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Abstract

“Whoever exalts himself will be
humbled; but whoever humbles himself
will be exalted.”

MT 23:12

Abstract in English

This thesis focuses on studying turbulent models. It consists of four chapters.

While the first chapter is for a general introduction, the three remaining chapter

are mostly based on three research papers. We will give a summary for each

chapter in the following.

In the first part of the thesis, we present a general introduction where it consists

of a brief state of the art of the Euler and Navier-Stokes equations, an introduc-

tion about turbulent flows with their recently mathematical developments and

a review of some α-turbulent models. We explain why we study the problems

in Chapters 2 and 3. We also give a summarize of main results obtained in this

thesis and a structure of the thesis.

The second part of the thesis performs a new modeling procedure for a 3D

turbulent fluid, evolving towards a statistical equilibrium. This will result to

add to the equations for the mean field (v, p) the term −α∇ · (`(x)Dvt), which

is of the Kelvin-Voigt form, where the Prandtl mixing length `(x) is not constant

and vanishes at the solid walls. We get estimates for mean velocity v in L∞t H
1
x∩

W 1,2
t H

1/2
x , that allow us to prove the existence and uniqueness of a regular-

weak solution (v, p) to the resulting system, for a given fixed eddy viscosity.

We then prove a structural compactness result that highlights the robustness of

the model. This allows us to consider Reynolds averaged equations and pass to

the limit in the quadratic source term in the equation for the turbulent kinetic

energy k. This yields the existence of a weak solution to the corresponding

Navier-Stokes turbulent kinetic energy system satisfied by (v, p, k).



The third part of the thesis is devoted to study the rate of convergence of the

weak solutions uα of α-regularization models to the weak solution u of the

Navier-Stokes equations in the two-dimensional periodic case, as the regulariza-

tion parameter α goes to zero. More specifically, we will consider the Leray-α,

simplified Bardina, and modified Leray-α models. Our aim is to improve known

results in terms of convergence rates and also to show estimates valid over long

time intervals.

In the fourth part of the thesis we present a derivation of a back-scatter rota-

tional Large Eddy Simulation model, which is the extension of the Baldwin &

Lomax model to non-equilibrium problems. The model is particularly designed

to mathematically describe a fluid filling a domain with solid walls and conse-

quently the differential operators appearing in the smoothing terms are degen-

erate at the boundary. After the derivation of the model, we prove some of the

mathematical properties coming from the weighted energy estimates and which

allow to prove existence and uniqueness of a class of regular weak solutions.
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“This is the time of fulfillment. The
kingdom of God is at hand. Repent,
and believe in the gospel.”

MK 1:15

Abstract in French – Résumé

Cette thèse porte sur l’étude de quelques modèles utilisés pour la simulation

numériques d’écoulements turbulents 3D et 2D, en particulier les modèles sous-

maille de type Smagorinsky, les α-modèles, les modèles de Voigt et de Baldwin-

Lomax. Elle se compose de quatre chapitres. Le premier chapitre est une intro-

duction générale, les trois autres chapitres sont principalement basés sur trois

articles de recherche. Dans ce qui suit, nous donnons un résumé chapitre par

chapitre.

Chapitre 1. Dans le premier chapitre de la thèse, nous faisons un état de l’art

succin sur les équations d’Euler (E) et de Navier-Stokes (NSE), qui sont

(NSE)

{
∂tv + (v · ∇)v = ν∆v −∇p+ f ,

∇ · v = 0,

où

• v est la vitesse,

• p est la pression,

• f est la force externe,

• la viscosité cinématique ν > 0 pour (NSE),

• et ν = 0 pour (E);

les écoulements turbulents et les modèles utilisés pour leur simulations, ainsi que

quelques développements mathématiques récents sur le sujet. Nous motivons nos

choix pour l’étude des modèles considérés dans les chapitres suivants. Enfin, nous

énonçons les résultats principaux obtenus et donnons la structure de la thèse.

Chapitre 2. Le deuxième chapitre de la thèse commence par la modélisation

d’un fluide turbulent 3D évoluant vers un équilibre statistique. Cela se traduit

par l’ajout aux équations dites "NSTKE" satisfaites par le champ moyen (v, p),

du terme −α∇ · (`(x)Dvt), qui est de la forme de Kelvin-Voigt, où la longueur
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de mélange de Prandtl `(x) n’est pas constante et s’annule au niveau des parois

solides. Nous obtenons des estimations de la vitesse moyenne v dans L∞t H
1
x ∩

W 1,2
t H

1/2
x , qui nous permettent de prouver l’existence et l’unicité d’une solution

faible régulière (v, p) au système obtenu, pour une viscosité turbulente donnée.

Nous montrons ensuite un résultat de compacité structurel qui met en évidence la

robustesse du modèle. Cela nous permet de considérer les équations moyennes de

Reynolds et de passer à la limite dans le terme source quadratique de l’équation

pour l’énergie cinétique turbulente k, d’où l’on déduit l’existence d’une solution

faible au système NSTKE correspondant.

Plus précisément, nous étudions les systèmes

(Voigt){
vt − α∇ · (`(x)Dvt) +∇ · (v ⊗ v)− ν∆v −∇ · (νturbDv) +∇p = f ,

∇ · v = 0,

et

(Voigt-TKE)
vt − α∇ · (`(x)Dvt) +∇ · (v ⊗ v)− ν∆v −∇ · (νturb(k)Dv) +∇p = f ,

∇ · v = 0,

kt + v · ∇k −∇ · (µturb(k)∇k)− νturb(k)|Dv|2 + (`+ η)−1k
√
|k| = 0,

où

• v est la vitesse moyenne avec vt =
∂v

∂t
;

• Dv = 1
2(∇v +∇vt) est le stress de déformation;

• p est la pression moyenne modifiée;

• k est l’énergie cinétique turbulente (Turbulent Kinetic Energy (TKE));

• ν > 0 est la viscosité cinématique, νturb la viscosité des tourbillons (eddy

viscosity);

• µturb est la diffusion des tourbillons et η > 0 est une petite constante;

• l’échelle de longueur α est donnée par

α =
ν

u?
,

ici u? est ce qu’on appelle la vitesse de frottement (voir [CRL14]);

• f est une force externe donnée.
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Le résultat principal de ce chapitre est donné par: il existe une solution unique

régulière-faible pour (Voigt) et une solution faible pour (Voigt-TKE).

Chapitre 3. Le troisième chapitre de la thèse est consacrée à l’étude de la

vitesse de convergence des solutions faibles uα des modèles de régularisation α

vers la solution faible u des équations de Navier-Stokes dans le cas périodique

de dimension deux, quand le paramètre de régularisation α tend vers zéro. En

particulier, nous considérerons les modèles de Leray-α, de Bardina simplifié et

de Leray-α modifié. Nous montrons que la convergence est en α3 dans les es-

paces d’énergie standard, ce qui améliore substanciellement le taux en α2Logα

initiallement prouvé par Cao et Titi. Nous montrons également que nos estima-

tions sont valables en temps long.

Plus précisément, nous étudions les systèmes

(α-modèles)

{
∂tvα +N(vα)− ν∆vα +∇pα = f ,

∇ · vα = 0,

où

N(vα) =


(vα · ∇)vα Leray-α,
(vα · ∇)vα modified Leray-α,
(vα · ∇)vα simplified Bardina,

et

−α2∆vα + vα = vα,

dans le cas des conditions aux limites périodiques. Le résultat principal de ce

chapitre est donné par: nous dénotons Ω = [0, L]2 être un domaine périodique.

Suppose que v0 ∈ PσH1(Ω)2 et f ∈ L2(R+;PσL2(Ω)2). Alors ça tient ∀s ≥ 0:

‖e(s)‖2 + ν

∫ s

0
‖∇e‖2 dt ≤ C1α

3 pour tous les α-modèles,

‖∇e(s)‖2 + ν

∫ s

0
‖∆e‖2 dt ≤

 C2α
2,

C3α
2

(
log

(
L

2πα

)
+ 1

)
,

pour Leray-α and simplified Bardina, modified Leray-α avec e = v − vα où v

est la solution de (NSE).

Chapitre 4. Dans le dernier chapitre de la thèse, nous présentons la dérivation

d’un modèle de simulation de grands courants de tourbillons en rotation rétrod-

iffusés, qui est l’extension du modèle de Baldwin & Lomax aux problèmes hors

état d’équilibre. D’une certaine manière, ce modèle est la version rotationnelle
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du modèle de Smagorinsky où le terme sous maille −∇ · (`2|∇v|∇v) est rem-

placé par ∇×(`2|ω|ω), ω étant la vorticité. Le modèle est particulièrement conçu

pour décrire mathématiquement une couche limite, comme un écoulement sur

une plaque. Après la dérivation du modèle, nous prouvons certaines propriétés

mathématiques provenant des estimations d’énergie pondérées et qui permettent

de prouver l’existence et l’unicité d’une classe de solutions faibles régulières au

modèle dérivé.

Plus précisément, nous étudions le système

(Baldwin-Lomax){
vt + curl (`2(x)ωt) + div (v ⊗ v)− ν∆v + curl (κ `2(x)|ω|ω) +∇π = f ,

div v = 0,

où

• v est la vitesse moyenne,

• ω est la vorticité moyenne,

• ` est la longueur de mélange,

• π un terme de pression modifié.

Suppose que:

• Ω est borné et de classe C2;

• ` : Ω→ R+ est de classe C2 et satisfait les deux propriétés suivantes:

`(x) ≈
√
d(x, ∂Ω) pour x proche de ∂Ω,

où d(x, ∂Ω) la distance de la frontière

∀ K ⊂⊂ Ω, ∃ `K ∈ R?+ s.t. `(x) ≥ `K > 0 ∀x ∈ K;

• f ∈ L2(0, T ;L2(Ω)3) et v0 ∈W 1,3
0,σ (Ω).

Alor, le résultat principal de ce chapitre est donné par: il existe une solution

unique régulière-faible pour (Baldwin-Lomax) avec v(0) = v0 dans Ω and v = 0

sur (0, T )× ∂Ω.
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1.1 General introduction

Before talking about turbulent models –one of the main objects of the present manuscript–

we briefly review history of the equations of fluid motion.These equations are derived from

the conservation laws of momentum and mass. Simplest models of these equations are given

by the Euler and Navier-Stokes equations (NSE in the sequel). Today, these equations are

considered to belong to the list of the most important equations of fluid mechanics. For the
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CHAPTER 1. INTRODUCTION

convenience of the readers we also recall remarkable results of the Euler and the NSE from

the beginning of the last century to the present.

1.1.1 The Euler and Navier-Stokes equations

It seems to be that the notion of pressure was first introduced by Archimedes of Syracuse

in his book Hydrostatics, which is also known as the first book on mathematical fluid

mechanics. His famous quote ”Eureka!” reminds us to his principle of buoyancy: ”an

immersed body is acted upon by a force equal to the weight of water it displaces.” A long

time after Archimedes, Leonardo da Vinci was clearly presented the idea of continuity of the

fluid continuum. Note that the word ”turbulence” (or turbolenza) was also first used and

introduced by him. Moreover, the initial studies of waves, jets and interacting eddies were

also given by Leonardo da Vinci. Later, Galileo Galilei gave us the concept of momentum

in physics.

It is known that the conservation of linear momentum was introduced by Sir Issac Newton

in 17th century. It is also known as the Newton’s second law, i.e.,

(1.1.1) total applied forces = mass × acceleration,

which is the essential principle also knows as the ”fundamental law of dynamics”. In other

words (1.1.1) says that the balance of forces F acting on a solid is equal to the product of its

mass m by its acceleration a, F = m×a. He also first studied and presented the concept of

”viscosity” defectus lubricitatis1. Then Daniel Bernoulli and Leonhard Euler gave a big step

forward in mathematical fluid dynamics that the famous Bernoulli equation (also known as

the Bernoulli-Euler equation) of fluid motion was formulated by both of them2, i.e.,

(1.1.2)
1

2
ρv2 + p = constant,

which first appeared in the Bernoulli’s 1738 book Hydrodynamics, for more discussion on

this equation see [LL87]. The equation (1.1.2) was the first one which says the relation

among the velocity v, the pressure p and the density of the fluid ρ in fluid dynamics. Note

that we assume that the density of the fluid exists that is also known as the ”continumm

assumption”. This assumption holds for almost all macroscopic phenomena observed in

nature. In addition, it also give us the first explanation of the lift of airfoils.

The founder of fluid mechanics as a mathematical discipline seems to be Leonhard Euler.

Moreover, it was written by Louis de Lagrange: ”Euler did not contribute to fluid mechanics

1Note that Newton used the words defectus lubricitatis and did not mention the words ”viscosity” or
”internal friction” as we usually use today, see [Jac91].

2Initially derived by Bernoulli and then it is correct by Leonhard Euler.
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but created it”, see [Tok94]. In fact, Euler gave the complete and correct derivation of (1.1.2)

and even invented a hydraulic turbine. The first correct derivation of the mathematical

equations of inviscid flows was also given by him in 1755 [Eul55]. More precisely, in the

case of ideal homogeneous incompressible fluids these equations are given by the standard

Euler equations3

(1.1.3)

{
ρ(∂tv + (v · ∇)v) = −∇p+ f ,

∇ · v = 0,

where ∂tv = ∂v/∂t for simplicity, ∇p stands for the pressure forces, f denotes the external

forces (or the body forces) such as gravity and ∇· the usual divergence operator. It can

be seen that the first equation in (1.1.3) has a form as in (1.1.1) (balance of momentum or

conservation of momentum) with the mass considered as ρ the density, and the acceleration

is expressed by4

Dv

Dt
= ∂tv + (v · ∇)v,

which is also known as the total or material derivative of v describing the rate of change at

a point moving with fluid locally. The only nonlinear term or the convection term (v ·∇)v5

is one of the main difficulties in mathematical theory when dealing with the Euler equations

(also to the NSE below). The second equation in (1.1.3) presents the incompressibility of

the fluid. It is also known as the mass continuity equation (or conservation of mass6) with

its original form given by the following differential form (the spatial or Eulerian form)

(1.1.4) ∂tρ+∇ · (ρv) = 0.

In the case ρ = ρ0 = const (in the case of incompressible fluids) is the constant density of

the fluid then (1.1.4) yields to the constraint ∇ · v = 0 as in (1.1.3).

3It seems that the Euler equations was the second partial differential equations ever written down after
the first one-the one dimension wave equation-discovered by d’Alembert in 1746. Later, Euler derived the
three dimensions wave equation in 1766, see [Spe08].

4 In general the material derivative of a vector field u is defined by

Du

Dt
= ∂tu + (v · ∇)u.

5 In the 3D case, the components of the convection term are given by [(v · ∇)v]i =
∑3
j=1 vj∂jvi for

v = (v1, v2, v3). Thanks to the divergence constraint sometimes we replace the usual form (v · ∇)v by
∇ · (v ⊗ v) for v smooth enough, where

v ⊗ v := (vivj)1≤i,j≤3 and [∇ · (v ⊗ v)]i =

3∑
j=1

∂j(vivj).

6 Principle of conservation of mass: ”the mass of fluid in a material volume V does not change as V
moves with the fluid”.
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CHAPTER 1. INTRODUCTION

Almost two hundred years ago, the equations of viscous flow was first formulated by Claude-

Louis Navier in 1822 [Nav22], where the effect of the viscosity is taken into account. The

idea of considering the effect of the viscosity came from the Fourier’s law7 which today is

known as the heat equation to describe the heat flow, i.e.,

(1.1.5) ∂tT − κ∆T = 0,

where T presents the temperature and κ > 0 denotes the rate of heat dissipation (also

known as diffusivity coefficient) oftenly taken to equal one. In addition, ∆ denotes the usual

Laplace operator. However, Navier’s derivation was based on an incorrect basis molecular

model. In fact, he suggested the law of interaction among molecules. Moreover, from the

physical point of view, it was recognized that this law was not inconsistent especially for

liquids.

More than twenty years later, based on the Cauchy stress principle the same equations

were derived by George Gabriel Stokes in 1845 [Sto45]. He was known as the first person

who gave the first clear and correct explanation of the appearance of the viscous terms in

the Navier-Stokes equations. Note that this derivation is quite similar to that of we use

today. The motion of an incompressible homogeneous Newtonian fluid8 is governed by the

Navier-Stokes equations, i.e.,

(1.1.6)

{
ρ(∂tv + (v · ∇)v) = η∆v −∇p+ f ,

∇ · v = 0,

where η > 0 denotes the dynamics viscosity and η∆v is usually known as the viscosity

term. In particular, (1.1.6) ”formally”9 reduces to (1.1.3) as η/ρ goes to zero and to the

Stokes equations as η/ρ goes to infinity. It can be seen that the first equation in (1.1.6) is

written in the form as in (1.1.1).

It can be seen that both systems (1.1.3) and (1.1.6) are nonlinear due to the convection term

(the second term on the left-hand side). They are also nonlocal due to the incompressibility

constraint, i.e., ∇·v = 0. These properties make Euler and Navier-Stokes equations hard to

study. For convenience, we usually use the dimensionless form (a form that does not depend

7It was established mathematically by Jean-Baptiste Biot in 1804 then experimentally by Jean-Baptiste
Joseph Fourier in 1822 [Fou22].

8As usually the stress tensor is expressed in the form σ = −Ip+ D where I denotes the identity matrix
and D stands for the deviatoric part of σ. A fluid is called a Newtonian fluid if whose deviatoric part is a
linear function of its velocity gradient. In the case of the NSE, D = 2ηDv where Dv = 1

2
(∇v +∇vT ).

9More precisely, it is known that solutions to the NSE tend to that of the Euler equations in some
particular sense.
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directly on the physical sizes) corresponding to (1.1.6) given by10 (we do not distinguish

the notation)

(1.1.7)

 ∂tv + (v · ∇)v =
1

Re
∆v −∇p+ f ,

∇ · v = 0,

where the dimensionless quantity-the so-called Reynolds number-Re given by the following

formula

(1.1.8) Re :=
ρLV

η
.

For simplicity, in the case V = L = 1, set ν := η
ρ denotes the kinematic viscosity and

then (1.1.8) yields Re = ν−1. It suggests to replace Re−1 in the system (1.1.7) by ν as the

standard form of the NSE. Here ν (or Re) is the only parameter and also plays an important

role in the mathematical theory of the NSE. This number can be described by the ratio of

inertial forces to viscous forces and will be discussed in more details below. In other words,

it is the ratio of the intensity of the nonlinear effect to the intensity of the viscosity linear

effect.

The readers can also find a brief history on the subject of this subsection with more ex-

planation by Isabelle Gallagher11, by William Layton [Lay08, Section 1.3, Chapter 1], ”the

first five births of the NSE” by Olivier Darrigol [Dar02], see also [LR16, Chapter 3]. For

detailed derivations of the Euler and Navier-Stokes equations we refer the reads to the texts

such as [LL87, Ser59, Bat99, CM93, CRL14] and their mathematical theory can be found

in classical textbooks [Lio69, Lad69, CF88, Tem95, Tem97, Tem01, Gal00, Soh01, Lio96,

FMRT01, MB02, LR02, RR09, Gal11, LR16, RRS16].

1.1.2 Brief state of the art

One of the main foundational questions for every PDE is the well-posedness problem, i.e.,

in the sense of Jacques Hadamard, that are the existence, uniqueness of solutions and

the solution’s behavior changes continuously with the initial conditions. Moreover, it is a

crucial problem to know whether solutions corresponding to smooth initial data can develop

10It can be done by changing of variables in (1.1.6):

x∗ :=
x

L
; t∗ :=

t

T
; v∗ :=

v

V
; p∗ :=

p

Pρ
; f∗ :=

T 2f

Lρ
;

where V,L, T are the velocity, length and time characteristic, respectively, which are chosen in some particular
way, for example P = U2 and V = L/T . That leads to a system satisfied by v∗ and p∗ and has the same
form as (1.1.7). However, for simplicity the notation, we use (v, p) instead of (v∗, p∗).

11See more details at https://images.math.cnrs.fr/Autour-des-equations-de-Navier-Stokes.html?
lang=fr.
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singularities in finite time in some particular sense. This subsection aims to summarize well-

known results to the Euler and Navier-Stokes equations.

A. Euler equations

In the 2D case the mathematical theory for the Euler equations is completed. For smooth

initial data the global classical solutions of the Euler equations is known. The result can be

found in [Wol33, Gyu53, Jud63, Kat67, Lad69, Tem76, MB02]. Other results on the lack of

uniqueness of weak solution can be found in [Sch93, Shn97a] in the 2D case (on R2 or on

T2), see also in [DLS09, DLS10, DLS13] for any dimensional bigger than two with solutions

satisfied several additional requirements.

