
�1
↵ (i)

+� if '↵(i0)  i  '↵(j0) and vars(R00
i
) 6✓ dom(�00

'↵(i0)�1)

'(zi)� �(tj0) if i > '↵(j0).

We consider the mobility plan Loc0 such that:

Loc0(a, t) =

8
><

>:

Loc(a, ti0) if t  '(z'↵(i0))(= ti0 +�)

Loc(a, t��) if '(z'↵(i0)) < t < '(z'↵(j0))

Loc(a, tj0) if t � '(z'↵(j0))(= tj0 +�).

We may note that Loc0 is indeed a mobility plan. Now, we show that ' satisfies CLoc0
exec00 .

We first establish that the two first items are indeed satisfied, i.e.

• 0  '(z1)  '(z2)  . . .  '(zn); and

• '(zi) < '(zi+1) for all i 2 TS(tr001, . . . , tr
00
n�1).

First, we note that 0  '(z1), and '(zi)  '(zi+1) on the three intervals 1  i <

'↵(i0), '↵(i0)  i  '↵(j0) and i > '↵(j0). In addition, by definition of ', we have
that:

• '(z'↵(i0)) = ti0 +� > '(z'↵(i0)�1); and

• '(z'↵(j0)+1) > '(z'↵(j0)).

This concludes the proof regarding the first item. Now, we consider item 2. Let i 2
TS(tr001 . . . tr

00
n). We distinguish several cases:
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• Case i < '↵(i0)� 1 or i > '↵(j0) . In such a case, we have that:

'(zi+1)� '(zi) = #TS(tr001 . . . tr
00
i )�#TS(tr001 . . . tr

00
i�1) = 1 > 0

• Case i = '↵(i0)� 1 or i = '↵(j0). In such a case, we have seen just before that:

'(z'↵(i0)) = ti0 +� > '(z'↵(i0)�1) and '(z'↵(j0)+1) > '(z'↵(j0)).

• Case '↵(i0)  i  '↵(j0)� 1. In such a case, Proposition 6.3 (item 3) tells us that
'
�1
↵ (i) < '

�1
↵ (i+1), and thus '�1

↵ (i)+1  '
�1
↵ (i+1). From these two inequalities,

and since time is non decreasing during an execution, we deduce that:

t
'
�1
↵ (i) < t

'
�1
↵ (i)+1 and t

'
�1
↵ (i)+1  t

'
�1
↵ (i+1).

Note that the strict inequality comes from the fact that '�1
↵ (i) corresponds to

an application of GTIM. Hence, we have that t
'
�1
↵ (i) < t

'
�1
↵ (i+1). Therefore, we

deduce that:

'(zi+1)� '(zi) = (t
'
�1
↵ (i+1) +�)� (t

'
�1
↵ (i) +�) > 0.

This allows us to conclude regarding item 2.

We now establish that the last two items are also satisfied. We thus show that for
any i 2 IN(tr001, . . . , tr

00
n):

• '(zi) � '(zb
i
) + Dist(Loc0(a00

i
,'(zi)), Loc0(b00

i
,'(zb

i
)));

• for all j such that wj 2 vars(R00
i
)r dom(�0),

'(zbi ) � '(zorig(j)) + Dist(Loc0(b00i ,'(z
b

i )), Loc0(a00orig(j),'(zorig(j)))).

We distinguish several cases.
Case i < '↵(i0). In such a case, by definition of Loc0, for any a 2 A and t  '(z'↵(i0)),
we have that Loc0(a, t) = Loc(a, ti0). Moreover, a delay of at least 2 ⇥ �(ti0) is applied
between an input and any action occurring before it. By consequence, for all wj 2
vars(R00

i
) \ dom(�0) (where �0 is the initial frame in K0), since orig(j) < i we have:

'(zi) � '(zorig(j)) + 2⇥ �(ti0).

In addition, since orig(j) < i < '↵(i0), thanks to item 1, we know that:

'(zorig(j))  '(zi)  '(z'↵(i0)).

Therefore, we have that:

• Loc0(a00orig(j),'(zorig(j))) = Loc(a00orig(j), ti0); and
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• Loc0(a00
i
,'(zi)) = Loc(a00

i
, ti0).

Hence we have:

'(zi) � '(zorig(j)) + 2⇥ �(ti0)
� '(zorig(j)) + Dist(Loc(a00orig(j), ti0), Loc(a00

i
, ti0)

� '(zorig(j)) + Dist(Loc0(a00orig(j),'(zorig(j))), Loc0(a00
i
,'(zi))).

If b00
i
2 A \M, then we have '(zb

i
) = '(zorig(j)) and a

00
orig(j) = b

00
i
. Therefore, from

the previous inequality, we deduce the result:

'(zi) � '(zbi ) + Dist(Loc0(b00i ,'(z
b

i )), Loc0(a00i ,'(zi))).

