Fouille de texte et extraction d'informations dans les données cliniques
Auteur / Autrice : | Clément Dalloux |
Direction : | Vincent Claveau |
Type : | Thèse de doctorat |
Discipline(s) : | Informatique |
Date : | Soutenance le 07/12/2020 |
Etablissement(s) : | Rennes 1 |
Ecole(s) doctorale(s) : | École doctorale Mathématiques et sciences et technologies de l'information et de la communication (Rennes) |
Partenaire(s) de recherche : | Laboratoire : Institut de recherche en informatique et systèmes aléatoires (Rennes) - LinkMedia |
Equipe de recherche : LinkMedia |
Mots clés
Mots clés contrôlés
Résumé
Avec la mise en place d'entrepôts de données cliniques, de plus en plus de données de santé sont disponibles pour la recherche. Si une partie importante de ces données existe sous forme structurée, une grande partie des informations contenues dans les dossiers patients informatisés est disponible sous la forme de texte libre qui peut être exploité pour de nombreuses tâches. Dans ce manuscrit, deux tâches sont explorées~: la classification multi-étiquette de textes cliniques et la détection de la négation et de l'incertitude. La première est étudiée en coopération avec le centre hospitalier universitaire de Rennes, propriétaire des textes cliniques que nous exploitons, tandis que, pour la seconde, nous exploitons des textes biomédicaux librement accessibles que nous annotons et diffusons gratuitement. Afin de résoudre ces tâches, nous proposons différentes approches reposant principalement sur des algorithmes d'apprentissage profond, utilisés en situations d'apprentissage supervisé et non-supervisé.