However, in general the theory is not completed in the 3D case. Local existence of solution

to the Euler equations is investigated by several authors in [Lic25, EM69, Tem76, Tem75,

BB74, KL84]. The inviscid limit problem, i.e., the case when ν → 0, was studied in [Swa71,

Kat72, Kat75, Kat84a, Con86, Wan01, DM87, AD04, CW96, TW97, SC98a, SC98b, Mas07,

Kel09, Kel08, Kel07, BT07, BS12, BT13, SB14, DN19, CV18, CEIV17, NN18, NN19b,

GKLF+19]. Several blow-up criterion results for the 3D Euler equations were provided in

[BKM84, CFM96, GT13]. A remarkable result on the existence of global weak solutions to

the Euler equations in 3D was given by Weidemann in [Wie11] where the author used the

results obtained in [DLS10], see also in [DLS09, DLS13]. Weak solutions to the 3D Euler

equations with decreasing energy were also constructed in [Shn97b, Shn98, Shn00, Shn03].

B. Navier-Stokes equations

One of the first results on the existence and uniqueness of classical solutions in the 2D case

for the NSE was provided by Leray in [Ler33].

However, the story is totally different in the three dimensions case, for which in general the

problem of globally existence of strong solutions is still open. The first results in the 3D

case for the NSE are thoses of Oseen and Leray [Ose27, Ler34b]. More precisely, in 1934,

Jean Leray [Ler34b] provided the first global existence result of weak solutions (at that

time which were called ”turbulent solutions”12 and nowadays in general which are known

as Leray-Hopf weak solutions) in L∞t L
2
x ∩ L2

tH
1
x to the NSE in the whole space with the

initial data in L2. In addition these solutions satisfy the energy inequality. However, the

uniqueness of these solutions is not known so far13. For a modern review on this celebrated

12The definition of this kind of solution was written in the form which today is known as in the sense of
distribution. Note that theory of distribution was seemly initiated by Sergei Sobolev in 1936 (generalized
functions) and then was developed and extended by Laurent Schwartz in the late 1940s.

13It is believed that the lack of the uniqueness of weak solutions is related to the theory of turbulence.
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work we refer the reader to [OP18]. Leray also raised the question of the existence of self-

similar14 solutions of the Navier-Stokes equations in which the answers for this question can

be found in [NRv96, Tsa98]. More precisely, the authors showed that self-similar solutions

must be trivial under general assumptions such as in v ∈ L3(R3) or v satisfies local energy

estimates15.

Note that the same result was established by Eberhard Hopf in 1951 for smooth bounded do-

mains in [Hop51] subject to the Dirichlet boundary conditions. It has been known that var-

ious additional assumptions guarantee the smoothness of Leray-Hopf weak solutions. These

assumptions are known as the so-called Prodi-Serrin-Ladyzhenshaya16 criteria provided by

[Pro59, KL57, Ohy60, Lad67, FJR72, Ser62, Ser63, Str88, ISS03, BadVY20a, BC20]. Global

results to the NSE were provided in [Soh83, Gig86] in the case of physical boundary. Reg-

ularity criteria on the gradient of the velocity ∇v, or on its components, or on the pressure

p, or on the vorticity direction were studied in [BadV95, Ber02, BG02, CT08, BadVB09,

BadVY20b].

So far, only local existence and uniqueness results are known for the NSE in 3D. The global

existence of smooth solutions is also known for the NSE for small data. One of such results

is due to Fujita-Kato in the beginning of 1960s. More precisely, by applying Hilbert space

approach with using the theory of fractional power of operator and semigroup of operators

Fujita-Kato [KF62, FK64] established an important result on the existence of the classical

solutions to the NSE with initial small data in the space H1/2(Ω)17. The theory of Lp-strong

solutions to the NSE were provided in [Kat84b, GM85]. Partial regularity theorems for

suitable weak solutions of the Navier–Stokes equations have been provided by, for example,

Scheffer [Sch76], Caffarelli–Kohn–Nirenberg [CKN82] and Lin [Lin98], where the latter one

improved the former one. It seems that the global well-posedness result provided by Koch-

Tataru in [KT01] is one of the best developments so far in this direction, where the initial

14Leray’s (backward) self-similar solutions have a form (f = 0)

v(t,x) = λ(t)U(λ(t)x) and p(t,x) = λ2(t)P (λ(t)x) where λ(t) =
1√

2a(T − t)
,

where a > 0, T ∈ R. For a long time, self-similar solutions are considered to be good candidates for
constructing singular solutions of the NSE.

15Note that the L3(R3) integrability condition holds in the case that v satisfies the global energy estimate
and might not true if v satisfies local energy estimates, see more discussion in [Tsa98, Section 4].

16It says that if v is a Leray-Hopf weak solution to the NSE and v satisfies in addition v ∈ Lr(0, T ;Ls(R3)
for 2/r + 3/s = 1 and 3 ≤ s ≤ ∞ then v is smooth.

17Here the authors considered the Cauchy problem in Ω a bounded smooth domain in R3 with homoge-
neous Dirichlet boundary conditions. The authors also claimed that the same result could be extended in
more general cases such as inhomogeneous Dirichlet boundary conditions, unbounded domain, 2D case, or
Lp-theory.
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data is considered to be small in the space BMO−118. In 2008, an important ill-posedness

result to the NSE was provided by Bourgain-Pavlovic [BP08] in the Besov space
.
B
−1,∞
∞

19.

Moreover, the existence of weak but not very regular solutions is known, certain kinds

of blow-up results are found out, for instance, [HL08, Hou09, HSW12, Tao16, CHK+17],

many stability questions are understood, many easier models of these equations have been

completely investigated. But the most fundamental properties of these equations are await-

ing their discovery. In addition, for the Navier-Stokes equation, in 2000 the question of

global existence of smooth solutions and finite time blow up is one of the seven Clay Math-

ematics Institute ”Millenium problems” which is offered with 1 million dollars prize for

providing a solution, for which an official statement of the problem was written by Charles

L. Fefferman20. For interested readers more discussion on this problem can be found in

[Lad03, LR16]. Recently, in 2019 based on the ”convex integration technique” developed

by De Lellis-Székelyhidi in [LS09, LS13], Tristan Buckmaster and Vlad Vicol showed that

very weak solutions (so far which are still weaker than Leray-Hopf weak solutions) are not

unique in the class of finite energy solutions, see [BV19b]. The nonuniquness of Leray-Hopf

weak solutions holds under certain spectral assumption for a linearized Navier-Stokes op-

erator was provided in [JS15]. Although this spectral condition is not known to be true by

a rigorous proof, one of the author has proved it numerically in [Gv17]. In addition under

suitable assumption on the initial data the author of [Jv14] proved that there exists at least

one scale-invariant solution to the 3D NSE which is smooth21.

1.1.3 Turbulent flows

This subsection is devoted to discuss on turbulent flows. We start with recalling the nature

and study of these flows and then we shall present some recently developments on the study

of turbulence.

18It is a largest critical space-the space which is invariant under the scaling-to the NSE. For simplicity,
we assume that f = 0 then the scaling is understood in the sense that if v(x, t), p(x, t) solves the NSE then
vλ(x, t) = λv(λx, λ2t), pλ(x, t) = λ2(λx, λ2t) is a solution to the NSE with v0λ = λv0(λx).

19Note that BMO−1 ↪→
.

B
−1,∞
∞ is a continuous embedding. The ill-posedness is understood in the following

sense: Let δ > 0 there exists a solution to the NSE (v, p) with ‖v0‖ .
B
−1,∞
∞

≤ δ such that ‖v‖ .
B
−1,∞
∞

> 1
δ
.

20https://www.claymath.org/sites/default/files/navierstokes.pdf. The author considered the
cases in the whole space or in the periodic context. It seems that the statement does not provide too
much physical meaning, see [Tar06].

21More precisely, if the initial velocity v0 is scale-invariant, i.e., v0 = λv0(λx), λ > 0 and locally Hölder
continuous in R3 \ {0} and ∇ · v0 = 0 then the corresponding Cauchy problem to the NSE has at least one
scale-invariant solution which is smooth in R3×(0,∞) and locally Hölder continuous in R3×(0,∞)\{(0, 0)}.
Here we recall that the NSE is invariant under the scaling (in the case the external force f = 0 for simplicity)
for λ > 0:

vλ(t,x) = λv(λ2t, λx); pλ(t,x) = λ2p(λ2t, λx); v0λ(x) = λv0(λx).

That means if (v, p) is a solution then so does (vλ, pλ) for initial data v0λ. We say that v is a scale-invariant
solution if v = vλ and p = pλ for each λ > 0.
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A. The nature of turbulent flows

Turbulent flows can be easily observed around us which could be the smoke of a hot cup

of coffee that we drink every morning, the smoke behind a moving car, the smoke on a

chimney, water flow in a river, air flows around a car, an airplane, a train (although it is

less easily seen) and so on. Moreover, observing carefully the ”smoke” in each example

above it can be seen that there are normally three situations: first, the smoke moves almost

straightforward; then it fluctuates a little bit; finally, it goes randomly and develops eddies

until it disappears in the air. These behaviors can be seen closely by experimenting such as:

making a hot cup of coffee, smoking, or blowing out a burning candle and observing their

smoke. Therefore, we are also easily creating a turbulent flows. If doing small experiments

above several times we can see that the behavior of the smoke seems to be different at each

time. It might remind us to the sensitive of the NSE and the well-known effect which is

called the ”butterfly effect”22 which was seemly discovered by Edward Norton Lorenz in

1960s23. In fact the idea inside is that small changes can have large consequences.

Nowadays, turbulence is the central of many important applications in our real life. In fact

there is not precisely definition of turbulence. However, we know some of its characteristics

which are: unsteady, chaotic, irregular, random, unpredictable, diffusive, dissipative, rota-

tional and so on. It is known that turbulence occurs at high Reynolds numbers which are

defined as in (1.1.8). It seems that the concept of Reynolds number was first introduced by

George Stokes in 1850 [Sto09], experimented by Osborne Reynolds24 in 1883 [Rey83] and

named by Arnold Sommerfeld in 1908 [Som08]. The values of Re are corresponded to the

characteristics of the fluid for which the behavior of the flow can be normally divided into

three situations. For instance, in the case of a pipe water flow which was established by

Reynolds: laminar (Re ≤ 2300), transition (Re ≈ 2300− 4000) and turbulent (Re ≥ 4000),

see [Pop00]. In this case the characteristic velocity and characteristic length V and L in

(1.1.8) can be the area-averaged axial velocity and the pipe diameter, respectively. Note

that this classification depends on Re and maybe is different for other materials.

Let us reconsider an example, see [DLS19], to see the effect of Reynolds number Re on

solution v. In the 3D case, for instance, we study (1.1.7) on a domain Ω = [0, 2π]3,

f = A sin(x1)e2 where A > 0, x = (x1, x2, x3) ∈ Ω and e2 = (0, 1, 0). We assume that the

22”Does the flap of a butterfly’s wings in Brazil set off a tornado in Texas?”
23From Wikipedia: ”In 1961, Lorenz was running a numerical computer model to redo a weather prediction

from the middle of the previous run as a shortcut. He entered the initial condition 0.506 from the printout
instead of entering the full precision 0.506127 value. The result was a completely different weather scenario”.

24 In his experiment, Reynolds studied the behavior of water flow in a pipe with another smaller and
shorter pipe of dye inside. The dye inside makes it easily to observe. When changing the velocity of the
water flow he observed its movement. Later, in 1894, he explained the behavior of this flow by a dimensionless
parameter which is now known as the Reynolds number.
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density ρ = ρ0 = 1 for simplicity. A stationary solution of (1.1.7) is given by (v(x), p(x)) =(
A
ν sin(x1)e2, 0

)
. In this case the characteristic velocity and characteristic length could be

V = A
ν and L = 2π, respectively. Then Reynolds number is given by (1.1.8) with Re = 2πA

ν2 .

This simple example shows that v is unstable if we increase A (the same as we decrease ν).

B. The study of turbulent flows

The study of turbulent flows can be normally divided into three parts [Pop00]:

P1. Discovery. This part focuses on doing experiment or simulation to provide the

qualitative or quantitative information of some particular flows.

P2. Modeling. It aims to provide mathematical models25 which can be used to predict

properties of turbulent flows.

P3. Control. It is the combining of the two parts above.

In this thesis, we will focus on the second part P2 above. More precisely, in Chapter 2, by

using basic turbulence modeling we establish a generalized Navier-Stokes-Voigt model and

provide its mathematical analysis. In addition, in Chapter 3 we will study several models

such as the Leray-α, modified Leray-α and simplified Bardina which are considered as α-

regularization models for the NSE. That means solutions to these models are smoother (and

unique) than that of the NSE. Numerical tests on these models are also easier to do than

directly on the NSE. In Chapter 4 an extension of the Balwin-Lomax model for turbulent

mixing layers is given by both modeling and analyzing.

There are at least two ways to study turbulent flows. The first one is DNS which stands

for Direct Numerical Simulation and is used to solve the NSE directly. According to the

Kolmogorov laws it requires a huge number of degrees of freedom (DOF) around O(Red
2/4).

It is now still unreasonable for modern computers for high Reynolds numbers. Therefore,

in general this approach sometimes is impossible for solving directly the NSE. It is also due

to the sensitive of the NSE where a small change in the initial datum can lead to a huge

change in the final result. A nature way to reduce the sensitive is trying to compute the

”mean” values which is the aim of the second approach as follows.

The other way is the statistical approach. It aims to compute the mean (averaged or filtered)

value of the velocity instead of the true one. The idea is to compute the averaged velocity

(in some particular sense, however, the most naturally being the ensemble averages) rather

than compute it at each point in space and time. Then the question is what is the equation

satisfied by the mean velocity? It is natural to apply the mean operator to the NSE to

25From the numerical point of view it is not able to perform simulating directly to the NSE.
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find the system we are looking for. However, this system is not closed. It is due to the

nonlinear term in the NSE. More precisely, let us denote the mean operator by the bar ”−”

which could be the sum averaged, time-averaging or probability expectation for example.

Therefore, we have the Reynolds decomposition of the velocity v and the pressure p are

given by

(1.1.9) v = v + v′ and p = p+ p′.

The mean operator is assumed to be a linear operator and satisfies Reynolds rules which

are

(1.1.10) ∂v = ∂v and v = v,

where ∂ denotes any first order differential operator.

B1. Turbulent incompressible flows

In this part we will focus on turbulent incompressible flows. The main idea is to find

the system satisfied by mean quantities (v, p) and then using further assumptions such

as Boussinesq approximations to close the mean equations. Applying the mean operator

(1.1.9) to the NSE and using the Reynolds rules (1.1.8) we obtain from (1.1.7) the system

satisfied by the mean velocity, i.e., the mean Navier-Stokes equations:

(1.1.11)

{
∂tv + (v · ∇)v − ν∆v +∇p = −∇ · σ(r) + f ,

∇ · v = 0,

where the Reynolds stress given by

(1.1.12) σ(r) := v′ ⊗ v′.

In the above computations we have used the divergence free constraint and

(v · ∇)v − (v · ∇)v = −∇ · (v ⊗ v − v ⊗ v) = −∇ ·
(
v′ ⊗ v′

)
.

It can be seen that (1.1.11) is not closed. That is we do not know how to deal with

the Reynolds stress term in the right-hand side. It leads us to the question how to close

the system. To do that it is natural to assume that the Reynolds stress σ(r) can be

expressed by only mean quantities. The most popular way to close the system is to use the

Boussinesq assumption. It seems that he is the first one who works on the closure problem.

By introducing the concept of eddy viscosity (also known as turbulent viscosity) νturb he

proposed in 1877 [Bou77, Bou03]26 that

(1.1.13) σ(r) = −νturbDv +
2

3
k Id,

26The word ”Boussinesq approximation” was seemly first used by Rayleigh in 1916 [Ray16].
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where Id is the identity matrix, Dv = 1
2(∇v +∇vT ) presents the deformation stress tensor

of the velocity (or the symmetric part of the velocity) and k = 1
2 tr(σ

(r)) = 1
2 |v′|2 denotes

the turbulent kinetic energy, where tr stands for the trace operator. Putting (1.1.13) into

(1.1.11) with using the fact ∇ · v = 0 we obtain

(1.1.14)

{
∂tv + (v · ∇)v −∇ · ((2ν + νturb)Dv) +∇(p+ (2/3)k) = f ,

∇ · v = 0.

Another assumption about the Reynolds stress that will be considered in the next chapter

is given by

(1.1.15) σ(r) = −α`D∂tv − νturbDv +
2

3
k Id.

where α is a length scale and ` is the Prandtl mixing length [Pra10], which can be considered

as the mean distance traveled by a small ball of fluid before disappearing because of the

turbulent mixing. Similarity, putting (1.1.15) into (1.1.11) with using the fact ∇ ·v = 0 we

obtain the generalized Navier-Stokes-Voigt equations:

(1.1.16)

{
∂tv − α∇ · (`D∂tv) + (v · ∇)v −∇ · ((2ν + νturb)Dv) +∇(p+ (2/3)k) = f ,

∇ · v = 0,

which will be considered as the main subject in Chapter 2. Moreover, the system coupled

by (1.1.16) with the equation satisfied by the turbulent kinetic energy k is also investigated.

An alternative form for the convection term in the NSE (1.1.7) is given by the following

well-known identity

(v · ∇)v =
1

2
∇|v|2 + ω × v,

where the vorticity ω = ∇× v. It allows us to rewrite the NSE (1.1.7) in a rotational form

(1.1.17)

{
∂tv + ω × v − ν∆v +∇π = f ,

∇ · v = 0,

where π = p+ 1
2 |v|

2 the modified pressure. Applying the mean operator (1.1.9) to (1.1.17)

which yields (similar as above):

(1.1.18)

{
∂tv + ω × v + ω′ × v′ − ν∆v +∇π = f ,

∇ · v = 0.

where ω′ = ∇× v′ the fluctuation of the vorticity. As a result, a problem raises to ”close”

(1.1.18). In order to do that the modeling in Chapter 4 leads us to consider A(R) the

”rotational Reynolds stress” with

(1.1.19)

{
curl A(R) = ω′ × v′,

div A(R) = 0.

12
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In addition, by using basic turbulence modeling in Chapter 4 we are led to use

(1.1.20) A(R) = `2 ∂tω + νturbω +∇(−∆)−1(∇νturb · ω).

Putting (1.1.20) into (1.1.18) with νturb = κ`2|ω| we obtain

(1.1.21)

{
∂tv + curl (`2 ∂tω) + ω × v − ν∆v + curl (κ`2|ω|ω) +∇π = f ,

div v = 0,

which will be modeled and analyzed in details in Chapter 4.

All forms (1.1.13), (1.1.15) and (1.1.20) lead us to the question raised by determination of

the eddy viscosity νturb. That is one of the challenges in turbulence modeling. In addition

we also need to find the equation which is satisfied by k and also seek the formula for `.

Sometimes the system (1.1.11) with σ(r) given by (1.1.13) is called the eddy viscosity model.

An example for the eddy viscosity was suggested by Prandtl [Pra52]

(1.1.22) νturb = C`2|Dv|,

where C is a dimensionless constant. Combining (1.1.14)-(1.1.22) leads to the Smagorinsky’s

model, one of the popular (and also the first introduced) turbulent models. In the case of

a flow over a plate Ω = R2 × {z > 0}, Obukhov [Obu46] proposed

(1.1.23) ` = `(z) = κz,

where κ ∈ [0.35, 0.42] is the Von Kármán constant. A more complicated formula can be

found in Van Driest [VD56]:

(1.1.24) ` = `(z) = κz(1− e−z/A),

where A depends on the oscillations of the plate and ν.

B1.1. The (k − E) model

As mentioned above, in order to find the system (1.1.11) which is satisfied by mean values

v and p we need to model the turbulent viscosity νturb and turbulent kinetic energy k when

using the Boussinesq assumption (1.1.13). We start with finding an equation for k. The

authors in [CRL14, Theorem 4.2] provided an equation which is satisfied by k. That is

(1.1.25) ∂tk + v · ∇k +∇ · (e′v′) = −σ(r) : ∇v − E ,

where 
e :=

1

2
|v′|2 = e+ e′ = k + e′,

ε := 2ν|Dv|2 ⇒ ε = 2ν|Dv|2 = 2ν|Dv|2 + 2ν|Dv′|2 = 2ν|Dv|2 + ε′,

E := ε′ = 2ν|Dv′|2.

13
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We call ε the dissipation and E the mean dissipation of the fluctuation. Replacing σ(r) in

(1.1.25) by (1.1.13) yields

(1.1.26) ∂tk + v · ∇k +∇ · (e′v′) = νturb|Dv|2 − E ,

since kId : ∇v = k∇ · v = 0 and Dv : ∇v = |Dv|2. Assume that there exists a turbulent

diffusion coefficient µturb > 0 with27

(1.1.27) µturb := µturb(k, E) = ck
k2

E
,

where ck is a dimensionless constant such that

∇ · (e′v′) = −∇ · (µturb∇k).