If b00
i
2 M, then we have '(zi) = '(zb

i
) + �(ti0). For the same reasons as before we

have that Loc0(b00
i
,'(zb

i
)) = Loc(b00

i
, ti0), and Loc0(a00

i
,'(zi)) = Loc(a00

i
, ti0).

Therefore, we have that:

'(zi) � '(zb
i
) + Dist(Loc(b00

i
, ti0), Loc(a00

i
, ti0))

� '(zb
i
) + Dist(Loc0(b00

i
,'(zb

i
)), Loc0(a00

i
,'(zi))).

Therefore, we are done regarding item 3 for this case.
Now, let j be such that wj 2 vars(R00

i
) \ dom(�0) we have orig(j) < i and we have

seen that:
'(zi) � '(zorig(j)) + 2⇥ �(ti0).

By definition of ', we have that: '(zb
i
) + �(ti0) � '(zi). Therefore, we have that:

'(zb
i
) � '(zorig(j)) + �(ti0)
� '(zorig(j)) + Dist(Loc(a00orig(j), ti0), Loc(b00

i
, ti0)

� '(zorig(j)) + Dist(Loc0(a00orig(j),'(zorig(j))), Loc0(b00
i
,'(zb

i
))).

This allows us to conclude for this case.

Case j > '↵(j0). This case is similar to the previous one. Note that we have that
Loc0(a, t) = Loc(a, tj0) for any a 2 A and any t � '(z'↵

(j0)) = tj0 +�.

Case '↵(i0)  i  '↵(j0) and vars(R00
i
) ✓ dom(�00

'↵(i0)�1). If b00
i
2 A \M, then we have

that R
00
i
= wj for some j such that orig(j) < '↵(i0), '(zbi ) = '(zorig(j)), and a

00
orig(j) =

b
00
i
. Therefore, item 4 is trivially satisfied.
We now consider item 3. Since orig(j) < '↵(i0), we have that '(zorig(j)) <

'(z'↵(i0)), and thus by definition of Loc0, we have that:

• Loc0(a00orig(j),'(zorig(j))) = Loc(a00orig(j), ti0); and

• Loc0(a00
i
,'(z'↵(i0))) = Loc(a00

i
, ti0).
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Actually, since orig(j) < '↵(i0), as before, we have that

'(z�↵(i0)) � '(zorig(j)) + 2⇥ �(t0)
� '(zorig(j)) + Dist(Loc(a00orig(j), ti0), Loc(a00

i
, ti0))

� '(zorig(j)) + Dist(Loc0(a00orig(j),'(zorig(j)))), Loc0(a00
i
,'(z'↵(i0)))))

� '(zb
i
) + Dist(Loc0(b00

i
,'(zb

i
)), Loc0(a00

i
,'(z'↵(i0))).

Finally, since Loc0 is a mobility plan we have that:

'(zi)� '(z'↵(i0)) � Dist(Loc0(a00i ,'(zi)), Loc0(a00i ,'(z'↵(i0)))).

Combining these two inequalities, and using the triangle inequality, we deduce that:

'(zi) � '(zbi ) + Dist(Loc0(b00i ,'(z
b

i )), Loc0(a00i ,'(zi))).

Now, if b00
i
2 M, then we have that

'(zbi ) = '(z'↵(i0))� �(ti0).

Thus we have that Loc0(b00
i
,'(zb

i
)) = Loc(b00

i
, ti0). Regarding item 4, let j be such that

wj 2 vars(R00
i
) \ dom(�0). We have that orig(j) < '↵(i0) and thus we have:

'(zb
i
) � '(zorig(j)) + �(ti0)

� '(zorig(j)) + Dist(Loc(a00orig(j), ti0), Loc(b00
i
, ti0)

� '(zorig(j)) + Dist(Loc0(a00orig(j),'(zorig(j))), Loc0(b00
i
,'(zb

i
))).

Regarding item 3, we have that:

'(z'↵(i0)) = '(zb
i
) + �(ti0)

� '(zb
i
) + Dist(Loc(a00

i
, ti0), Loc(b00

i
, ti0))

� '(zb
i
) + Dist(Loc0(a00

i
,'(z'↵(i0))), Loc0(b00

i
,'(zb

i
))).

Moreover, since Loc0 is a mobility plan we have:

'(zi)� '(z'↵(i0)) � Dist(Loc0(a00i ,'(zi)), Loc0(a00i ,'(z'↵(i0)))).

Combining these two inequalities, we obtain:

'(zi) � '(zb
i
) + Dist(Loc0(a00

i
,'(z'↵(i0))), Loc0(b00

i
,'(zb

i
)))

+Dist(Loc0(a00
i
,'(zi)), Loc0(a00

i
,'(z'↵(i0))))

� '(zb
i
) + Dist(Loc0(a00

i
,'(zi)), Loc0(b00

i
,'(zb

i
))).