Combining the previous equation with (1.1.26) yields

(1.1.28) ∂tk + v · ∇k −∇ ·
(
ck
k2

E
∇k
)

= νturb|Dv|2 − E .

We also need to find an equation for E . That can be done by following the analysis in

[CRL14, equation 4.125] we come with an equation for E

(1.1.29) ∂tE + v · ∇E −∇ ·
(
cε
k2

E
∇E
)

= cη|Dv|2 − (cε2 − cγ)
E2

k
,

where cε, cη, cε2 and cγ are dimensionless constants. By employing dimensional analysis it

is suggested to consider for some dimensionless constant cν

(1.1.30) νturb = cν`
√
|k| with ` =

k
√
|k|
E

⇒ νturb = cν
k2

E
.

Therefore, combining (1.1.14)-(1.1.28)-(1.1.29)-(1.1.30) yields

(1.1.31)



∂tv + (v · ∇)v −∇ ·
((

2ν + cν
k2

E

)
Dv

)
+∇(p+ (2/3)k) = f ,

∇ · v = 0,

∂tk + v · ∇k −∇ ·
(
ck
k2

E
∇k
)
− cν

k2

E
|Dv|2 + E = 0,

∂tE + v · ∇E −∇ ·
(
cε
k2

E
∇E
)
− cη|Dv|2 + (cε2 − cγ)

E2

k
= 0,

which is known as the (k−E) model. This model was first developed by Launder and Spald-

ing [Lau72]. For many turbulent flows in engineering applications as well as in oceanog-

raphy the (k − E) model is also known to provide reliable predictions of mean properties,

see Mohammadi-Pironneau [MP94]. Further, the dimensionless constants above are not

universal and can be taken as in [MP94] for instance:

cν = ck = 0, 09; cε = 0, 07; cη = 0, 063; cε2 − cγ = 1, 92.
27In fact, formula (1.1.27) comes from dimensional analysis.
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Remark 1.1.1. We should point out that in the modeling above of the (k − E) model,

assumptions on the fluid are needed. We will summarize these assumptions here, for more

details see [CRL14, 1-3], [MP94, 1-6]:

1. The Boussinesq assumption holds;

2. Transport of scalar fields by fluctuating vector fields yields turbulent diffusion;

3. The eddy viscosity and the turbulent coefficient are all functions of k and E and can

be derived by dimensional analysis;

4. Additional symmetry properties of turbulent flows hold as well as isotropy of the fluc-

tuations;

5. Turbulence is ergodic;

6. Turbulent flows are Gaussian, which means that v has a Gaussian distribution.

B1.2. The NSTKE model

In the case ` = k
√
|k|/E in (1.1.31) gives us a simplified version of the (k−E) model which

is known as the Navier-Stokes turbulent kinetic energy (NSTKE) model given by

(1.1.32)


∂tv + (v · ∇)v −∇ · ((2ν + νturb(k))Dv) +∇(p− (2/3)k) = f ,

∇ · v = 0,

∂tk + v · ∇k −∇ · (µturb(k)∇k) +
k
√
|k|
`
− νturb(k)|Dv|2 = 0,

and is mathematically studied and simulated in more details in [Lew97a, CRL14]. A modi-

fied version of the NSTKE in which an additional term (the backscatter term) −α∇·(`D∂tv)

will be added into the first equation in (1.1.32) for some constant α > 0. This version follows

by employing the Reynolds stress of the form (1.1.15) instead of (1.1.13). We will explain

why we should take into account the form (1.1.15) in some particular case rather than the

usual one, see more details in the modeling part in Chapter 2. This model will be presented

in more details in Chapter 2.

1.1.4 Recently developments on the study of turbulence

This part aims to present recently mathematical theory on the study of turbulence. We

start with the NSE, which is known as describing sufficiently accuracy incompressible ho-

mogeneous Newtonian fluids. Let us consider the NSE on Ω = [0, 2π]3 in the periodic case

with the body force f = 0 for simplicity

(1.1.33)

{
∂tv + (v · ∇)v − ν∆v +∇p = 0,

∇ · v = 0.
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It is well-known that sufficient regular solutions satisfy the energy balance law28, i.e.,

(1.1.34)
d

dt
e(t) = −ν

∫
Ω
|∇v(t)|2 dx ∀t > 0,

where the total kinetic energy given by

e(t) :=
1

2

∫
Ω
|v(t)|2 dx ∀t > 0.

It can be seen from (1.1.34) that it could be formally expected that the energy dissipation

rate vanishes as ν → 0. However, both physical and numerical observations show that it

is not true. More precisely, the dissipation rate is finite and positive, which is known as

”anomalous dissipation”. In the early of 1940s, Kolmogorov [Kol41] pioneered the study of

statistical theory of turbulent flows. That means the components v1, v2, v3 of the velocity

vector field v can be assumed to be random variables. Moreover, Kolmogorov’s theory

predict that the energy dissipation is strictly positive and does not depend on ν as ν →
0 which is tested in [Fri95, Chapter 5]. He introduced the concept of energy cascade29

that improved Richardson’s theory30 in 1922 [Ric07, page 66]. Moreover, under suitable

similarity and isotropy assumptions, Kolmogorov derived his famous −5/3 law31 that there

exists an inertial range of wavenumber [k1, k2] such that the energy spectrum E(k) satisfies

(see Figure 1.1 below)

(1.1.35) E(k) = CE2/3k−5/3 ∀k ∈ [k1, k2],

where C is a dimensionless constant. In addition the authors in [CRL14] used the similarity

assumption that there exists [k1, k2] such that

(1.1.36) [k1, k2] ⊂
[

2π

`
,
2π

λ0

]
,

28Taking L2-scalar product in (1.1.33) by v and using the facts ((v · ∇)v,v) = (∇p,v) = 0.
29We know from [CRL14, Chapter 5]: ”the energy of large eddies is transferred to smaller eddies, the

energy of which is transferred to even smaller eddies, and so on up to a final eddy size λ0, known as the
Kolmogorov scale, with an associated time scale τ0. Both λ0 and τ0 are functions of the viscosity ν and the
turbulent dissipation E . Dimensional analysis therefore yields

λ0 = ν3/4E−1/4 and τ0 = ν1/2E−1/2.”

This is also understood as the transfer of energy from the low wavenumbers to the high wavenumbers.
30”Big whirls have little whirls that feed on their velocity, and little whirls have lesser whirls and so on to

viscosity-in the molecular sense.”
31In fact Kolmogorov did not derive the −5/3 law but the 2/3 law in [Kol41]. That is there exists an

inertial range [r1, r2], where 0 < r1 < r2, such that

|v(x+ r)− v(r)|2 ≈ E2/3k2/3 ∀r ∈ [r1, r2].

However, the −5/3 law can be derived by using the principles in his work. Therefore, this law is always
attributed to Kolmogorov.
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where ` the Prandtl mixing length and λ0 = ν3/4E−1/4 the Kolmogorov scale and the scale

separation assumption32 to rederived the −5/3 law. Then at least formally by (1.1.36) k2

might goes to ∞ as ν → 0. The latter limit reminds us to the Euler equations.

Figure 1.1: The −5/3 law (energy spectrum log-log curve).

As already mentioned, the NSE (1.1.33) is formally reduced to the Euler equations as ν → 0,

i.e.,

(1.1.37)

{
∂tv + (v · ∇)v +∇p = 0,

∇ · v = 0.

Therefore, the energy balance law of (1.1.37) is given by

(1.1.38)
d

dt
e(t) = 0 ∀t > 0,

which implies that the total kinetic energy is preserved if the solutions to (1.1.37) are smooth

enough. In his famous paper in 1949 [Ons49], Onsager proposed that the ”anomalnous

dissipation” for weak solutions to the Euler equations might occur as a consequence of the

energy cascade. Based on his idea we can write his prediction down in the modern PDE

language as follows:

Onsager’s conjecture. Let (v, p) be a weak solution to the Euler equations (1.1.3) with

|v(t,x)− v(t,y)| ≤ C|x− y|α ∀x,y ∈ [0, 2π]3, t ≥ 0,

where C does not depend on x,y, t. Then

(a) If α > 1/3 then E(t) is necessarily a constant;

32That is the mixing length ` is locally assumed as a constant and λ0 << `. Note that for high Reynolds
number flows, that is, turbulent flows, this assumption is usually satisfied.

17



CHAPTER 1. INTRODUCTION

(b) If α < 1/3 then there are solutions for which E(t) is strictly decreasing.

It is well-known that the positive part (a) was proved in [Eyi94, CET94, ES06, CCFS08].

However, the negative part (b) is much more complicated and just recently is completed in

a series of efforts. It is partially solved in [Buc14, Buc15, BDLIS15, DS17, DLS10, DLS09,

DLS13, DLS14, Ise13, Sch93, Shn97a, Shn00] and is finally completed in [Ise18], see also an

improvement of the latter one in [BdLSV19]. In the case of bounded domain the solution

of part (a) in the conjecture is provided in [BT18, DN18, NN19a, BTW19]. We prefer the

readers to [DLS19] for a discussion on the connection between turbulence and geometry.

For more discussion on the conjecture we prefer the reader to a survey on convex integration

and phenomenologies in turbulence in [BV19a].

1.1.5 Some α-regularization models

A part of this thesis deals with some regularization models to the NSE. For convenience,

we say a little bit about these models.

On one hand one of the main aims of α-regularization models is to regularize the nonlinear

term in the NSE. This term is usually the source of difficult issues. On the other hand

these models are used to provide numerical simulations of turbulence flows. As mentioned

in the previous part, sometimes it is impossible to perform a DNS on the NSE. It is due to

the Kolmogorov’s theory which predicts that simulating incompressible turbulent flows by

using the NSE requiring N ≈ O(Red
2/4) degrees of freedom where d = 2, 3. This number is

too large, for example N ≈ 1018 to simulate some realistic flows such as geophysical flows

by using the NSE. Nowadays, even modern computers are still not powerful enough to do

this job.

As mentioned before, the convection term in the NSE will be regularized by a term N(vα).

More precisely, α-regularization models are given by

(1.1.39)

{
∂tvα +N(vα)− ν∆vα +∇pα = f ,

∇ · vα = 0,

where the regularized convection term given by

(1.1.40) N(vα) =


−vα × (∇× vα) Navier-Stokes-α model,

(vα · ∇)vα Leray-α model,

(vα · ∇)vα Modified Leray-α model,

(vα · ∇)vα ”Simplified Bardina” model,

here the differential filtered vα is described by the solution of the following equations

−α2∆vα + vα = vα,
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subjected to the periodic boundary conditions. It seems that Leray was the first author

who has contributed on this direction. In his paper in 1934 he replaced the term (v ·∇)v by

(v·∇)v where v = v?ρα where ? denotes the standard convolution and ρα be a mollifier, see

more details in [Ler34b, page 207]. The main reason of this regularization is that Leray did

not succeeded to provide regular solutions to the NSE for all time. The models in (1.1.40)

are established and studied by Foias-Holm-Titi [FHT01, FHT02], Cheskidov-Holm-Olson-

Titi [CHOT05], Ilyin-Lunasin-Titi [ILT06] and Layton-Lewandowski [LL03, LL06], Cao-

Lunasin-Titi [CLT06], respectively. These models are called α-models since these ”formally”

reduce to the NSE as α tends to zero. After Leray’paper in 1934, the Navier-Stokes-α model

(NS-α in the sequel) (also known as the viscous Cammassa-Holm model with its inviscid

1D form introduced in [CH93]) is the first one in the family of α-models. Moreover, the

inviscid NS-α –with ν = 0 in the NS-α model (1.1.40)– model was introduced in [HMR98] as

a natural generalization of the 1D Cammassa-Holm model. A series of papers by Chen-Foias-

Holm-Olson-Titi [CFH+98, CFH+99a, CFH+99b] provided a relation between solutions to

the NS-α model and turbulence. In fact the authors were able to establish explicit steady

analytical solution of the NS-α which is compared successfully with numerical tests in the

case of turbulent flows in pipes and channels.

Note that the Bardina closure model of turbulence was first introduced by Bardina-Ferziger-

Reynolds in [BFR80] to perform simulations of the atmosphere. A simplified version of the

Bardina’s model, was modeled and studied in [LL03, LL06], then in [LB18] the case of whole

space. The convection term in this model is designed by N(uα) = ∇ · (uα ⊗ uα). Then

almost at the same time Cao-Lunasin-Titi proposed a variant of this model [CLT06], which

is the one we will consider and that we still call ”Simplified Bardina model” for simplicity.

In fact in lectures it is sometimes called the zeroth ADM (Approximate deconvolution

modeling) model.

The turbulence models above belong to the class of Large Eddy Simulation models (LES).

Note that in the 3D case global solutions to these models are more regular than that of

the NSE and are unique as well. It is not in the case of the NSE where in general the

global existence of strong solutions is not known so far and only global weak solutions are

known. In addition, it has been proved that the solutions of α-models reduce to that of

the NSE as the regularization parameter α goes to zero, see for instance in [FHT02, LL06].

More precisely, the authors provided that regular solutions of Navier-Stokes-α and simplified

Bardina models converge to a weak solution to the NSE as α→ 0.
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1.2 Motivations of the thesis

In this section we will explain to the readers the motivations of the study in this thesis.

On one hand we provide modeling of new turbulent models and then using analysis tools

to prove existence and uniqueness of regular weak solutions in Chapters 2 and 4. On the

other hand we estimate the error of some α-regularization models to the NSE in Chapter 3

with giving explicitly the rate of convergence.

1.2.1 Generalized Navier-Stokes-Voigt models

By basic turbulence modeling we take into account the backscatter term in the NSE. It

yields an additional term which has a form −∇ · (`D∂tv). It is known as the Kelvin-

Voigt form. The model we get is considered as a generalization of the Navier-Stokes-Voigt

equations (NSVE). The latter was first formulated and mathematical studied by Oskolkov,

see [Osk73, Osk80], who proved the existence and uniqueness of weak and strong solutions

in some particular sense. Several mathematical problems which are related to the NSVE

have been studied by Kalantarov-Titi [KT09], Levant-Ramos-Titi [LRT10] and Ramos-Titi

[RT10]. The authors provided a relation between the NSVE and turbulence modeling. In

addition, in [LT10] Larios-Titi showed the connection between the NSVE and the simplified

Bardina’s model, which is considered as a Large Eddy Simulation model. In addition

an interpretation of the NSVE in terms of approximate deconvolution models has been

studied by Berselli-Kim-Rebholz in [BKR16]. The main aim of Chapter 2 is to provide the

mathematical theory for the NSVE which as our knowledge was not modeled and studied

so far. In addition we also make a connection between the NSVE and the turbulent kinetic

energy equation-the equation satisfied by k. More precisely, the existence result to the

Navier-Stokes-Voigt turbulent kinetic energy system is provided.

1.2.2 Modeling error of α-turbulent models

As mentioned in the previous part, it is known that vα → v as α → 0 in some particular

sense, where v and vα are solutions to the NSE and α-models in (1.1.40). Therefore, a

natural question comes in mind how fast vα goes to v as α tends to zero, where v denotes

solutions to the NSE. Can we explicitly find the rate for the convergence? That is the

main motivation of the study in Chapter 3. More precisely, by employing special properties

of the Stokes operator and also of the nonlinear term in the 2D periodic case we provide

several results to measure the rate of convergence of vα to v as α goes to zero. The rate

of convergence is investigated for the last three models above in (1.1.40). We do not study

the case of the Navier-Stokes-α since in the 2D case the rotational convection term is not
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well-defined. The study in this direction comes back to Cao and Titi [CT09] (for four α-

models above) in the 2D case and Chen-Guenther-Kim-Thomann-Waymire [CGK+08] (for

the Navier-Stokes-α-model), Dunca [Dun18] (for four α-models above) in the 3D case. All

authors provided the rate of convergence in the periodic setting. The aim of Chapter 3 is

to improve the results provided by Cao-Titi [CT09] in the 2D case. Moreover, we also give

remarks on the 3D case where the rate of convergence might not be obtained in the case of

existence of finite time blow up.

1.2.3 Rotational forms for LES turbulent models

We apply the mean operator to the rotational NSE which yields a systems satisfied by the

mean quantities. However, as usual the rotational term raises a problem of closing the

system. The basic turbulence modeling suggests us to consider a new form for the Reynolds

stress which has a rotational form. As a result, the obtained system is added a rotational

back-scatter term ∇× (`2∂tω). Moreover, the eddy viscosity term is suggested to consider

in the form ∇ × (κ`2|ω|ω). Both new terms yield a new LES turbulent model which is

modeled and analyzed in Chapter 4.

1.3 Contributions of the thesis

This section aims to summarize the main results of the thesis which will be presented in

more details in Chapters 2, 3 and 4 below.

1.3.1 Results in Chapter 2

We will investigate the following systems in Chapter 2: first the generalized Navier-Stokes-

Voigt equations (GNSVE)

(1.3.41)

{
∂tv − α∇ · (`(x)D∂tv) +∇ · (v ⊗ v)− ν∆v −∇ · (νturbDv) +∇π = f ,

∇ · v = 0,

and then the Navier-Stokes-Voigt turbulent kinetic energy (NSVTKE) system

(1.3.42)


∂tv − α∇ · (`(x)D∂tv) +∇ · (v ⊗ v)− ν∆v −∇ · (νturb(k)Dv) +∇π = f ,

∇ · v = 0,

∂tk + v · ∇k −∇ · (µturb(k)∇k)− νturb(k)|Dv|2 + (`(x) + η)−1k
√
|k| = 0,

for some modified mean pressure π and some constants α, η > 0. Both systems are supple-

mented by the homogeneous Dirichlet boundary conditions. From basic turbulence model-

ing we employ a new form of Boussinesq assumption (1.1.15) which allows us to model the

systems (1.3.41). The existence and uniqueness of regular weak solutions are provided for
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the GNSVE (1.3.41). For the NSVTKE (1.3.42), we also provide an existence result but

the uniqueness of this kind of weak solutions is not known so far. The proofs are mostly

based on the standard Galerkin method, using some compactness results. The main results

in Chapter 2 are summarized as follows:

Theorem 1.3.1. Let v0 ∈ V , f ∈ L2(0, T ;H−1/2(Ω)3) and νturb ∈ L∞([0,∞[×Ω) such

that νturb ≥ 0 a.e. in [0,∞[×Ω where Ω is a bounded in R3. Then, there exists a unique

regular-weak solution of the initial boundary value problem (1.3.41) in [0, T ], which satisfies

for all t ≥ 0 the energy equality:

E(t)(α, `) +

∫ t

0
‖(2ν + νturb)1/2Dv(s)‖2 ds = E(0)(α, `) +

∫ t

0
〈f(s),v(s)〉 ds,

where E(t)(α, `) :=
1

2

(
‖v(t)‖2 + α‖

√
`Dv(t)‖2

)
33.

Theorem 1.3.2. Let be given v0 ∈ V , f ∈ L2(0, T ;H−1/2(Ω)3) and 0 ≤ k0 ∈ L1(Ω).

Assume that νturb and µturb are given by (2.5.53) and (2.5.54). Then, there exists a weak

solution (v, k) to (1.3.42) such that:

v ∈ L∞(0, T ;V ) ∩W 1,2(0, T ;V1/2),

and

k ∈ L∞(0, T ;L1(Ω)), k ∈
⋂

1<p<5/4

Lp(0, T ;W 1,p(Ω)).

Moreover, k ≥ 0 a.e. in (0, T )× Ω.

1.3.2 Results in Chapter 3

Chapter 3 is devoted to study the rate of convergence of weak solutions vα to α-models

(1.1.40) to that of v to the NSE. The analysis is investigated in the 2D periodic case. More

precisely, we improve the results provided by Cao and Titi in [CT09]. Let e := v − vα

stands for the error. The main results of Chapter 3 are presented as follows:

Theorem 1.3.3. Let Ω = [0, L]2 be a periodic domain. Assume that v0 ∈ PσH1(Ω)2 and

f ∈ L2(R+;PσL2(Ω)2). Then, it holds ∀s ≥ 0:

‖e(s)‖2 + ν

∫ s

0
‖∇e‖2 dt ≤ C1α

3 for all α-models,

‖∇e(s)‖2 + ν

∫ s

0
‖∆e‖2 dt ≤

 C2α
2,

C3α
2

(
log

(
L

2πα

)
+ 1

)
,

for Leray-α and simplified Bardina, modified Leray-α models, respectively, where Ci for

i = 1, 2, 3 are time-independent constants and only depending on ν and the initial data, and

Pσ denotes the Leray projection.
33Note that ‖ · ‖ always denote the usual L2(Ω) norm.
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1.3.3 Results in Chapter 4

In Chapter 4 we will provide the modeling and analysis of the following LES turbulent

model

(1.3.43)

{
∂tv + curl (`2 ∂tω) + ω × v − ν∆v + curl (κ`2|ω|ω) +∇π = f ,

div v = 0.