This concludes this case.

Case '↵(i0)  i  '↵(j0) and vars(R00
i
) 6✓ dom(�00

'↵(i0)�1). In such a case, we have that
the following inequality holds: '(z'↵(i0))  '(zi)  '(z'↵(j0)). Therefore, we have that

Loc0(a00i ,'(zi)) = Loc0(a00i , t'�1
↵ (i) +�) = Loc(a

'
�1
↵ (i), t'�1

↵ (i)).
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We know also that there exists k such that wk 2 vars(R00
i
) \ dom(�00

'↵(i0)�1). Actually,
we have that:

'(zbi ) = t
b

'
�1
↵ (i)

+�.

This equality is trivial when b
00
i
2 M and also satisfied when b

00
i
2 A \ M. Indeed, in

this last case, we have that '(zb
i
) = '(zorig(k)). Since orig(k) > '↵(i0) we know that

'(zorig(k)) = t
'
�1
↵ (orig(k)) +� and since we have that t

'
�1
↵ (orig(k)) = t

b

'
�1
↵ (i)

, we conclude
that

'(zbi ) = t
b

'
�1
↵ (i)

+�.

Moreover, we know that t
b

'
�1
↵ (i)

� ti0 since the input has been executed in the initial
execution exec and the output corresponding to wk in exec must have been executed after
ti0 (Remember that the trace has been clean up between i0 and j0 only). Thus, we have
that

'(zbi ) = t
b

'
�1
↵ (i)

+� � ti0 +� = '(z'↵(i0)).

Therefore, we deduce that:

Loc0(b00i ,'(z
b

i )) = Loc0(b00i , t
b

'
�1
↵ (i)

+�) = Loc(b00i , t
b

'
�1
↵ (i)

).

Since the IN rule has been triggered in exec we have that:

t
'
�1
↵ (i) � t

b

'
�1
↵ (i)

+ Dist(Loc(a00
i
, t

'
�1
↵ (i)), Loc(b00

i
, t

b

'
�1
↵ (i)

))

Therefore, regarding item 3, we have that:

'(zi) = t
'
�1
↵ (i) +�

�
�
t
b

'
�1
↵ (i)

+ Dist(Loc(a00
i
, t

'
�1
↵ (i)), Loc(b00

i
, t

b

'
�1
↵ (i)

))
�
+�

= '(zb
i
) + Dist(Loc(a00

i
, t

'
�1
↵ (i)), Loc(b00

i
, t

b

'
�1
↵ (i)

))

= '(zb
i
) + Dist(Loc0(a00

i
, t

'
�1
↵ (i) +�), Loc(b00

i
, t

b

'
�1
↵ (i)

+�))

= '(zb
i
) + Dist(Loc0(a00

i
,'(zi)), Loc(b00

i
,'(zb

i
)))

This concludes the proof regarding item 3.

Regarding item 4, let w 2 vars(R00
i
). We know that w 2 vars(R

'
�1
↵ (i)), and (w

c,tc��!
u) 2 � (with � the current frame when executing the input in exec). If c 6= ? then

t
b

'
�1
↵ (i)

� tc + Dist(Loc(b00
i
, t

b

'
�1
↵ (i)

), Loc(c, tc)). By construction, we have that (w
c,t

0
c��!

u
0) 2 �00 (with �00 the current frame when executing the input in exec00) with either

t
0
c  '(z'↵(i0)�1) or t

0
c = tc +�.

In the first case we have that Loc0(c, t0c) = Loc(c, ti0). By definition of a mobility plan
we know that

tc � ti0 � Dist(Loc(c, tc), Loc(c, ti0)).

Combining this inequality with the previous one and using the triangle inequality, we
obtain:

t
b

'
�1
↵ (i)

� ti0 + Dist(Loc(b00i , t
b

'
�1
↵ (i)

), Loc(c, ti0)).
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Thus, we have that:

'(zb
i
) = t

b

'
�1
↵ (i)

+�

� ti0 + Dist(Loc(b00
i
, t

b

'
�1
↵ (i)

), Loc(c, ti0)) + '(z'↵(i0)�1) + 2⇥ �(ti0) + 1

� t
0
c + Dist(Loc(b00

i
, t

b

'
�1
↵ (i)

), Loc(c, ti0))
= t

0
c + Dist(Loc0(b00

i
, t

b

'
�1
↵ (i)

+�), Loc0(c, t0c))
= t

0
c + Dist(Loc0(b00

i
,'(zb

i
)), Loc0(c, t0c))