The main mathematical result is provided in the following, under suitable assumptions on

the domain Ω and the mixing length `.

Theorem 1.3.4. Assume that f ∈ L2(0, T ;L2(Ω)3) and v0 ∈ W 1,3
0,σ (Ω). Then, system

(1.3.43) with v(0) = v0 in Ω and v = 0 on (0, T )× ∂Ω has a unique regular-weak solution.

Note that the proof of Theorem 1.3.4 is more complicated than that of Theorem 1.3.1. More

precisely, we first provide the analysis for the ε-regularized system then take the limit as

ε→ 0.

1.4 Organization of the thesis

The thesis is divided into four chapters. Chapter 1 is for the introduction. Chapters 2 to

4 are for presenting the contributions of the thesis. The structure of each chapter will be

described below:

Chapter 1 is organized as follows: We start with a general introduction in Section 1.1 where

we present the history of the Euler equations and the NSE, a brief state of the art of these

equations, an introduction about turbulent flows with its recent developments and some

α-turbulent models. Section 1.2 explains why we study the problems in Chapters 2 and

3. Then the results in these chapters will be summarized in Section 1.3. Last, Section 1.4

provides a general structure of the present thesis.

Chapter 2 is organized as follows: Section 2.2 is devoted to modeling and to explain the

motivations for the systems of PDE we study. Then, in Section 2.3 we use functional analysis

and interpolation theory to provide estimates in various spaces, especially in H1/2(Ω).

The proof of the existence and uniqueness results for the generalized Navier-Stokes-Voigt

equations (2.4.27) and then also for model (2.1.1) is developed in Section 2.4. Finally, the

compactness result and analysis of the NSTKE-Voigt system is performed in Section 2.5.

Chapter 3 is organized as follows: In Section 3.2 we set the mathematical framework. In

Section 3.3 we derive from energy balances uniform-in-time energy (type) estimates for weak

solutions of the NSE and for all α-models as well. This is the main step before investigating

the rates of convergence in Section 3.4, where we prove the estimates (3.1.11)-(3.1.12).
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Section 3.5 is devoted to the study of the convergence rate for the pressure in which the

proof of (3.1.13) is provided. In Section 3.6, we make some additional remarks about the

3D case for which the situation is quite different.

Chapter 4 is organized as follows: In Section 4.2 we set the mathematical framework that

we use in the whole chapter. Sections 4.3 provide the turbulence modeling where Sub-

sections 4.3.1 and 4.3.2 are devoted to modeling and to explain the motivations for the

systems (4.1.4) and (4.1.5). The analysis of the obtained model from the previous section

is presented in Section 4.4 where the proofs of the main weighted estimate (4.4.31) and

Theorem 4.1.1 are provided in Subsections 4.4.1 and 4.4.2, respectively.
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Chapter 2

Turbulent flows as generalized
Kelvin-Voigt materials: modeling
and analysis

“Nothing that enters one from outside
can defile that person; but the things
that come out from within are what
defile.”

MK 7:15
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This chapter is devoted to present the results which have been published in [ABLN20].

Abstract: We perform a new modeling procedure for a 3D turbulent fluid, evolving towards

a statistical equilibrium. This will result to add to the equations for the mean field (v, p)

the term −α∇ · (`(x)Dvt), which is of the Kelvin-Voigt form, where the Prandtl mixing
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length ` = `(x) is not constant and vanishes at the solid walls. We get estimates for mean

velocity v in L∞t H
1
x ∩W

1,2
t H

1/2
x , that allow us to prove the existence and uniqueness of a

regular-weak solutions (v, p) to the resulting system, for a given fixed eddy viscosity. We

then prove a structural compactness result that highlights the robustness of the model. This

allows us to consider Reynolds averaged equations and pass to the limit in the quadratic

source term in the equation for the turbulent kinetic energy k. This yields the existence of a

weak solution to the corresponding Navier-Stokes turbulent kinetic energy system satisfied

by (v, p, k).

Key words: Fluid mechanics, Turbulence models, degenerate operators, Navier-Stokes

Equations, Turbulent Kinetic Energy.

2010 MSC: 76D05, 35Q35, 76F65, 76D03, 35Q30.

2.1 Introduction

The purpose of this chapter is to model incompressible turbulent flows as generalized vis-

coelastic materials involving the Prandtl mixing length ` (see e.g. Prandtl in [Pra10]),

to show the existence and uniqueness of regular-weak solutions to the resulting system of

Partial Differential Equations (PDE),

(2.1.1)

{
vt − α∇ · (`(x)Dvt) +∇ · (v ⊗ v)− ν∆v −∇ · (νturbDv) +∇p = f ,

∇ · v = 0,

for a given turbulent viscosity (eddy viscosity) νturb, when the motion takes place in a

bounded smooth domain Ω and Dirichlet conditions are given at the boundary. We then

study the existence weak solutions to the corresponding NSTKE1 system,

(2.1.2)


vt − α∇ · (`(x)Dvt) +∇ · (v ⊗ v)− ν∆v −∇ · (νturb(k)Dv) +∇p = f ,

∇ · v = 0,

kt + v · ∇k −∇ · (µturb(k)∇k)− νturb(k)|Dv|2 + (`+ η)−1k
√
|k| = 0,

where, to fix the notation,

• v is the mean velocity2, vt =
∂v

∂t
;

• Dv = 1
2(∇v +∇vt) is the deformation stress;

• p is the modified mean pressure;

1Here, RANS = Reynolds Averaged Navier-Stokes and NSTKE = Navier-Stokes-Turbulent-Kinetic-
Energy. NSTKE model is a specific RANS model.

2Usually, the mean (or averaged) velocity is denoted by v. Throughout the paper we omit the over-line
for simplicity, except in Section 2.2, devoted to turbulence modelling.
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• k is the Turbulent Kinetic Energy (TKE);

• ν > 0 is the kinematic viscosity, νturb the eddy viscosity;

• µturb is the eddy diffusion and η > 0 is a small constant;

• the length scale α is that of the boundary layer, given by the relation

(2.1.3) α =
ν

u?
,

here u? is the so called friction velocity (see [CRL14]);

• f is a given source term.

As usual, the systems are set in a bounded Lipschitz domain Ω ⊂ R3. The mixing length

` = `(x) ≥ 0 is defined over Ω and, according to well known physical laws (see (2.2.12)

and (2.2.13) below), 0 ≤ ` ∈ C1(Ω) and vanishes at the boundary Γ = ∂Ω as follows:

(2.1.4) `(x) ' d(x,Γ) = ρ(x), when x→ Γ, x ∈ Ω,

where d(x,Γ) denotes the distance of the point x from the boundary.

Model (2.1.1) is close to viscoelastic materials models, given by the Kelvin-Voigt relation:

(2.1.5) σ = E ε+ η εt,

where σ denotes the Cauchy stress tensor and ε the strain-rate tensor. In this case,

E is the modulus of elasticity and η the viscosity (see for instance Germain [Ger62] or

Gurtin [Gur81]). In fluid mechanics, ε = Dv, and this model is used to describe some non

Newtonian fluids, such as lubricants. For such flows, the law (2.1.5) becomes

σ = −p Id + νDv + γ2Dvt ν, γ ∈ R+,

that yields the incompressible Navier-Stokes-Voigt equations:

(2.1.6)

{
vt − γ2∆vt +∇ · (v ⊗ v)− ν∆v +∇p = f ,

∇ · v = 0.

Mathematical investigations about system (2.1.6) were first carried out by Oskolkov, see

[Osk73, Osk80], who proved the existence and uniqueness of weak and strong solutions in

some particular sense. Then, several mathematical problems concerning (2.1.6) have been

studied by Titi et al. [KT09, LRT10, RT10], making a clear relation between Navier-Stokes-

Voigt and turbulence modeling. In addition, in [LT10] Larios-Titi showed the connection

between the Navier-Stokes-Voigt equations and the simplified Bardina’s model introduced
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in [LL06], designed as a Large Eddy Simulation model. In addition an interpretation of the

Navier-Stokes-Voigt equations in terms of approximate deconvolution models is also given

in [BKR16].

In this chapter we connect the Prandtl-Smagorinsky’s model with the Turbulent Kinetic

Energy (TKE) model, to calculate the eddy viscosity νturb. To make it clear, let σ(r) denote

the Reynolds stress. We will show how, combining the energy inequality with the equation

satisfied by k (without any closure assumption), we are led to set –in certain specific regimes,

such as the convergence to stable statistical states see (2.2.20)– the following constitutive

law

σ(r) = −α`Dvt − νturbDv +
2

3
k Id,

instead of the usual one

(2.1.7) σ(r) = −νturbDv +
2

3
k Id,

associated with the classical Boussinesq assumption. This yields the PDE system (2.1.1)

including the term −α∇ · (`Dvt), and then also the NSTKE system (2.1.2) after having

performed the usual closure procedure about k, where νturb = νturb(k) = `
√
k.

Turning to the analysis of the systems, we observe that –according to assumption (2.1.4)

about the mixing length `– the additional generalized Kelvin-Voigt term −α∇ · (`Dvt)

enforces for the equations a natural functional structure in H1/2(Ω) = [H1(Ω), L2(Ω)]1/2,

cf. Lions & Magenes [LM72], which is a critical scaling-invariant space for the Navier-Stokes

equations. In particular, we obtain for the velocity sharp estimates in W 1,2(0, T ;H1/2(Ω)3),

as well as in L∞(0, T ;H1
0 (Ω)3). We are then able to prove the existence and uniqueness of

regular-weak solution to (2.1.1) (see Theorem 2.4.1 and the generalisation in Theorem 2.4.2).

However, we believe that the most interesting result of this paper is the compactness result

we prove in Lemma 2.5.1. We consider an eddy viscosities sequence (νnturb)N∈N which is

bounded in L∞([0,∞[×Ω) and in addition converges a.e. to νturb in [0,∞[×Ω as N → ∞.

We also show that the corresponding regular-weak sequence of solution (vn)N∈N converges,

in some sense, to the regular-weak solution v of the limit problem with νturb as eddy viscosity.

Moreover, we get the convergence of the energies, that is νnturb|Dvn|2 → νturb|Dv|2 in the

sense of the measures.

This compactness result allows us to prove the existence of a solution to the NSTKE-Voigt

system (2.1.2) (see Theorem 2.5.1 below). We stress that the usual system coupling v, p.

and k only yields a variational inequality for k when passing to the limit in the equations,

because of the lack of strong convergence of the energies (see [CRL14, Lew97a]). This

observation makes Theorem 2.5.1 a relevant and original result.
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Plan of the chapter. This chapter is organized as follows: Section 2.2 is devoted to

modeling and to explain the motivations for the systems of PDE we study. Then, in

Section 2.3 we use functional analysis and interpolation theory to provide estimates in

various spaces, especially in H1/2(Ω). The proof of the existence and uniqueness results for

the generalized Navier-Stokes-Voigt equations (2.4.27) and then also to the model (2.1.1) is

developed in Section 2.4. Finally, the compactness result and analysis of the NSTKE-Voigt

system is performed in Section 2.5.

2.2 Kelvin-Voigt modeling for turbulent flows

In this section (and only in this section) v and p denote the velocity and pressure of the fluid

respectively (and not the mean fields unlike in the rest of the paper). Hence, the couple

(v, p) solves the Navier-Stokes equations (NSE),

(2.2.8)

{
vt +∇ · (v ⊗ v)− ν∆v +∇p = f ,

∇ · v = 0.

We first recall some results about basic turbulence modeling to derive the equation for the

mean v and to define the Reynolds stress σ(r). Then, we show how –when simultaneously

using the Prandtl-Smagorinsky, the turbulent kinetic energy models, and the equation satis-

fied by the TKE– we get the additional term −α∇·(`Dvt) in the equation for v. This occurs

in specific regimes, such as the convergence to a statistical equilibrium (see Remark 2.2.2).

We wish to mention that a very close modeling process has been previously performed

in Rong, Layton, and Zhao [RLZ19]. The latter paper gave us some inspiration for the

modelling procedure we develop here. One main difference is that we study the TKE

equations, while in their paper, Rong, Layton, and Zhao considered a rotational structure,

without involving the equation for the turbulent kinetic energy. Moreover, they were looking

at back-scatter terms, so that our point of view and interpretation are –at the very end–

rather different.

2.2.1 Recalls of basic turbulence modeling

According to the Reynolds decomposition, v and p are decomposed as the sum of their

mean and fluctuation (cf. [BIL06, CRL14])

v = v + v′, and p = p+ p′,
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where the averaging filter is linear, commutes with any differential operator (namely Dψ =

Dψ), and it is idempotent (that is ψ = ψ). From these assumptions, one gets the relation

v ⊗ v = v ⊗ v + σ(r),

where the Reynolds stress σ(r) is given by

σ(r) := v′ ⊗ v′.

Therefore, applying the mean operator to the NSE (4.1.1) yields

(2.2.9)

{
vt +∇ · (v ⊗ v)− ν∆v +∇ · σ(r) +∇p = f ,

∇ · v = 0.

To “close” (2.2.9), one must express σ(r) in terms of mean quantities. As we already said

in the introduction, the Boussinesq assumption [Bou77] yields

σ(r) = −νturbDv +
2

3
k Id,

where we recall that νturb is the eddy viscosity, k = 1
2 |v′|2 the turbulent kinetic energy

(TKE), and Dv = 1
2(∇v +∇vT ) the deformation tensor.

One main challenge in turbulence modelling is the determination of νturb. In what follows,

we combine the Prandtl-Smagorinsky’s model

(2.2.10) νturb = `
√
α`|Dv|,

where the boundary layer length scale α is given by (2.1.3), and the NSTKE model with

νturb is given by

(2.2.11) νturb = `
√
k.

Dimensionless constants may be involved in the above equations. We have set them equal

to 1 for the sake of simplicity.

Observe that both models involve the Prandtl mixing length `. In the case of a flow over a

plate Ω = R2 × {z > 0}, one finds in Obukhov [Obu46] the following law

(2.2.12) ` = `(z) = κz,

where κ ∈ [0.35, 0.42] is the Von Kármán constant. A more sophisticated formula (however

very popular especially for the use in the computation of the turbulent channel flow) can

be found in Van Driest [VD56]:

(2.2.13) ` = `(z) = κz(1− e−z/A),

where A depends on the oscillations of the plate and ν. Alternative formulas are provided

in [LPMP18]. In all cases, ` satisfies the law (2.1.4) and in particular it vanishes at the

solid boundary of the domain.
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2.2.2 Modelling process

We start from the natural energy inequality3 deduced from the equation (2.2.9) by inte-

gration by parts, at any time positive time t (assuming as usual that solutions are smooth

enough to carry on all the calculations)

(2.2.14) 〈vt,v〉+ ν‖∇v(t)‖2 + 〈∇ · σ(r),v(t)〉 ≤ 〈f(t),v(t)〉.

We aim to formulate the contribution of the term

T (t) = 〈∇ · σ(r),v(t)〉,

by means of mean quantities. This which will be deduced by using the equation satisfied

by k (see [CRL14, Sec. 4.4.1])

∂tk +∇ · (v k + e′v′) = −σ(r) : ∇v − ε+ f ′ · v′,

where e = k + e′ = 1
2 |v
′|2 denotes the kinetic energy of the fluctuations, and ε is the

turbulent dissipation,

ε := ν|Dv′|2.

Integrating formally the equation satisfied by k in space –leaving apart eventual boundary

condition issues– leads to

d

dt

∫
Ω
k(t) = T (t)−

∫
Ω
ε(t) + 〈f ′,v′〉,

that we insert in the inequality (2.2.14) to obtain

(2.2.15) 〈vt,v〉+
d

dt

∫
Ω
k + ν‖∇v(t)‖2 +

∫
Ω
ε(t) ≤ 〈f(t),v(t)〉+ 〈f ′(t),v′(t)〉.

In order to eliminate the term
d

dt

∫
Ω
k from (2.2.15), we enforce equality between the

Prandtl-Smagorinsky’s model (2.2.10) and the NSTKE one (2.2.11), which leads to the

closure equality

(2.2.16) k = α`|Dv|2.

Then, by using (2.2.16), we get the formal identity

(2.2.17)
d

dt

∫
Ω
k = α

d

dt

∫
Ω
`|Dv|2 = −2〈α∇ · (`Dvt),v〉.

Finally, we combine (2.2.15) with (2.2.17), which leads to the inequality

(2.2.18) 〈vt − 2α∇ · (`Dvt)− ν∆v,v〉+

∫
Ω
ε(t) ≤ 〈f(t),v(t)〉+ 〈f ′(t),v′(t)〉.

3We use ‖ · ‖ for the L2-norm in this section and 〈 . , . 〉 for the associated scalar product.
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Comparing (2.2.14) with (2.2.18), suggests to put (up to a redefinition of the parameter α)

σ(r) = −α`Dvt − νturbDv +
2

3
k Id,

and yields the following energy inequality

(2.2.19)
1

2

d

dt
(‖v(t)‖2 + α‖

√
`Dv‖2) + ν‖∇v(t)‖2 + ‖

√
νturbDv‖2 ≤ 〈f(t),v(t)〉.

Comparing inequalities (2.2.19) and (2.2.18), we see that all this makes sense when:

(2.2.20) ‖
√
νturbDv‖2 + 〈f ′(t),v′(t)〉 ≤ ‖

√
ε(t)‖2,

and in this case the system satisfied by v becomesvt − α∇ · (`Dvt) +∇ · (v ⊗ v)− ν∆v −∇ · (νturbDv) +∇
(
p+

2

3
k

)
= f ,

∇ · v = 0.

Remark 2.2.1. When `(x) is constant and equal to 2α (to set ideas), and as ∇ · vt = 0,

we have α∇ · (`(x)Dvt) = α2∆vt. Therefore, we get in this case the usual (constant

coefficients) Kelvin-Voigt term involved in Equation (2.1.6). Observe that in our model the

linear differential operator −∇ · (`(x)D) turns out to be degenerate at the boundary, hence

different mathematical tools need to the invoked.

Remark 2.2.2. Condition (2.2.20) asks for some comments. To see if it can be justified, let

us take a constant source term f(t) = f , without turbulent fluctuation, which means f ′ = 0.

In this case relation (2.2.20) simplifies to

(2.2.21) ‖
√
νturbDv‖2 ≤ ‖

√
ε(t)‖2.

The usual closed equation for k is

kt + v · ∇k −∇ · (µturb∇k) = νturb|Dv|2 − ε,

which gives (while ignoring possible boundary conditions)

d

dt

∫
Ω
k = ‖

√
νturbDv‖2 − ‖

√
ε(t)‖2.

Therefore, (2.2.21) indicates a decrease of TKE, which means a decrease of the turbulence,

towards a laminar state, or a stable statistical equilibrium, such as a grid turbulence.
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2.3 Functional setting and estimate

The analysis of system (2.1.1) yields immediately standard a priori estimates in L∞t L
2
x and

L2
tH

1
x, taking the solution itself as test function. The question is whether the Voigt term

−α∇ · (`Dvt) provides additional regularity as in the case with 0 < l = const., see Larios

and Titi [LT10]. The issue is the degeneration of the mixing length ` at the boundary,

according to (2.3.22) below. The purpose of this section is to derive from the interpolation

theory a general estimate, that will later on enable us to show that the term −α∇ · (`Dvt)

yields additional W 1,2(0, T ;H1/2) and L∞(0, T ;H1) regularity.

2.3.1 Framework and preliminaries

As usual in mathematical fluid dynamics, we use the following spaces,

V =
{
ϕ ∈ D(Ω)3, ∇ ·ϕ = 0 in Ω

}
,

H =
{
v ∈ L2(Ω)3, ∇ · v = 0 in Ω, v · n = 0 on Γ

}
,

V =
{
v ∈ H1

0 (Ω)3, ∇ · v = 0 in Ω
}
,

where D(Ω) = C∞0 (Ω) with the topology used in distribution theory and we recall that V
is dense in H and V for their respective topologies, see Girault and Raviart [GR86]. Here

L2(Ω) and H1
0 (Ω) stand for the usual Lebesgue and Sobolev spaces.

Throughout the rest of the paper, the mixing length ` = `(x) ∈ C1(Ω) is such that

(2.3.22)

{
∀K ⊂ Ω, K compact, inf

K
` > 0,

`(x) ' d(x,Γ) = ρ(x), when x→ Γ, for x ∈ Ω.

According to the classical interpolation theory we recall that

H1/2(Ω) = [H1(Ω), L2(Ω)]1/2,

and also, recalling the behavior of ` at the boundary from (2.3.22), we can introduce the

Lions-Magenes space

H
1/2
00 (Ω) = [H1

0 (Ω), L2(Ω)]1/2 =
{
u ∈ H1/2(Ω), s.t. `−1/2u ∈ L2(Ω)

}
,

cf. [LM72, Ch. 1]. In the following we will consider the following Hilbert space

V1/2 =
{

v ∈ H1/2(Ω)3 ; ∇ · v = 0 in Ω and v · n = 0 on Γ
}

equipped with the norm of H1/2(Ω)3.

Finally, recall that when Ω is connected, the differential operator D = ∇+∇t
2 is well defined

over Hs(Ω)3 whatever s ≥ 0. In addition (see Nečas and I. Hlaváček [NH80]),

K := KerD =
{
v ∈ Hs(Ω)3 s.t. ∃ (a,b) ∈ R3 ×R3; v(x) = b× x + a

}
,
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and we recall the following Korn inequality

(2.3.23) ∃ c(Ω) : ∀v ∈ H1(Ω)3, ‖v‖H1(Ω)3/K ≤ C‖Dv‖L2(Ω)9 ,

where for any given Banach space B and any closed subspace E ⊂ B, B/E denotes the

quotient space. Moreover, for any v ∈ H1
0 (Ω)3, we have ‖v‖H1(Ω)3 ≤ C‖Dv‖L2(Ω)9 , because

in this case the kernel K is reduced to 0.

2.3.2 Main general estimate

We deduce now the most relevant inequality, which will be used to prove a priori estimates

for the generalized Voigt model, when using the solution itself as test function.

Theorem 2.3.1. Let v ∈ D′(Ω)3 be such that
√
`Dv ∈ L2(Ω)9. Then v ∈ H1/2(Ω)3 and

there exists a constant C = C(Ω) such that

(2.3.24) ‖v‖H1/2(Ω)3/K ≤ C‖
√
`Dv‖L2(Ω)9 .

In particular,

(2.3.25) W =
{

v ∈ H;
√
`Dv ∈ L2(Ω)9

}
↪→ V1/2,

with continuous embedding.

Proof. We argue in two steps.

Step 1. Let v ∈ D′(Ω)3 such that
√
`Dv ∈ L2(Ω)9 and ϕ ∈ D(Ω)9. As Dv ∈ L2

loc(Ω)3, then

we have

|〈Dv,ϕ〉| =
∣∣∣∣∫

Ω

√
`Dv :

ϕ√
`

∣∣∣∣ ≤ C‖√`Dv‖
L2(Ω)9

‖ϕ‖
H

1/2
00 (Ω)9 .

Because of the density of D(Ω) in H
1/2
00 (Ω), this shows that Dv ∈

[
H

1/2
00 (Ω)9

]′
with the

estimate

(2.3.26) ‖Dv‖[
H

1/2
00 (Ω)9

]′ ≤ C‖√`Dv‖L2(Ω)9 .

Step 2. According to [ACGK06, CMM18], we have

∀v ∈ L2(Ω)3, ‖v‖L2(Ω)3/K ≤ C‖Dv‖H−1(Ω)9 .

Therefore, we deduce from classical interpolation theorems and from the following identities

(see in [LM72]),

[H1(Ω)3/K, L2(Ω)3/K]1/2 = H1/2(Ω)3/K, and [L2(Ω), H−1(Ω)]1/2 = [H
1/2
00 (Ω)]′,
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the inequality

‖v‖H1/2(Ω)3/K ≤ C‖Dv‖[
H

1/2
00 (Ω)9

]′ .
Hence the estimate (2.3.24) follows by using (2.3.26) and obviously also the embedding (2.3.25).

2.4 Well-posedness for the generalized Navier-Stokes-Voigt
equations

In this section we start with the analysis of system (2.1.1) without eddy viscosity, that

means νturb = 0. This is done both for simplicity of presentation and to highlight the role

of the generalized Voigt term. The resulting system, called generalized Navier-Stokes-Voigt

equations, is the following:

(2.4.27)



vt − α∇ · (`Dvt) + (v · ∇) v − ν∆v +∇p = f in (0, T )× Ω,

∇ · v = 0 in (0, T )× Ω,

v|Γ = 0 on (0, T )× Γ,

v|t=0 = v0 in Ω,

which is set in QT = (0, T )× Ω, where Ω is a given Lipschitz bounded domain in R3 with

its boundary Γ = ∂Ω, T a fixed positive time4, and ` satisfies (2.1.4). The main results of

this section are the existence and uniqueness of regular-weak solutions (see Definition 2.4.1

below), when the initial velocity v0 ∈ V .

Throughout the rest of the paper, the L2-norm of a given u is simply denoted by ‖u‖, while

‖ · ‖p and ‖ · ‖s,p denote the standard Lp(Ω) and W s,p(Ω) norms, respectively.

2.4.1 Strong solutions

This aim of this subsection is to prove that given a positive finite time T , any strong

(classical) solution v of (2.4.27) has natural bounds in L∞(0, T ;V )∩W 1,2(0, T ;V1/2) derived

from energy balances, showing that the term −α∇·(`(x)Dvt) –despite the degeneracy at the

boundary– brings a strong regularizing effect on the system. In particular, the generalized

Voigt term provides stronger a priori estimate when compared to the usual (non regularized)

Navier-Stokes equations, since it allows to show bounds in critical scaling-invariant spaces

à la Kato-Fujita. These estimates are essential for proving the existence result of the next

subsection.

4Remind that when ∇·v = 0, then ∇·(v⊗v) = (v ·∇)v. We use either of these forms without necessarily
warning, depending on the situation.
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Following [Ler34b, Lew19], when considering v0 ∈ V ∩C(Ω)3, we say that (v, p) is a strong

solution to (2.4.27) over QT = [0, T ]× Ω, if

• ∀ τ < T , v ∈ C2(Qτ )3, p ∈ C1(Qτ ), and they satisfy the relations ((2.4.27), i), ii)) in

the classical sense in Qτ = [0, τ ]× Ω,

• v(t, ·) ∈ C(Ω)3 for all t < T , and v(t, ·) = 0 on Γ,

• v(t, ·) uniformly converges to v0 as t→ 0+.

Remark 2.4.1. We frequently talk about the velocity v as a strong solution, without men-

tioning the pressure p. This means that we have implicitly projected the system over

divergence-free vector fields by the Leray projector, which eliminates the pressure. The

pressure can be recovered via the De Rham procedure (see e.g. Temam [Tem01]).

Remark 2.4.2. We say that a strong solution v of (2.4.27) has a singularity at a given

time 0 < T ? < ∞ if ‖v(t)‖∞ → ∞ as t → T ?, t < T ?. At this stage, we are not able to

show that any strong solution has no singularity. We do not even know if there exist strong

solutions, which remains an open problem.

The estimates we get are based on the following non standard version of Gronwall’s Lemma,

the proof of which is carried out, e.g., in Emmrich [Emm99].

Lemma 2.4.1. Let λ ∈ L1(0, T ), with λ(t) ≥ 0 for almost all t ∈ [0, T ], let g ∈ C([0, T ])

be a non-decreasing function, and let f ∈ L∞(0, T ), such that ∀ t ∈ [0, T ], it holds

f(t) ≤ g(t) +

∫ t

0
λ(s)f(s) ds.

Then, we have

f(t) ≤ g(t) exp

(∫ t

0
λ(s) ds

)
.

In this subsection we assume that f(t) = f ∈ C(Ω) does not depend on t, and we denote

by F either ‖f‖2−1,2 or ‖f‖2 so far non risk of confusion occurs, and C denotes any constant

(normally CP ‖f‖ ≤ ‖f‖−1,2, CP being the Poincaré’s constant). Among many choices for

the functional spaces of the source term (see also the discussion in the next subsection,

where different choices are considered), this one has the advantage that it yields a clear and

neat bound of the growth of the r.h.s in the estimates for statistical equilibrium.

The main result of this subsection is the following.
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Lemma 2.4.2. Let v be a strong solution of (2.4.27) in QT = [0, T ] × Ω, for a T > 0.

Then, the following estimates hold true for all s ∈ [0, T [:

‖v(s)‖21/2,2 + ν

∫ s

0
‖∇v(t)‖2 dt ≤ C

(
Fs

ν
+ E(0)(α, `)

)
,(2.4.28)

ν‖∇v(s)‖2 ≤
(
ν‖∇v0‖2 + Fs

)
exp

{
C

αν2

(
Fs

ν
+ E(0)(α, `)

)}
,(2.4.29)

and

(2.4.30) Cα

∫ s

0
‖vt(t)‖21/2,2 dt+ α

∫ s

0
‖
√
`Dvt(t)‖2 dt ≤ Fs+ ν‖∇v0‖2

+
C

αν2

(
ν‖∇v0‖2 + FT

)(Fs
ν

+ E(0)(α, `)

)
exp

{
C

αν2

(
FT

ν
+ E(0)(α, `)

)}
,

where 2E(0)(α, `) = ‖v0‖2+α‖
√
`Dv0‖2. In particular, v has natural bounds in L∞(0, T ;V )

∩ W 1,2(0, T ;V1/2) and
√
`Dvt ∈ L2(0, T ;L2(Ω)9).

Proof. We take the dot product of ((2.4.27), i)) by v. We integrate by parts and we use the

identity 〈(v · ∇) v,v〉 = 0. These calculations are justified because v is a strong solution,

and this gives for all t ∈ [0, T ],

1

2

d

dt
(‖v(t)‖2 + α‖

√
`Dv(t)‖2) + ν‖∇v(t)‖2 = 〈f(t),v(t)〉 ≤ F

2ν
+
ν

2
‖∇v(t)‖2,

hence (2.4.28) follows after integration in time by using (2.3.24), the fact that the norm

of V1/2 is that inherited from H1/2(Ω)3, and H1/2(Ω)3 ↪→ L2(Ω)3 with continuous dense

injection.

We next take the dot product of ((2.4.27), i)) by vt. In this case the non-linear term brings

a contribution (in this new energy budget) given by

‖vt(t)‖2 + α‖
√
`Dvt(t)‖2 +

ν

2

d

dt
‖∇v(t)‖2 = 〈f(t),vt(t)〉 − 〈(v · ∇) v,vt〉(t),

As we can estimate

|〈f(t),vt(t)〉| ≤
F

2
+

1

2
‖vt(t)‖2,

we obtain by using (2.3.24), keeping half of the contribution of the term α‖
√
`Dvt(t)‖2,

(2.4.31)
1

2
‖vt(t)‖2 + Cα‖vt(t)‖21/2,2 +

α

2
‖
√
`Dvt(t)‖2 +

ν

2

d

dt
‖∇v(t)‖2 ≤ F

2
+ |〈(v · ∇) v,vt〉(t)|.

To deal with the nonlinear term, we use standard interpolation inequalities. The key of the

process is the continuous Sobolev embedding H1/2(Ω)3 ↪→ L3(Ω)3, which is the limit case.

Therefore, we have

|〈(v · ∇) v,vt〉(t)| ≤ ‖v(t)‖6‖∇v(t)‖ ‖vt(t)‖3
≤ C‖∇v(t)‖2 ‖vt(t)‖1/2,2
≤ 1

2Cα
‖∇v(t)‖4 +

Cα

2
‖vt(t)‖21/2,2,
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so that (2.4.31) becomes

(2.4.32) ‖vt(t)‖2 + Cα‖vt(t)‖21/2,2 + α‖
√
`Dvt(t)‖2 + ν

d

dt
‖∇v(t)‖2 ≤ F +

1

Cα
‖∇v(t)‖4.

In particular it follows from the above estimate that

ν
d

dt
‖∇v(t)‖2 ≤ F +

1

Cα
‖∇v(t)‖4,

that we integrate over [0, s], s ∈ [0, T ], so that

ν‖∇v(s)‖2 ≤ ν‖∇v0‖2 + Fs+
1

Cα

∫ s

0
‖∇v(t)‖4 dt.

Lemma 2.4.1 is then applied on every time interval [0, τ ] for τ < T , with

f(t) = ν‖∇v(t)‖2 and λ(t) =
1

Cαν
‖∇v(t)‖2,

which are both are in L1(0, τ)∩L∞(0, τ) and g(t) = ν‖∇v0‖2 +Ft which is a non decreasing

function. These lead to

ν‖∇v(s)‖2 ≤ (ν‖∇v0‖2 + Fs) exp

{
1

Cαν

∫ s

0
‖∇v(t)‖2 dt

}
,

and yields (2.4.29) by using (2.4.28). Therefore, the inequality (2.4.30) is deduced from (2.4.32)

combined with (2.4.28)-(2.4.29).

2.4.2 Existence and uniqueness of regular-weak solutions

We start by giving the definition of a ”regular-weak solution” to the generalized Navier-

Stokes-Voigt system (2.4.27). This definition is based on Lemma 2.4.2. We say ”weak

solution” since it is given by a weak formulation, ”regular” since, because of Lemma 2.4.2,

we will search for a solution in L∞(0, T ;V ) ∩W 1,2(0, T ;V1/2). This space is considerably

smaller than that involved in “standard” Leray-Hopf weak solutions to the Navier-Stokes

equations (4.1.1) that are just in L∞(0, T ;H) ∩ L2(0, T ;V ). As we shall see, regular weak

solutions are unique and satisfy the energy equality, a fact which is still not known about

Leray-Hopf weak solutions to the NSE.

Definition 2.4.1. We say that a function v ∈ L∞(0, T ;V ) ∩W 1,2(0, T ;V1/2) is a regular-

weak solution of the initial boundary value problem (2.4.27) if it holds true that

d

dt

[
(v,φ) + α(`Dv, Dφ)

]
+ ν(∇v,∇φ) + ((v · ∇) v,φ) = 〈f ,φ〉 ∀φ ∈ V,

in the sense of D′(0, T ) and the initial datum is attained at least in the sense of V1/2, that

is

lim
t→0+

‖v(t)− v0‖V1/2
= 0.
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The main theorem we prove is the following one, showing the well-posedness of the system,

globally in time. To fix the ideas and for the simplicity, we stay in a usual weak solutions

framework by taking the source term f = f(t) in the space5 L2(0, T ;H−1/2(Ω)3). However,

many variants can be considered, starting with f ∈ L2(0, T ;V ′1/2), or f(t) = f ∈ L2(Ω)3

following the previous subsection, which does not change too much. An interesting case

would be f ∈ L2
uloc(R

+;V ′1/2), for which additional work remains to be done in the context

of the long-time behavior (see [BL19]).

Theorem 2.4.1. Let be given v0 ∈ V and f ∈ L2(0, T ;H−1/2(Ω)3). Then, there exists a

unique regular-weak solution of the initial boundary value problem (2.4.27) in [0, T ], which

satisfies the energy (of the model) equality for all t ≥ 0,

(2.4.33) E(t)(α, `) + ν

∫ t

0
‖∇v(s)‖2 ds = E(0)(α, `) +

∫ t

0
〈f(s),v(s)〉 ds.

where E(t)(α, `) := 1
2

(
‖v(t)‖2 + α‖

√
`Dv(t)‖2

)
.

Proof. The proof follows by a standard Faedo-Galerkin approximation with suitable a-priori

estimates, compactness argument, and interpolation results. It is divided into the following

four steps:

1) Construction of approximate solutions, locally in time;

2) Uniform estimates;

3) Passing to the limit in the equations;

4) Energy balance and uniqueness.

Step 1. Construction of approximate solutions, locally in time. Let {ψn}n ⊂ V be

a Hilbert basis of V which we can suppose, without lack of generality, to be orthonormal in

H as well as orthogonal in V . We look for approximate Galerkin functions

vn(t, x) =

n∑
j=1

cjn(t)ψj(x) for n ∈ N,

which has to solve the generalized Navier-Stokes-Voigt equations projected over Wn =

Span(ψ1, . . . ,ψn), that is to solve

d

dt

[
(vn,ψm) + α(`Dvn, Dψm)

]
+ ν(∇vn,∇ψm) + ((vn · ∇) vn,ψm) = 〈f ,ψm〉,

(vn(0),ψm) = (v0,ψm),

5 Recall that H−1/2(Ω) = [H
1/2
0 (Ω)]′ and be aware that H−1/2(Ω) ( [H

1/2
00 (Ω)]′ with strict inclusion, see

Lions-Magenes [LM72].
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for m = 1, . . . , n. The above problem is a Cauchy problem for a system of n-ordinary

differential equations in the coefficients cnm(t). We define the following quantities for

j, l,m = 1, . . . , n:

αjm := α(`Dψj , Dψm), βjm := ν(∇ψj ,∇ψm),

γjlm := ((ψj · ∇)ψl,ψm), fm(t) := 〈f(t),ψm〉.

We have a non-homogeneous system of ordinary differential equations with constant coeffi-

cients (which we write with the convention of summation over repeated indices)

(δjm + αjm)c′jn(t) + βjmcjn(t) + γjlmcjn(t)cln(t) = fm(t), m = 1, . . . , n,

where δij denotes the standard Kronecker delta. The initial condition is cjn(0) = (v0,ψj).

The above system is not in “normal form” and in order to obtain a system for which we can

apply the Cauchy-Lipschitz Theorem, we have to show that the matrix (δjm +αjm) can be

inverted. Hence, since we work in a finite dimensional spaces it is enough to show that its

kernel contains only the null vector. So let ξ = (ξ1, . . . , ξn) ∈ Rn be such that

(δjm + αjm) ξj = 0.

Multiplying the above equation by ξm and summing also over m = 1, . . . , n leads to

0 = ‖ξ‖2 + α(`φ, φ) = ‖ξ‖2 + α(
√
`φ,
√
`φ) ≥ ‖ξ‖2 with φ :=

n∑
j=1

ξjDψj ,

where the last inequality holds true due to the facts that α > 0 and `(x) ≥ 0. Hence,

this implies that ξ ≡ 0, and consequently the matrix (δjm + αjm) can be inverted and we

denoting by A = Ajm its inverse. This allows us, after multiplication by A, to rewrite the

Galerkin system of ODEs for the coefficients cjn as follows

c′jn(t) + β′jmcjn(t) + γ′jlmcjn(t)cln(t) = f ′m(t),

for appropriate β′jm, γ
′
jlm, f

′
m(t) and to apply the basic theory of ordinary differential equa-

tions. Note that the coefficient from the right-hand side f ′m(t) = Akm〈f(t),ψk〉 is not con-

tinuous but just L2(0, T ), hence one has to resort to an extension of the Cauchy-Lipschitz

theorem, with absolutely continuous functions, under Carathéodory hypotheses (see Wal-

ter [Wal98]).

Since the system for the coefficients cjn(t) is nonlinear (quadratic) we obtain that there

exists a unique solution cjn(t) ∈W 1,2(0, Tn), for some 0 < Tn ≤ T .

Step 2. Estimates. By taking vn as test function, one gets the identity

(2.4.34)
1

2

d

dt

(
‖vn(t)‖2 + α‖

√
`Dvn(t)‖2

)
+ ν‖∇vn(t)‖2 = 〈f ,vn〉,
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from which it follows

d

dt

(
‖vn(t)‖2 + α‖

√
`Dvn(t)‖2

)
+ ν‖∇vn(t)‖2 ≤ CP

ν
‖f‖2−1/2,2,

where CP = CP (Ω) is the Poincaré-type constant such that

‖u‖21/2,2 ≤ CP ‖∇u‖
2 ∀u ∈ H1

0 (Ω).

Hence, integrating over (0, t) for t < Tn we get

(2.4.35) En(t)(α, `) + ν

∫ t

0
‖∇vn(s)‖2 ds ≤ En(0)(α, `) +

CP
ν

∫ t

0
‖f(s)‖2−1/2,2 ds.

where En(t)(α, `) := ‖vn(t)‖2 +α‖
√
`Dvn(t)‖2. Next, we observe that since vn(0)→ v0 in

V and 0 ≤ ` ∈ C(Ω), then it holds

α‖
√
`Dvn(0)‖2 ≤ αmax

x∈Ω
`(x) ‖∇vn(0)‖2 ≤ αmax

x∈Ω
`(x) ‖∇v0‖2,

which holds vn(0) being the orthogonal projection of v0. This shows that, under the given

assumptions on v0 and f , the r.h.s of (2.4.35) can be bounded independently of n ∈ N and

consequently, a standard continuation argument proves in fact that Tn = T . Moreover, it

also holds

(2.4.36) vn ∈ L∞(0, T ;H) ∩ L2(0, T ;V ) and
√
`Dvn ∈ L∞(0, T ;L2(Ω)9),

with norms bounded uniformly in n ∈ N. Therefore, according to Theorem 2.3.1, we also

obtain

(2.4.37) ‖vn(t)‖2 + ‖vn(t)‖2V1/2
+

∫ t

0
‖∇vn(s)‖2 ds ≤ C

[∫ t

0
‖f(s)‖2−1/2,2ds+ ‖v0‖21,2

]
,

for a constant C depending on ν, α, ` and Ω. In addition, this inequality proves that

vn ∈ L∞(0, T ;V1/2),

with bounds independent of n ∈ N.