In the second case, we have that t
0
c = tc +� and thus Loc0(c, t0c) = Loc(c, tc). There-

fore, we have that:

'(zb
i
) = t

b

'
�1
↵ (i)

+�

� tc + Dist(Loc(b00
i
, t

b

'
�1
↵ (i)

), Loc(c, tc)) +�
= t

0
c + Dist(Loc0(b00

i
,'(zb

i
)), Loc0(c, t0c))

This allows us to conclude regarding item 4.
In conclusion we have that Lemma 6.1 applies with exec00 and '. We have thus a

timed execution exectime in the mobility plan Loc0 such that

exectime = K0
tr

000
1 ...tr

000
n�����!Loc K00

n

(b0,claim(b1,b2,t01�'c,t
0
2�'c),s,'(zn+1),;)�������������������������!Loc0 K00

n+1

with 'c(ci) = '(zi) for all i 2 TS(tr001 . . . tr
00
n).

Since the causality-based secure property holds, we know, by unicity of the times-
tamps, that there exists an index k

0 such that '(i0)  k
0  '(j0) and ak0 = b2. Moreover,

from the cleaning performed relying on Corollary 6.3 we have that tr00
'↵(j0)

,!⇤ tr00
k0 ,!⇤

tr00
'↵(i0)

which is equivalent to tr000
'↵(j0)

,!⇤ tr000
k0 ,!⇤ tr000

'↵(i0)
. Applying Lemma 4.5 we

obtain that:
'(z'↵(j0))� '(zk0) � Dist(Loc0(ak0 ,'(zk0)), Loc0(b1,'(z'↵(j0))))

� Dist(Loc0(ak0 , t'�1
↵ (k0) +�), Loc0(b1, tj0 +�))

� Dist(Loc(ak0 , t'�1
↵ (k0)), Loc(b1, tj0)).

Similarly we have that:

'(zk0)� '(z'↵(i0)) � Dist(Loc(ak0 , t'�1
↵ (k0)), Loc(b1, ti0)).

Combining these two inequalities we obtain:

'(z'↵(j0))� '(z'↵(i0)) � Dist(Loc(ak0 , t'�1
↵ (k0)), Loc(b1, tj0))

+Dist(Loc(ak0 , t'�1
↵ (k0)), Loc(b1, ti0))

and thus:
tj0 � ti0 � Dist(Loc(ab2 , t'�1

↵ (k0)), Loc(b1, tj0))
+Dist(Loc(ab2 , t'�1

↵ (k0)), Loc(b1, ti0))

This leads to a contradiction. Hence the results.
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Titre : Vérification formelle des protocoles délimiteurs
de distance - Application aux protocoles de paiement
Mot clés : méthode formelle, modèle symbolique, protocole cryptographique, protocole de paiement

Resumé :
L’essor des nouvelles technologies, et en parti-

culier la Communication en Champ Proche (NFC),
a permis l’apparition de nouvelles applications. Á
ce titre, nous pouvons mentionner le paiement
sans contact, les clefs mains libres ou encore les
carte d’abonnement dans les transports en com-
mun. Afin de sécuriser l’ensemble de ces appli-
cations, des protocoles de sécurité, appelés pro-
tocoles délimiteurs de distance on été dévelop-
pés. Ces protocoles ont pour objectif d’assurer la
proximité physique des appareils mis en jeu afin

de limiter le risque d’attaque. Dans ce manuscrit,
nous présentons diverses approches permettant
une analyse formelle de ces protocoles. Dans ce
but, nous proposons un modèle symbolique per-
mettant une modélisation précise du temps ainsi
que des positions dans l’espace de chaque partici-
pant. Nous proposons ensuite deux approches : la
première développant une nouvelle procédure de
vérification, la seconde permettant la ré-utilisation
d’outils existants tels que Proverif. Tout au long de
ce manuscrit, nous porterons une attention parti-
culières aux protocoles de paiement sans contact.

Title : Symbolic verification of distance-bounding proto-
cols - Application to payment protocols
Keywords : formal method, symbolic model, cryptographic protocol, payment protocol

Abstract :
The rise of new technologies, and in particu-

lar Near Field Communication (NFC) tags, offers
new applications such as contactless payments,
key-less entry systems, transport ticketing... Due
to their security concerns, new security protocols,
called distance-bounding protocols, have been de-
veloped to ensure the physical proximity of the de-
vices during a session. In order to prevent flaws
and attacks, these protocols require formal verifi-

cation. In this manuscript, we present several tech-
niques that allow for an automatic verification of
such protocols. To this aim, we first present a sym-
bolic model which faithfully models time and loca-
tions. Then we develop two approaches : either ba-
sed on a new verification procedure, or leveraging
existing tools like Proverif. Along this manuscript,
we pay a particular attention to apply our results to
contactless payment protocols.
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