In order to give a proper meaning to the time derivative, we now use as test function vnt ,

which is allowed, since it vanishes at the boundary and it is divergence-free. We get

(2.4.38) ‖vnt (t)‖2 + α‖
√
`Dvnt (t)‖2 +

ν

2

d

dt
‖∇vn(t)‖2 = (f ,vnt )− ((vn · ∇) vn,vnt ).

We estimate the r.h.s of (2.4.38), thanks to the Cauchy-Schwarz, Hölder, Young and Sobolev

inequalities, which give that for all ε > 0 there exists Cε > 0 such that

|(f ,vnt )| ≤ Cε‖f‖2−1/2,2 + ε‖vnt ‖2V1/2
,

and

|((vn · ∇) vn,vnt )| ≤ ‖vn‖6‖∇vn‖‖vnt ‖3 ≤ C‖∇vn‖2‖vnt ‖V1/2
≤ Cε‖∇vn‖4 + ε‖vnt ‖2V1/2

.
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By the above inequalities we can absorb terms in the l.h.s, to obtain

C‖vnt (t)‖2V1/2
+
ν

2

d

dt
‖∇vn(t)‖2 ≤ Cε

[
‖f(t)‖2−1/2,2 + ‖∇vn(t)‖4

]
,

for some Cε = C(`, α,Ω). Integrating over [0, s] for s ∈ [0, T ], one obtains, using the fact

that vn(0) is the projection of v0

(2.4.39) C

∫ s

0
‖vnt (t)‖2V1/2

dt+
ν

2
‖∇vn(s)‖2 ≤ ν

2
‖∇v(0)‖2 + Cε

∫ s

0
‖f(t)‖2−1/2,2 dt

+ Cε

∫ s

0
‖∇vn(t)‖4 dt,

and in particular,

ν

2
‖∇vn(s)‖2 ≤ ν

2
‖∇v0‖2 + Cε

∫ s

0
‖f(t)‖2−1/2,2 dt+ Cε

∫ s

0
‖∇vn(t)‖4 dt.

We apply the Gronwall’s lemma 2.4.1 to get

(2.4.40)
ν

2
‖∇vn(s)‖2 ≤

(
ν

2
‖∇v0‖2 + Cε

∫ s

0
‖f(t)‖2−1/2,2 dt

)
exp

{
Cε

∫ s

0
‖∇vn(t)‖2 dt

}
,

and the r.h.s of (2.4.40) is bounded uniformly in n due the a priori estimate (2.4.36). This

proves that

(2.4.41) vn ∈ L∞(0, T ;V ),

from which we also deduce by using (2.4.39) that

(2.4.42) vnt ∈ L2(0, T ;V1/2), and therefore by (2.4.36) vn ∈W 1,2(0, T ;V1/2),

with uniform bounds in n ∈ N. Beside estimates in V1/2, it is important to stress that with

the same calculations, starting from (2.4.38) as in the proof of Lemma 2.4.2, we also have

√
`Dvnt ∈ L2(0, T ;L2(Ω)9),

again with uniform bound in n ∈ N.

Step 3. Passing to the limit in the approximate equations. By the uniform bounds

above and standard compactness results there exists v ∈W 1,2(0, T ;V1/2)∩L∞(0, T ;V ) and

a sub-sequence (relabelled as vn) such that

(2.4.43)



vn
∗
⇀ v in L∞(0, T ;V ),

√
`Dvn

∗
⇀
√
`Dv in L∞(0, T ;L2(Ω)9),

vn ⇀ v in Lp(0, T ;V ) for all 1 < p <∞,

vnt ⇀ vt in L2(0, T ;V1/2),
√
`Dvnt ⇀

√
`Dvt in L2(0, T ;L2(Ω)9),
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To get strong convergence in appropriate spaces, we use the Aubin-Lions compactness

lemma (see Temam [Tem01]) with the triple

V ↪−→ V3/4 ↪−→ V1/2,

where V3/4 = [V,H]3/4, each embedding being dense and continuous. Moreover, since Ω is

bounded by the Rellich-Kondrachov Theorem, these embeddings are also compact. There-

fore, the sequence (vn)n∈N is (pre)compact in L2(0, T ;V3/4) and (up to a sub-sequence)

vn → v in L2(0, T ;V3/4),

which implies in particular strong convergence in L2(0, T ;L4(Ω)3). By standard results this

allows to pass to the limit in the weak formulation, showing that indeed v is a regular-weak

solution. We skip the details. It remains to check the initial data. The weak convergence

implies that for 0 ≤ t ≤ T

‖v(t)‖2 +α‖
√
`Dv(t)‖2 + ν

∫ t

0
‖∇v(s)‖2 ds ≤ ‖v(0)‖2 +α‖

√
`Dv(0)‖2 +

∫ t

0
〈f(s),v(s)〉 ds.

Observe that the above inequality is obtained from (2.4.34), after integration in time and

passing to the limit. The inequality comes from the fact that∇vn ⇀ ∇v in L2(0, T ;L2(Ω)9),

and we have to consider the inferior limit of the norms of ∇vn. In addition, we observe

that since ∇vn(0) → ∇v0 in L2(Ω), we can suppose –up to a further sub-sequence– that

∇vn(0,x)→ ∇v0(x) a.e. x ∈ Ω, hence using the boundedness of ` and Lebesgue dominated

convergence, we have

‖
√
`Dvn(0)‖2 → ‖

√
`Dv0‖2,

showing also that the initial datum is assumed strongly at the initial time.

Step 4. Energy balance and uniqueness. We start with the energy balance (2.4.33).

To this end one has first to justify the use of v as test function. From the results above, we

deduce that v⊗v ∈ L∞(0, T ;L3(Ω)9) which yields in particular (v ·∇)v ∈ L2(0, T ;V ′) and

〈(v · ∇)v,v〉 = 0 according to standard results. From there, the relevant point is to check

that for any s ∈ [0, T ]:

(2.4.44)

∫ s

0
(`Dvt, Dv) dt =

1

2
‖
√
`Dv(s)‖2 − 1

2
‖
√
`Dv0‖2,

since all other terms are well-behaved due to the available regularity of v. However,
√
`Dv,

√
`Dvt ∈ L2(0, T ;L2(Ω)9). Therefore, by identifying L2(Ω)9 with its dual space,

we naturally have

〈`Dvt, Dv〉 = 〈
√
`Dvt,

√
`Dv〉 =

1

2

d

dt
‖
√
`Dv‖2,
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hence (2.4.44) and then (2.4.33) follows.

Moreover, this result allows us also to prove uniqueness of regular-weak solutions. In fact,

if v1 and v2 are solutions corresponding to the same initial datum and same external

force, taking the difference and testing (by the above argument this is fully justified) with

V = v1−v2 one obtains the following differential equality for the difference for any t ∈ [0, T ]:

‖V(t)‖2 + α‖
√
`DV(t)‖2 + ν

∫ t

0
‖∇V‖2 ds = −

∫ t

0

∫
Ω

(V · ∇) v2 ·V dxds.

Hence, by the usual Sobolev inequalities

‖V(t)‖2 + α‖
√
`DV(t)‖2 + ν

∫ t

0
‖∇V‖2 ds ≤ ν

2

∫ t

0
‖∇V‖2 ds+

C

ν

∫ t

0
‖∇v2‖4‖V‖2 ds,

and since V(0) = 0 the Gronwall’s lemma shows that V ≡ 0, due to the fact that

∇v2 ∈ L∞(0, T ;L2(Ω)9) ⊂ L4(0, T ;L2(Ω)9).

Remark 2.4.3. The pressure is not involved in Definition 2.4.1. However, let (v0, f) be

given as in Theorem 2.4.1 and let v be the corresponding regular-weak solution. Then, by the

De Rham theorem, we easily deduce the existence of p ∈ D′(0, T ;L2(Ω)/R) such that (v, p)

satisfies system (2.4.27) in the sense of the distributions. The regularity of the pressure

is probably even better than that, but this point, which is inessential for the results of this

paper, remains to be investigated.

Remark 2.4.4. Definition 2.4.1 is equivalent to the following: The field v is a regular-weak

solution to (2.4.27) if:

1. v ∈W 1,2(0, T ;V1/2) ∩ L∞(0, T ;V ),
√
`Dvt ∈ L2(QT )9,

2. for all w ∈ L2(0, T ;V ), ∀ s < T :∫ s

0
(vt,w) dt+ α

∫ s

0
(
√
`Dvt,

√
`Dw) dt−

∫ s

0

∫
Ω

v ⊗ v : ∇w dxdt

+ ν

∫ s

0

∫
Ω
∇v : ∇w dxdt =

∫ s

0
〈f ,w〉 dt,

3. limt→0+ ‖v(t)− v0‖V1/2
= 0.

Once the above results of existence and uniqueness have been proved for the general-

ized Navier-Stokes-Voigt equations, it is straightforward to prove the same also for the

model (2.1.1) with an additional turbulent viscosity νturb which is non-negative and bounded.

We do not reproduce here the proof, which follows the same steps of Theorem 2.4.1 since

the additional term with the turbulent viscosity νturb neither improves the a priori estimates

neither creates additional problems when taking weak limits of the approximate solutions.
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Theorem 2.4.2. Let νturb ∈ L∞([0,∞[×Ω) such that νturb ≥ 0 a.e. in [0,∞[×Ω and let

and v0 ∈ V and f ∈ L2(0, T ;H−1/2(Ω)3) be given. Then, the system

(2.4.45)

vt − α∇ · (`Dvt) + (v · ∇) v − ν∆v −∇ · (νturbDv) +∇p = f in (0, T )× Ω,

∇ · v = 0 in (0, T )× Ω,

v|Γ = 0 on (0, T )× Γ,

v|t=0 = v0 in Ω.

has a unique regular-weak solution that satisfies the energy balance6 (equality)

E(t)(α, `) +

∫ t

0
‖(2ν + νturb)1/2Dv(s)‖2 ds = E(0)(α, `) +

∫ t

0
〈f(s),v(s)〉 ds,

where again E(t)(α, `) =
1

2

(
‖v(t)‖2 + α‖

√
`Dv(t)‖2

)
.

2.5 Turbulent Voigt model involving the TKE

In this section we consider the generalized Voigt model with an additional turbulent viscosity

νturb = νturb(k), coupled with the evolution equation for the turbulent kinetic energy k. In

particular, we prove a compactness result which allows then to prove in an easy way existence

of weak solutions.

2.5.1 A compactness Lemma

We consider a family of models as in (2.4.45), associated with different realizations of the

turbulent viscosity and study the behavior of the solutions, under rather mild conditions

on the given additional viscosities.

To this end let be given a family of turbulent viscosities (νnturb)n∈N such that

∀n ≥ 0, νnturb ∈ L∞([0,∞[×Ω), νnturb ≥ 0 a.e. in [0,∞[×Ω.

Let v0 ∈ V and f ∈ L2(0, T ;H−1/2(Ω)3). Let (vn, pn) finally denote the distributional

solution to

(2.5.46)

vnt − α∇ · (`Dvnt ) + (vn · ∇) vn − ν∆vn −∇ · (νnturbDvn) +∇pn = f in (0, T )× Ω,

∇ · vn = 0 in (0, T )× Ω,

vn|Γ = 0 on (0, T )× Γ,

vn|t=0 = v0 in Ω,

and such that vn ∈W 1,2(0, T ;V1/2) ∩ L∞(0, T ;V ), is a regular-weak solution to (2.5.46).

6Remind that since ∇ · v = 0, then ∆v = 2∇ · Dv. Therefore, 〈−ν∆v + ∇ · (νturbDv),w〉 = ((2ν +
νturb)Dv, Dw).
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Remark 2.5.1. In this section vn denotes the velocity associated to the turbulent viscosity

νnturb, namely (2.5.46), and not a Galerkin approximation as in the previous section. We

keep the same notation for the simplicity, so far no risk of confusion occurs.

Concerning the behavior as n→ +∞ of the solutions vn we have the following lemma.

Lemma 2.5.1. Assume that the sequence (νnturb)n∈N is uniformly bounded in L∞([0,∞[×Ω)

and converges almost everywhere to νturb in Q∞ = [0,∞[×Ω.

Then, it follows that:

1) The sequence (vn)n∈N weakly converges in W 1,2(0, T ;V1/2)∩Lp(0, T ;V ), for all p <∞,

to the regular-weak solution v of the limit problem

(2.5.47)

vt − α∇ · (`Dvt) + (v · ∇) v − ν∆v −∇ · (νturbDv) +∇p = f in (0, T )× Ω,

∇ · v = 0 in (0, T )× Ω,

v|Γ = 0 on (0, T )× Γ,

v|t=0 = v0 in Ω.

2) The sequence (νnturb|Dvn|2)n∈N converges in L1(QT ) and the sense of measures to νturb|Dv|2

in QT , which means that

(2.5.48) ∀ϕ ∈ C(QT ),

∫ T

0

∫
Ω
νnturb|Dvn|2ϕdxdt −−−→

n→∞

∫ T

0

∫
Ω
νturb|Dv|2ϕdxdt.

Proof. In order to simplify the notation we extract sub-sequences, without changing the

notation. However, by the uniqueness result of Theorem 2.4.1, we finally get convergence

for the whole sequence because of the uniqueness of solutions to the limit problem.

1) The estimates (2.4.37), (2.4.39), (2.4.40) and (2.4.42) derived for the Galerkin approx-

imations are the same for the present sequence (vn)n∈N. Therefore, (vn)n∈N is weakly

pre-compact in W 1,2(0, T ;V1/2) ∩ Lp(0, T ;V ), for all p < ∞, as well as pre-compact in

L2(0, T ;V3/4) by Aubin-Lions Lemma. Therefore, it weakly converges (up to a subsequence)

to some v in W 1,2(0, T ;V1/2) ∩ Lp(0, T ;V ), strongly in L2(0, T ;V3/4). In particular, the

strong convergence holds in L2(0, T ;L4(Ω)), then in L4(0, T ;L4(Ω)) by usual arguments.

Passing to the limit in the equations satisfied by vn is then straightforward (cf. Theo-

rem 2.4.1), except in the eddy viscosity term. To this end, let be given w ∈ L2(0, T ;V ), we

can write

〈−∇ · (νnturbDvn),w〉 =

∫ T

0

∫
Ω
νnturbDvn : Dw dxds =

∫ T

0

∫
Ω
Dvn : νnturbDw dxds.
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Next, as (νnturb)n∈N is bounded in L∞(QT ), we have the following estimate

for a.e (t,x) ∈ QT |νnturb(t,x)Dw(t,x)| ≤ sup
n∈N
‖νnturb‖L∞t,x |Dw(t,x)| ∈ L2(QT ).

On the other hand, according to the a.e convergence of νnturb, it follows also

νnturbDw→ νturbDw a.e in QT .

Then, by the Lebesgue dominated convergence theorem, one has the strong convergence

νnturbDw→ νturbDw in L2(QT ).

From the weak convergence in L2(0, T ;V ) we have

Dvn⇀Dv in L2(QT ).

The convergence of the eddy viscosity term follows then from

〈−∇ · (νnturbDvn),w〉 =

∫ T

0

∫
Ω
Dvn : νnturbDw dxds −−−→

n→∞

∫ T

0

∫
Ω
Dv : νturbDw dxds

= 〈−∇ · (νturbDv),w〉,

As a consequence, v is indeed a regular-weak solution to (2.5.47) on [0, T ], for all positive

T , and by the uniqueness of the solution, all the sequence does converge.

2) We split the proof of this property into three steps:

i) Weak convergence of the sequence ((2ν + νnturb)1/2Dvn)N∈N to (2ν + νturb)1/2Dv in

L2(QT );

ii) Strong convergence of the same sequence by the “energy method”;

iii) Proof of the convergence in measures from (2.5.48).

i) This step is very similar to point 1). In fact, we already proved that the sequence

((2ν+νnturb)1/2Dvn)N∈N is bounded in L2(QT )9, uniformly in N ∈ N. Moreover, we already

know that Dvn⇀Dv in L2(QT ). Let us define

An := (2ν + νnturb)1/2Dvn and A := (2ν + νturb)1/2Dv.

We aim to prove that An⇀A in L2(QT )9. To do so, let us fix w ∈ L2(0, T ;V ). By the

hypothesis of a.e. convergence on (νnturb)n∈N it follows that

(2ν + νnturb)1/2Dw −−−→
n→∞

(2ν + νturb)1/2Dw a.e. in QT .

47



CHAPTER 2. GENERALIZED KELVIN-VOIGT MODEL

Moreover, one has also

∣∣(2ν + νnturb(t,x))1/2Dw(t,x)
∣∣ ≤ (2ν + sup

n
‖νnturb‖L∞t,x

)1/2

|Dw(t,x)| ∈ L2(QT ).

Therefore, again by Lebesgue’s theorem we obtain the strong convergence

(2ν + νnturb)1/2Dw −−−→
n→∞

(2ν + νturb)1/2Dw in L2(QT ),

hence as before weak L2-convergence of Dvn implies∫ T

0

∫
Ω

(2ν + νnturb)1/2Dvn : Dw dxdt =

∫ T

0

∫
Ω

(2ν + νnturb)1/2Dw : Dvn dxdt

−−−→
n→∞

∫ T

0

∫
Ω

(2ν + νturb)1/2Dw : Dv dxdt =

∫ T

0

∫
Ω

(2ν + νturb)1/2Dv : Dw dxdt,

yielding the desired weak convergence.

ii) Energy method. We now prove the strong L2-convergence of the sequence (An)n∈N

to A. To do so, we use the energy method (see [CRL14, Lew97a]), based on the energy

(equality) balance (2.4.33) satisfied by both vn and v, with dissipative terms from eddy

viscosity terms ∫ ∫
Qt

νnturb|Dvn|2 and

∫ ∫
Qt

νturb|Dv|2,

in the corresponding equations. Observe that at this stage is very important to have the

energy balance satisfied with an equality, instead of the inequality, as it holds for the (un-

regularized) Navier-Stokes equations. For an overview and recent results on the possible

energy equality for incompressible fluids, see [BC20].

According to the notations introduced in Theorem 2.4.1, we rewrite the energy balances as

follows, for all t < T ,

(2.5.49)

E(t)(α, `) +

∫ t

0

∫
Ω
|A|2 dxds =

∫ t

0
〈f ,v〉 ds+ E(0)(α, `),

En(t)(α, `) +

∫ t

0

∫
Ω
|An|2 dxds =

∫ t

0
〈f ,vn〉 ds+ E(0)(α, `),

A critical tool in the energy method is that of integrating over [0, T ], with the respect to the

time variable, both the equations in (2.5.49) and to perform then an integration by parts.

This yields the following two equalities

(2.5.50)

∫ T

0
E(t)(α, `) dt+

∫ T

0

∫
Ω

(T − t)|A|2 dxdt =

∫ T

0

∫ t

0
〈f ,v〉 dsdt+ TE(0)(α, `),∫ T

0
En(t)(α, `) dt+

∫ T

0

∫
Ω

(T − t)|An|2 dxdt=
∫ T

0

∫ t

0
〈f ,vn〉 dsdt+TE(0)(α, `).
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Arguing with the usual compactness tools as developed in the proof of Theorems 2.4.1 and

2.4.2 we obtain that ∫ T

0
‖vn(t)‖2dt −−−→

n→∞

∫ T

0
‖v(t)‖2 dt,∫ T

0

∫ t

0
〈f ,vn〉 dsdt −−−→

n→∞

∫ T

0

∫ t

0
〈f ,v〉 dsdt

TEn(0)(α, `) −−−→
n→∞

TE(0)(α, `).

Therefore, by using the integrated energy equalities (2.5.50), we also get by comparison∫ T

0

∫
Ω

[
α`|Dvn|2 + (T − t)|An|2

]
dxdt −−−→

n→∞

∫ T

0

∫
Ω

[
α`|Dv|2 + (T − t)|A|2

]
dxdt.

Let now Bn,B be defined as follows

Bn := (α`+ (T − t)(2ν + νnturb))1/2Dvn and B := (α`+ (T − t)(2ν + νturb))1/2Dv.

The information coming from the convergence of the integrated energy equalities can be

rewritten as follows

‖Bn‖2 −−−→
n→∞

‖B‖2.

Next, the assumptions on the function `(x) imply also that, for a given w ∈ L2(0, T ;V ),∣∣(α`(x) + (T − t)(2ν + νnturb(t,x)))1/2Dw(t,x)
∣∣

≤
(
αmax

x∈Ω
`+ T (2ν + sup

n
‖νnturb‖L∞t,x)

)1/2

|Dw(t,x)| ∈ L2(QT ).

and, by using the same argument as before, this implies the strong L2-convergence of

(α`(x)+(T − t)(2ν+νnturb(t,x)))1/2Dw(t,x). The weak L2(QT )-convergence of Dvn to Dv

implies the weak L2(QT ) convergence Bn ⇀ B. This together with the convergence of the

norms ‖Bn‖ implies that

Bn −−−→
n→∞

B in L2(QT )9.

Next, we observe that, for all t < T and for all x ∈ Ω we can write

An = (2ν + νnturb))1/2Dvn = (α`+ (T − t)(2ν + νnturb))1/2Dvn
(2ν + νnturb))1/2

(α`+ (T − t)(2ν + νnturb))1/2

= Bn
(2ν + νnturb))1/2

(α`+ (T − t)(2ν + νnturb))1/2

and for all T ′ < T it holds

(2ν + νnturb))1/2

(α`+ (T − t)(2ν + νnturb))1/2
−−−→
n→∞

(2ν + νturb))1/2

(α`+ (T − t)(2ν + νturb))1/2
a.e. in QT ′ .
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The above point-wise convergence and the L2-strong convergence of Bn gives then

An → B
(2ν + νturb))1/2

(α`+ (T − t)(2ν + νturb))1/2
= A in L2(QT ′).

As T can be any positive time, this concludes this step.

iii) Proof of (2.5.48). The same argument used in the above step can be also used to show

that √
νnturbDvn →

√
νturbDv in L2(QT ),

simply writing

√
νnturbDvn = (α`+ (T − t)(2ν + νnturb))1/2Dvn

√
νnturb

(α`+ (T − t)(2ν + νnturb))1/2

as the right-hand side converges in L2(QT ) as n→ +∞ to

B

√
νnturb

(α`+ (T − t)(2ν + νnturb))1/2
=
√
νturbDv.

This shows that

(2.5.51)

∫
QT

νnturb(t,x)|Dvn(t,x)|2 dxdt→
∫
QT

νturb(t,x)|Dv(t,x)|2 dxdt.

On one hand, we deduce from the above that the sequence (
√
νnturbDvn)n∈N weakly converges

to
√
νturbDv in L2(0, T ;L2(Ω)9). On the other hand, the corresponding sequence of the

norms also converges by (2.5.51). Hence (
√
νnturbDvn)n∈N strongly converges to

√
νturbDv

in L2(0, T ;L2(Ω)9), and the conclusion of part 2 of Lemma 2.5.1 easily follows.

2.5.2 Application to the NSTKE-Voigt model

We now apply the existence result for the Generalized Voigt model, together with the

compactness lemma, to study the Voigt model coupled with the equation of the turbulent

kinetic energy. The NSTKE-Voigt model is in fact obtained by coupling the turbulent

Navier-Stokes-Voigt equation to the equation for the TKE, following the law (4.3.22), which

gives the following initial boundary value problem

(2.5.52)



vt − α∇ · (`Dvt) + (v · ∇) v − ν∆v −∇ · (νturb(k)Dv) +∇p = f , (i)
∇ · v = 0, (ii)
v|Γ = 0, (iii)
v|t=0 = v0, (iv)

kt + v · ∇k −∇ · (µturb(k)∇k) = νturb(k)|Dv|2 − (`+ η)−1k
√
|k|, (v)

k|Γ = 0, (vi)
k|t=0 = k0. (vii)

This system calls for two comments:
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1) According to Lemma 2.5.1, we know how to deal with bounded eddy viscosities and

the argument does not work with general viscosities. This is why we cannot take the

unbounded law (4.3.22). We replace it, as often done with this class of problems, by

(2.5.53) νturb(k) = ` TM ′(
√
|k|), M ′ ∈ N

where TM is the usual “truncation function” at height M , for a given large M ∈ N,

which is defined by

TM (x) :=


x if |x| ≤M,

M
x

|x|
if |x| > M,

for all x ∈ R. The eddy viscosity (2.5.53) will fit with that considered in Lemma 2.5.1.

Similarly, we assume that the diffusion coefficient for the turbulent kinetic energy satisfies

(2.5.54) µturb(k) = C`TM ′′(
√
|k|),

for some dimensionless constant C and another M ′′ ∈ N.

2) Usually, the dissipation term in the r.h.s of the equation for k is considered as ε :=

`−1k
√
|k|. Unfortunately, due to the degeneration of ` at the boundary Γ, there could

be further issues when passing to the limit in this term. As a precaution, we have

approximated it by ε = (`+ η)−1k
√
|k| where η > 0 is a small parameter. We have not

studied the behavior of the solutions when η → 0, yet.

The main existence result we are able to prove for the NSTKE-Voigt system is the following.

Theorem 2.5.1. Let be given v0 ∈ V , f ∈ L2(0, T ;H−1/2(Ω)3) and 0 ≤ k0 ∈ L1(Ω).

Assume that νturb and µturb are given by (2.5.53) and (2.5.54). Then, there exists (v, k)

such that:

1. The vector field v verifies

v ∈ L∞(0, T ;V ) ∩W 1,2(0, T ;V1/2),

and it is a regular-weak solution to the subsystem [(2.5.52)-(i)-(ii)-(iii)-(iv))],

2. The scalar field k verifies

k ∈ L∞(0, T ;L1(Ω)), k ∈
⋂

1<p<5/4

Lp(0, T ;W 1,p(Ω)) = K5/4,

and it is solution of the subsystem [(2.5.52)-(v)-(vi)-(vii))] in the sense of the distri-

bution in QT . Moreover, k ≥ 0 a.e. in QT .
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Proof. System (2.5.52) is very close to that studied for in [CRL14, Chapter 8]. Therefore,

we only indicate the changes in the proof of existence, without giving full details, which can

be easily filled by the reader. The main difference is given by the result of the compactness

Lemma 2.5.1, which is essential to the proof. The further (compared to the previously

studied systems) regularity enforced by the generalized Voigt term is the key to prove the

existence results for the full NSTKE model.

One technical issue is due to the quadratic source term νturb(k)|Dv|2 in the TKE equation,

which is a priori in L1(QT ) and not better and hence we have to deal with a generalized

Navier-Stokes-Voigt system with a right-hand side in L1, for which the theory cannot be

directly handled. To overcome this fact, we truncate this term as well as the initial data,

leading to the following regularized (truncated) system:

(2.5.55)

vt − α∇ · (`Dvt) + (v · ∇) v − ν∆v −∇ · (νturb(k)Dv) +∇p = f , (i)
∇ · v = 0, (ii)
v|Γ = 0, (iii)
v|t=0 = v0, (iv)

kt + v · ∇k −∇ · (µturb(k)∇k) = TM (νturb(k)|Dv|2)− (`+ η)−1k
√
|k|, (v)

k|Γ = 0, (vi)
k|t=0 = TM (k0). (vii)

The proof of existence for the approximate (truncated) system is now done by means

of suitable applications of the Schauder fixed-point theorem. As first step we fix k̃ ∈
L2(0, T ;H1

0 (Ω)) ∩ L∞(0, T ;L2(Ω)), let ṽ = v(k̃) be the unique regular-weak solution to
ṽt − α∇ · (`Dṽt) + (ṽ · ∇) ṽ − ν∆ṽ −∇ · (νturb(k̃)Dṽ) +∇p = f ,
∇ · ṽ = 0,
ṽ|Γ = 0,
ṽ|t=0 = v0,

which is the subsystem [(2.5.55)-(i)-(ii)-(iii)-(iv))] with νturb(k) is replaced by νturb(k̃). The

existence of ṽ follows from Theorems 2.4.1-2.4.2. The next step is to analyze the equation

for k, considering

(2.5.56)


kt + ṽ · ∇k −∇ · (µturb(k)∇k) = TM (νturb(k)|Dṽ|2)− (`+ η)−1k

√
|k|,

k|Γ = 0,
k|t=0 = TM (k0),

which is a non linear parabolic equation with both coefficients and a source term smooth

enough to allow application of the standard variational theory. The existence of a weak

solution k ∈ L2(0, T ;H1
0 (Ω))∩L∞(0, T ;L2(Ω)) to Problem (2.5.56), it is easily proved and,

in addition, it follows kt ∈ L2(0, T ;H−1(Ω)).
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The solution of full system (2.5.55) –with M ∈ N fixed–can be obtained by finding a fixed

point of the map

k̃ → k,

by means of the Schauder fixed point theorem as in [CRL14], as follows by the boundedness

in appropriate spaces. Observe that this will not ensure uniqueness of the solution. To

solve the full system (2.5.52) (with truncated viscosities but with the L1-right-hand-side)

we iteratively construct the sequence

(kn)n∈N,

in the following way: we start from k0 ≡ 0 and v0 the corresponding solution of the

[(2.5.52)-(i)-(ii)-(iii)-(iv))], with νturb = νturb(0). Then, we iteratively construct the sequence

of solutions along the following Picard iterative scheme, which is suitable by the uniqueness

result: For n ≥ 1, let be given

(vn−1, kn−1) ∈ L∞(0, T ;V ) ∩W 1,2(0, T ;V1/2)× L2(0, T ;H1
0 (Ω)) ∩ L∞(0, T ;L2(Ω)).

Then, the couple

(vn, kn) ∈ L∞(0, T ;V ) ∩W 1,2(0, T ;V1/2)× L2(0, T ;H1
0 (Ω)) ∩ L∞(0, T ;L2(Ω)),

is defined as the solution of the following system

(2.5.57)

vnt − α∇ · (`Dvnt ) + (vn · ∇) vn − ν∆vn −∇ · (νturb(kn)Dvn) +∇pn = f ,
∇ · vn = 0,
vn|Γ = 0,
vn|t=0 = v0,

knt + vn−1 · ∇kn −∇ · (µturb(kn)∇kn) = Tn(νturb(kn)|Dvn−1|2)− (`+ η)−1kn
√
|kn|,

kn|Γ = 0,
kn|t=0 = Tn(k0).

By using the estimates from [CRL14, Chapter 8] that, up to a sub-sequence,

(2.5.58)


kn ⇀ k in Lq(0, T ;W 1,q

0 ) for all 1 ≤ q < 5/4,

knt ⇀ kt in Lq(0, T ;W−1,q) for all 1 ≤ q < 5/4,

kn → k in Lq(QT ) for all 1 ≤ q < 29/14 and a.e. in QT .

Next, we observe that x 7→ ` TM ′
(√
|x|
)

is a continuous function over R, we have that

νnturb = νturb(kn)→ νturb = νturb(k) a.e. in QT . Next, since ` ∈ C1(Ω), we also have

0 ≤ νturb ≤M ′‖`‖∞,
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showing that (νnturb)n∈N verifies all the requirements of Lemma 2.5.1, by (2.5.53) and (2.5.58).

Therefore, vn → v = v(k), the corresponding regular-weak solution to the subsystem

[(2.5.57), (i), (ii), (iii), (iv))]. Notice that thanks to the uniqueness of the limit, all the

sequence does converges.

Passing to the limit in the equation for k follows what is done in [CRL14, Chapter 8], except

about the quadratic source term, that needs to be reconsidered. Always by Lemma 2.5.1,

νturb(kn)|Dvn|2 → νturb(k)|Dv|2 in L1(QT ) and in the sense of measures. Finally, according

to Lemma 2.5.2, we deduce that Tn(νturb(kn)|Dvn|2) → νturb(k)|Dv|2 in L1(QT ) up to a

subsequence, the conclusion being from this point straightforward (cf. Lemma 2.5.2), which

ends the proof.

Lemma 2.5.2. Let (fn)n∈N be a sequence in L1(QT ) that converges to f in L1(QT ). Then

from the sequence (Tn(fn))n∈N we can extract a subsequence that still converges to f in

L1(QT ).

Proof. Since fn → f in L1(QT ), we can find a sub-sequence (still denoted by fn) and a

function F ∈ L1(QT ) such that:

(i) fn(t,x)→ f(t,x) for a.e. (t,x) ∈ QT ,

(ii) |fn(t,x)| ≤ F (t,x) for all n ∈ N and for a.e. (t,x) ∈ QT .

Hence, the sequence gn(t,x) = Tn(fn(t,x)) satisfies the following:

(1) The sequence gn(t,x) = Tn(fn(t,x)) converges to f(t,x) for a.e. (t,x) ∈ QT and

f(t,x) is a.e. finite. This follows since a.e. for fixed (t0,x0) it holds fn(t0,x0) <

f(t0,x0) + 1 for all n > n0(t0,x0) ∈ N, hence gn(t0,x0) = fn(t0, x0) for all n >

max{n0, f(t0,x0) + 1};

(2) The sequence gn(t,x) = Tn(fn(t,x)) is uniformly equi-absolutely integrable, that is

for all ε > 0 there exists δ > 0 such that for all measurable H ⊂ QT such that

meas(H) < δ, it holds

sup
n∈N

∫
H
|Tn(fn(t,x))| dx ≤ sup

n∈N

∫
H
|fn(t,x)| dx ≤

∫
H
|F (t,x)| dx < ε,

the last inequality being valid since F ∈ L1(QT ).

The hypotheses of Vitali convergence theorem are satisfied, hence gn → g in L1(QT ).

Therefore, the proof is complete.
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This chapter is mostly based on the research paper [BDLN20].

Abstract: This chapter is devoted to study the rate of convergence of the weak solutions

uα of α-regularization models to the weak solution u of the Navier-Stokes equations in

the two-dimensional periodic case, as the regularization parameter α goes to zero. More

specifically, we will consider the Leray-α, the simplified Bardina, and the modified Leray-α

models. Our aim is to improve known results in terms of convergence rates and also to show

estimates valid over long time intervals.

Key words: Rate of convergence, α-turbulence models, Navier-Stokes equations.

2010 MSC: 35Q30, 35Q35, 65M15, 76F65, 76D05.

3.1 Introduction

In this work we study the rates of convergence of weak solutions of several two dimensional

α-models of turbulence to the weak solution of the Navier-Stokes equations (NSE), with

periodic boundary conditions. We work mainly in two space dimensions, even if some

remarks concerning the three dimensional case are given in Section 3.6. The turbulence

models we study belong to the class of Large Eddy Simulation models (LES), used to carry

out numerical simulations of turbulence flows, that cannot be performed by the NSE. In

fact, according to Kolmogorov laws, it would require O(Red
2/4) degrees of freedom where

d = 2, 3, which is still inaccessible to modern computers, for higher (real-life) Reynolds

numbers [BIL06, CRL14]. The motivation to consider the 2D case is because this setting is

appropriate to analyse models that simulate layers of shallow water in stratified flows, such

as those occurring in the ocean or in the atmosphere [CMP97, Lew97b].

Let L > 0 denotes a given length scale, u(t,x) and p(t,x) for t > 0 and x ∈ Ω, where

Ω = [0, L]2 be a periodic domain, denote the velocity and the pressure of an incompressible

fluid, respectively, which satisfies the NSE,

∂tu + (u · ∇)u− ν∆u +∇p = f in (0,+∞)× Ω,(3.1.1)

∇ · u = 0 in (0,+∞)× Ω,(3.1.2)

u|t=0 = u0 in Ω,(3.1.3)

where the constant ν > 0 denotes the kinematic viscosity, u0 and f are given as the initial

velocity and the external force in the same order. The α-models aim at regularizing the
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nonlinear term (u · ∇)u and are given by the following general abstract form

∂tuα +N(uα)− ν∆uα +∇pα = f , in (0,+∞)× Ω,(3.1.4)

∇ · uα = 0, in (0,+∞)× Ω,(3.1.5)

uα|t=0 = u0 in Ω,(3.1.6)

where, for α > 0 the fields uα and pα are the filtered velocity and pressure, respectively, at

frequencies of order 1/α. The α-models under study herein are: the Leray-α, the simplified

Bardina and the modified Leray-α models, given by

(3.1.7) N(uα) =


(uα · ∇)uα Leray-α model (L-α),

(uα · ∇)uα Simplified Bardina model (SB),

(uα · ∇)uα Modified Leray-α model (ML-α),

and the bar operator is given by solving the following equation

(3.1.8) v − α2∆v = v in Ω,

in the setting of periodic functions with zero mean value.

The first model Nα(v) = (v · ∇)v is due to J. Leray [Ler34a, Ler34b], who considered

the problem in the whole space R3, and where v = v ∗ ρα, for a standard mollifier ρα.

Note that in the whole space it is also possible to explicitly write a Kernel Gα such that

v = v ∗Gα for the Helmholtz filter [LB18]. The class of α-models has been the subject of

many investigations in the last two decades, see for instance [CLT06, CFH+99a, CFH+99b,

CFH+98, CHOT05, FHT01, FHT02, HT88, ILT06, LL03, LL06]. It is known that the

Cauchy problem has global, unique, and regular solutions, with uα at least in L∞t H
1
x∩L2

tH
2
x.

These solutions converge to solutions of the NSE as α→ 0. which means that uα → u, pα →
p, where (u, p) is the corresponding weak solution of the NSE, under suitable assumptions

about the data.

In this paper we will study the rate of convergence as α→ 0, namely the norm of

(3.1.9) e := u− uα,

in various spaces such as L∞t L
2
x, L2

tH
1
x, L∞t H

1
x and L2

tH
2
x. This study is motivated by the

results in Cao and Titi [CT09], in which the authors proved that for all 2D α-models (3.1.4)-

(3.1.7) (also for the Navier-Stokes-α model, in which the nonlinear term is given by N(uα) =

−uα × (∇× uα)1), the following L∞t L
2
x estimate holds true on a given time interval [0, T ]

(3.1.10) sup
t∈[0,T ]

‖uα(t)− u(t)‖2 ≤ Cα2

(
T

(
1 + log

(
L

2πα

))
+ 1

)
∀α ≤ L

2π
,

1The nonlinear term of the Navier-Stokes-α model does not seem to be well-defined in the 2D case.
Therefore, this model is not considered in this paper.
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where C is a generic constant and when no risk of confusion occurs, ‖ · ‖ stands for the

usual L2-norm. To prove the convergence rate (3.1.10) it is assumed that

u0 ∈ D(−Pσ∆) and f ∈ L2([0, T ];PσL2(Ω)2),

here Pσ being the so-called Helmholtz-Leray projector. The logarithmic factor that ap-

pears in (3.1.10) comes from the application of an inequality initially proved by Brézis and

Gallouët in [BG80]. Cao-Titi’s result raises two questions:

i) Is it possible to improve the O(α2 log(1/α)) rate, and what about the convergence rate

in stronger norms?

ii) Is it possible to prove an estimate global in time?

In this paper we positively answer to both these questions by showing that when

u0 ∈ PσH1(Ω)2 and f ∈ L2(R+;PσL2(Ω)2),

we get an estimate uniform in time of order O(α3) in the L∞t L
2
x∩L2

tH
1
x norms for the error.

More specifically we prove that for all α-models (3.1.4)-(3.1.7), it holds

(3.1.11) ‖e(s)‖2 + ν

∫ s

0
‖∇e‖2 dt ≤ Cα3 ∀ s ≥ 0,

where C is a time-independent constant, see Theorem 3.4.1 below. We also get a uniform

in time estimate in the L∞t H
1
x ∩ L2

tH
2
x norms of order O(α2) for the L-α model, and in

O(α2 log(1/α)) for SB and ML-α models, namely for all s ≥ 0, we will prove

(3.1.12) ‖∇e(s)‖2 + ν

∫ s

0
‖∆e‖2 dt ≤

 Cα2 for L-α,

Cα2

(
log

(
L

2πα

)
+ 1

)
for SB and ML-α,

see Theorem 3.4.2 below. Estimates (3.1.11) and (3.1.12) are the main results in the present

work.

Thanks to (3.1.11)-(3.1.12), we are also able to study the rates of convergence of the pres-

sures, by showing (see Theorem 3.5.1 below) that

(3.1.13)

∫ s

0
‖∇q‖2 dt ≤

Cα
5/2 for L-α ,

Cα2

(
log

(
L

2πα

)
+ 1

)
for SB and ML-α,

where C is independent of the time and q := pα − p. Note that the estimates (3.1.11)-

(3.1.13) are presented under a small condition of α, that is α ≤ L/2π.

Plan of the chapter. The chapter is organized as follows: In Section 3.2 we set the
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mathematical framework. In Section 3.3 we derive from energy balances uniform-in-time

energy(type) estimates for weak solutions of the NSE and for all α-models as well. This is

the main step before investigating the rates of convergence in Section 3.4, where we prove

the estimates (3.1.11)-(3.1.12). Section 3.5 is devoted to the study of the convergence rate

for the pressure, in which the proof of (3.1.13) is provided. In Section 3.6, we make some

additional remarks about the 3D case for which the situation is quite different and not in

the focus of the present chapter.

3.2 Mathematical framework

In this section we set the functional spaces we are working with. We show basic properties

of the Helmholtz filter, then we carry out the Leray projection of the NSE and Leray-α on

divergence-free fields spaces. The section ends with a brief state of the art about the NSE

and all α-models as well.

3.2.1 Function spaces

Let Ω := [0, L]2 be a periodic domain. For 1 ≤ p ≤ ∞ and m ∈ N, let Lp(Ω) and Hm(Ω)

denote the standard Lebesgue and Sobolev spaces on Ω, respectively. The Lp(Ω)-norm is

denoted by ‖ · ‖p for all 1 ≤ p ≤ ∞, except for the case p = 2 where ‖ · ‖ ≡ ‖ · ‖2. Boldface

symbols are used for vectors, matrices, or space of vectors. We denote by Π the set of all

trigonometric polynomials on Ω with spatial zero mean, i.e.,∫
Ω
φ(x) dx = 0, ∀φ ∈ Π.

Let us define

Λ :=
{
ϕ ∈ Π2 : ∇ ·ϕ = 0

}
.

As usual when studying the NSE we define the following standard Hilbert functional spaces

H := the closure of Λ in L2(Ω)2,

V := the closure of Λ in H1(Ω)2.

Let (·, ·) and ‖ · ‖ be the standard inner product and norm on H, that are

(u,v) :=

∫
Ω

u · v dx and ‖u‖2 :=

∫
Ω
|u|2 dx.

The inner product (u,v)V and the corresponding norm ‖u‖V on V are defined as follows

(u,v)V := (∇u,∇v) and ‖u‖V := ‖∇u‖.
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In the sequel, we use the symbol Pσ to denote the Helmholtz-Leray orthogonal projection

operator of L2(Ω)2 onto H. We next consider an orthonormal basis {ϕj}j∈N, of H consisting

of eigenfunctions of the Laplace operator

−∆ : H2(Ω)2 ∩V −→ H,

and for m ≥ 1, Hm := span{ϕ1,ϕ2, . . . ,ϕm}.

Let A = −Pσ∆ be the so-called Stokes operator, with domain D(A) := H2(Ω)2 ∩V. Then,

it is well-known (cf. [CT09, FHT02]) that:

Au = −Pσ∆u = −∆u ∀u ∈ D(A).

Let λ1 > 0 be the first eigenvalue of A, i.e., Aϕ1 = λ1ϕ1, and the above setting leads to

λ1 = (2π/L)2. By virtue of the Poincaré inequality we have

λ1‖u‖2 ≤ ‖∇u‖2 ∀u ∈ V,(3.2.14)

λ1‖∇u‖2 ≤ ‖Au‖2 = ‖∆u‖2 ∀u ∈ D(A).(3.2.15)

Then, it follows by (3.2.14)-(3.2.15) that there exist positive dimensionless constants c1, c2

such that

c1‖Au‖ ≤ ‖u‖H2(Ω) ≤ c2‖Au‖ ∀u ∈ D(A).

In the following, we will make an intensive use of the 2D-Ladyžhenskaya inequality [Lad69]:

(3.2.16) ‖u‖4 ≤ C‖u‖1/2‖∇u‖1/2 ∀u ∈ V,

where C is a non-negative dimensionless constant.

3.2.2 On the Helmholtz filter

The filter operator used to construct the turbulence models is the differential filter associated

with the Helmholtz filter, see Germano [Ger86], or [BL12, DJ04, LL08]. Given a cut length

α > 0 (which will be called the filter radius), for each u ∈ H, then u ∈ H2(Ω)2 ∩V is the

unique solution of the equation (3.1.8). By a direct calculation from (3.1.8) we deduce

‖u− u‖ = α2‖∆u‖ ∀u ∈ H.

Moreover, we already know that the filter satisfies the following inequality, see [Dun18]:

(3.2.17) ‖u‖+ α‖∇u‖+ α2‖∆u‖ ≤ C‖u‖ ∀u ∈ H,

where C is a Sobolev constant. It follows that

(3.2.18) ‖∇u−∇u‖ = α2‖∇∆u‖ ≤ Cα‖∆u‖ ∀u ∈ D(A).
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3.2.3 On the Leray projection operator

Throughout the rest of the paper we assume

(3.2.19) u0 ∈ V and f ∈ L2(R+; H).

In order to eliminate the pressure from the equations, we apply the Helmholtz-Leray orthog-

onal projection Pσ : L2(T2)2 → H on divergence-free fields to both the NSE and α-models.

We get the following functional equations:

(3.2.20)

{
du

dt
+ Pσ[(u · ∇)u]− ν∆u = f ,

u|t=0 = u0,

as well as

(3.2.21)

{
duα
dt

+ Pσ[N(uα)]− ν∆uα = f ,

uα|t=0 = u0,

where we used the facts that Pσf ≡ f since f ∈ H, Pσ∆u = ∆u due to the periodic setting,

and Pσ(∇p) = Pσ(∇pα) = 0. Once the velocity is calculated, the pressures p and pα are

solutions of the following Poisson equations

−∆p = ∇ · ((u · ∇)u) and −∆pα = ∇ · (N(uα)).

From now when speaking of solutions to the NSE and to α-models we will only consider

the velocities, and the pressures can be associated by solving the above equations.

Remark 1. Thanks to the Leray-Helmholtz decomposition and for simplicity we assume

that f is divergence free. If not the case, the gradient part of f can be added to the pressure

(to obtain a modified pressure) and Pσf will replace f .

Remark 2. A common property of all α-models considered in the present paper is that

these models ”formally” reduce to the NSE when α = 0. It can be seen directly from the

equality (3.1.8).

3.2.4 Brief state of the art

It is well-known that in the 2D case, there exists a unique solution of the NSE, global in time,

without formation of singularities, see for example Temam [Tem95, Tem01]. Nevertheless,

this does not resolve the computational issues of the shallow waters or of stratified flows.

The proof of the existence and uniqueness of solution of the α-models given by (3.1.7) can

be established by using the standard Galerkin method. The L-α model was implemented

computationally by Cheskidov-Holm-Olson-Titi [CHOT05]. Ilyin-Lunasin-Titi introduced
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and studied the ML-α model in the 3D periodic case, see [ILT06] and it was tested numer-

ically in [GKT08]. However, the global existence and uniqueness for 2D can be proved in a

similar way.

The Bardina closure model of turbulence was first introduced by Bardina-Ferziger-Reynolds

in [BFR80] to perform simulations of the atmosphere. A simplified version of the Bardina’s

model, was modeled and studied in [LL03, LL06], then in [LB18] the whole space case was

studied. This model is designed by N(uα) = ∇ · (uα ⊗ uα). Cao-Lunasin-Titi proposed a

variant of this model [CLT06], which is the one we consider in this paper and that we still

call “Simplified Bardina model” (SB).

3.3 A priori estimates

3.3.1 General orientation

As the data are given as in (3.2.19) it is well-known that both the NSE (3.1.1)-(3.1.3) and

the α-model (3.1.5)-(3.1.6) (for any nonlinearity N(uα) as those given in (3.1.7)) admit

unique solutions u and uα, respectively, such that

u,uα ∈ L∞(R+; V) ∩ L2(R+;H2(Ω)2 ∩V).

To shorten the notation in the following we set

F := ‖f‖2L2(R+;H).

In this section, we detail the L2(R+;H2(Ω)2∩V) estimates to get precise constants, for the

various models. The analysis is based on 2D energy inequalities, using the Ladyžhenskaya

inequality (3.2.16) and the following identities

(3.3.22) (Pσ((u · ∇)u),u) = (Pσ((u · ∇)u),∆u) = 0 ∀u ∈ D(A),

which are well-known [Tem95] and on the extension to the L-α and the SB models,

(PσN(uα),uα) = (PσN(uα),∆uα) = 0 ∀uα ∈ V.

However, the nonlinearity in the ML-α model is less favorable, since we only have

(PσN(uα),uα) = 0.
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3.3.2 Estimates for the NSE

We recall the basic estimate for weak solutions to the two dimensional NSE.

Lemma 3.3.1 (NSE). Let u0 ∈ V and f ∈ L2(R+; H). Then, the unique weak solution u

of the NSE satisfies

‖u(s)‖2 + ν

∫ s

0
‖∇u‖2 dt ≤ ‖u0‖2 +

F
νλ1

=: CN1 ∀ s ≥ 0,(3.3.23)

‖∇u(s)‖2 + ν

∫ s

0
‖∆u‖2 dt ≤ ‖∇u0‖2 +

F
ν

=: CN2 ∀ s ≥ 0.(3.3.24)

Remark 3. Estimate (3.3.23) in the previous theorem can be obtained more generally when

f ∈ L2(R+; V′) where V′ denotes the dual space of V. We use the condition f ∈ L2(R+; H)

for both estimates (3.3.23) and (3.3.24) for shortness.

Proof. Proofs are well-known but we reproduce them to keep precise track of the constants

and to see differences with the other models. We argue step by step, first proving (3.3.23).

Step 1. L∞t L
2
x ∩ L2

tH
1
x estimate of u. Take the scalar product of the NSE (3.2.20) with

u and use the identity (Pσ[(u · ∇)u],u) = 0, which lead to the following estimate

(3.3.25)
1

2

d

dt
‖u‖2 + ν‖∇u‖2 ≤ ‖f‖‖u‖.

Using Poincaré and Young inequalities on the r.h.s (right-hand side) of (3.3.25) yields:

(3.3.26)
d

dt
‖u‖2 + ν‖∇u‖2 ≤ 1

νλ1
‖f‖2.

Integrating (3.3.26) on [0, s] for s ≥ 0, one has

(3.3.27) ‖u(s)‖2 + ν

∫ s

0
‖∇u‖2 dt ≤ ‖u0‖2 +

1

νλ1

∫ s

0
‖f‖2 dt.

Finally, the estimate (3.3.23) follows by (3.3.27) since s ≥ 0 can be chosen arbitrary.

Step 2. L∞t H
1
x ∩ L2

tH
2
x estimate of u. In order to prove the estimate (3.3.24), we

take −∆u as a test function for the NSE (3.2.20). As we already have said, in the 2D

case periodic the nonlinear term vanishes, cf. (3.3.22). By the Young inequality the term

corresponding to the body force can be estimated by

(f ,−∆u) ≤ 1

2ν
‖f‖2 +

ν

2
‖∆u‖2,

and the rest of the proof follows as for the first estimate. Thus, the proof is complete.
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3.3.3 Estimates for the Leray-α model

We now prove a uniform estimate for weak solutions to the Leray-α model.

Lemma 3.3.2 (L-α). Let u0 ∈ V and f ∈ L2(R+; H). Then, the unique weak solution uα

of the L-α satisfies the following energy-type estimates

‖uα(s)‖2 + ν

∫ s

0
‖∇uα‖2 dt ≤ ‖u0‖2 +

F
νλ1

∀ s ≥ 0,(3.3.28)

‖∇uα(s)‖2 + ν

∫ s

0
‖∆uα‖2 dt ≤

CC2
L1

ν4

(
‖u0‖2 +

F
νλ1

)
+

2F
ν

=: CL ∀ s ≥ 0,(3.3.29)

where CL1 is given in (3.3.32).

Proof. For the L-α model, we recall the nonlinear term is given by

N(uα) = (uα · ∇)uα where uα − α2∆uα = uα.

We argue in three steps, with an intermediate step to estimate uα uniformly in time.

Step 1. L∞t L
2
x ∩ L2

tH
1
x estimate of uα. Taking uα as a test function in the L-α

model (3.2.21) gives
d

dt
‖uα‖2 + ν‖∇uα‖2 ≤

1

νλ1
‖f‖2.

Since (Pσ[(uα · ∇)uα],uα) = 0, see [CT09], this leads to (3.3.28).

Step 2. L∞t H
1
x ∩ L2

tH
2
x estimate of uα. Testing (3.2.21) by −∆uα and replacing uα by

uα − α2∆uα yield

(3.3.30)
d

dt

(
‖∇uα‖2 + α2‖∆uα‖2

)
+ ν‖∆uα‖2 + 2να2‖∇∆uα‖2 ≤

‖f‖2

ν
.

Here, the vanishing of the nonlinear term has been used, i.e.,

(Pσ[(uα · ∇)uα],−∆uα) = ((uα · ∇)(uα − α2∆uα),−∆uα) = 0,

which is a consequence of (3.3.22). Therefore, by (3.3.30) for all s ≥ 0

(3.3.31) ‖∇uα(s)‖2 + α2‖∆uα(s)‖2 + ν

∫ s

0

(
‖∆uα‖2 + 2α2‖∇∆uα‖2

)
dt ≤ CL1,

where CL1 is given by

(3.3.32) ‖∇u0‖2 + α2‖∆u0‖2 +
F
ν
≤ (1 + λ1)‖∇u0‖2 +

F
ν

=: CL1,

here the inequalities

‖∇u0‖ ≤ ‖∇u0‖ and α2‖∆u0‖2 ≤ ‖u0‖2,
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given by (3.2.17) and the Poincaré inequality has been applied.

Step 3. L∞t H
1
x ∩ L2

tH
2
x estimate of uα. We test (3.2.21) by −∆uα which leads now to

the following equality

(3.3.33)
1

2

d

dt
‖∇uα‖2 + ν‖∆uα‖2 = (Pσ[(uα · ∇)uα],∆uα) + (f ,−∆uα).

The first term on the r.h.s of (3.3.33) can be estimated by:

(Pσ[(uα · ∇)uα],∆uα) ≤ C‖uα‖4‖∇uα‖4‖∆uα‖

≤ C‖∇uα‖‖∇uα‖1/2‖∆uα‖3/2

≤ C

ν3
‖∇uα‖4‖∇uα‖2 +

ν

4
‖∆uα‖2.(3.3.34)

Here we used the Hölder, 2D-Ladyžhenskaya (3.2.16), Sobolev, and Young inequalities,

respectively. From (3.3.33)-(3.3.34) one obtains

d

dt
‖∇uα‖2 + ν‖∆uα‖2 ≤

2

ν
‖f‖2 +

C

ν3
‖∇uα‖4‖∇uα‖2,

which yields

‖∇uα(s)‖2 + ν

∫ s

0
‖∆uα‖2 dt ≤

2F
ν

+
C

ν3

∫ s

0
‖∇uα‖4‖∇uα‖2 dt ∀ s ≥ 0.(3.3.35)

Finally, both estimates (3.3.28) and (3.3.31) are applied in (3.3.35) to get (3.3.29), which

ends the proof.

3.3.4 Estimates for the Simplified Bardina model

In this section we prove a uniform estimate for weak solutions to the simplified Bardina

model.

Lemma 3.3.3 (SB). Let u0 ∈ V and let f ∈ L2(R+; H). Then, the unique weak solution

uα of the SB model satisfies

‖uα(s)‖2 + ν

∫ s

0
‖∇uα‖2 dt ≤ ‖u0‖2 +

F
νλ1

∀ s ≥ 0,(3.3.36)

‖∇uα(s)‖2 + ν

∫ s

0
‖∆uα‖2 dt ≤

CC2
S1

ν2λ1
+

2F
ν

=: CS ∀ s ≥ 0,(3.3.37)

where C is a positive constant and CS1 is given by (3.3.38).

Proof. We recall that for this model, the nonlinear term is given by

N(uα) = (uα · ∇)uα,

and we will prove the global-in-time estimate in two steps, starting with bounds on uα.
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Step 1. L∞t H
1
x ∩ L2

tH
2
x estimate of uα. Taking −∆uα as a test function in (3.2.21) and

using the fact uα = uα − α2∆uα give us

d

dt

(
‖∇uα‖2 + α2‖∆uα‖2

)
+ ν‖∆uα‖2 + 2να2‖∇∆uα‖2 ≤

1

ν
‖f‖2,

where the identity (Pσ[(uα · ∇)uα],−∆uα) = 0, has been used. Thus, we get

(3.3.38)

‖∇uα(s)‖2 + α2‖∆uα(s)‖2 + ν

∫ s

0

(
‖∆uα‖2 + 2α2‖∇∆uα‖2

)
dt ≤ CS1 ∀ s ≥ 0,

where CS1 := CL1 as given in (3.3.32).

Step 2. L∞t H
1
x ∩ L2

tH
2
x estimate of uα. Taking uα as test function in (3.2.21) we obtain

d

dt
‖uα‖2 + ν‖∇uα‖2 ≤

1

νλ1
‖f‖2.

Since (Pσ[(uα · ∇)uα],uα) = 0, this leads to (3.3.36). Taking −∆uα as test function

in (3.2.21) we obtain

(3.3.39)
1

2

d

dt
‖∇uα‖2 + ν‖∆uα‖2 = (Pσ[(uα · ∇)uα],∆uα)− (f ,∆uα).

The nonlinear term on the r.h.s of (3.3.39) is estimated by:

(Pσ[(uα · ∇)uα],∆uα) ≤ C‖uα‖4‖∇uα‖4‖∆uα‖

≤ C‖uα‖1/2‖∇uα‖‖∆uα‖1/2‖∆uα‖

≤ C

ν
‖uα‖‖∇uα‖2‖∆uα‖+

ν

4
‖∆uα‖2.(3.3.40)

In the above inequalities the Hölder, 2D-Ladyžhenskaya, and Young inequalities have been

applied, respectively. The estimates (3.3.39)-(3.3.40) lead to

d

dt
‖∇uα‖2 + ν‖∆uα‖2 ≤

2

ν
‖f‖2 +

C

ν
‖uα‖‖∇uα‖2‖∆uα‖.

and by using (3.3.38) we get

‖∇uα(s)‖2 + ν

∫ s

0
‖∆uα‖2 dt ≤

2F
ν

+
C

ν

∫ s

0
‖uα‖‖∇uα‖2‖∆uα‖ dt

≤ 2F
ν

+
CCS
νλ1

∫ s

0
‖∆uα‖2 dt

≤ 2F
ν

+
CC2

S

ν2λ1
∀ s ≥ 0.

Therefore, the proof is complete.
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3.3.5 Estimates for the Modified Leray-α model

In this section we prove a uniform estimate for weak solutions to the modified Leray-α

model

Lemma 3.3.4 (ML-α). Let u0 ∈ V and let f ∈ L2(R+; H). Then, the unique weak solution

uα of the ML-α model satisfies

‖uα(s)‖2 + ν

∫ s

0
‖∇uα‖2 dt ≤ CM2 ∀ s ≥ 0,(3.3.41)

‖∇uα(t)‖2 + ν

∫ s

0
‖∆uα‖2 dt ≤

CM4

ν4
+

2F
ν

=: CM ∀ s ≥ 0,(3.3.42)

where CM4 := C CM1CM2CM3 with C is a positive constant, while for i = 1, 2, 3, the

constants CMi are given by (3.3.45), (3.3.49) and (3.3.54), respectively.

Proof. The nonlinear term of this model is given by

N(uα) = (uα · ∇)uα.

This case requires more care than the previous ones, since the cancellations are less favorable.

We prove it into three steps, starting with a L∞t L
2
x ∩L2H1

x estimate of uα, then a L∞t L
2
x ∩

L2H1
x estimate of uα, to finally get the conclusion.

Step 1. L∞t L
2
x ∩ L2

tH
1
x estimate of uα. Taking uα as test function in (3.2.21) and

replacing uα by uα − α2∆uα we obtain

(3.3.43)
d

dt

(
‖uα‖2 + α2‖∇uα‖2

)
+ ν‖∇uα‖2 + 2να2‖∆uα‖2 ≤

1

νλ1
‖f‖2.

Here the fact (Pσ[(uα · ∇)uα],uα) = 0 and the Poincaré inequality have been used on the

r.h.s. Then one gets from (3.3.43)

(3.3.44) ‖uα(s)‖2 + α2‖∇uα(s)‖2 + ν

∫ s

0

(
‖∇uα‖2 + 2α2‖∆uα‖2

)
ds ≤ CM1 ∀s ≥ 0,

where as in (3.3.32) above CM1 is given by

(3.3.45) ‖u0‖2 + α2‖∇u0‖2 +
F2

νλ1
≤ (1 + λ1)‖u0‖2 +

F2

νλ1
=: CM1.

Step 2. L∞t L
2
x ∩ L2

tH
1
x estimate of uα. Taking uα as test function in (3.2.21) yields

(3.3.46)
1

2

d

dt
‖uα‖2 + ν‖∇uα‖2 = −(Pσ[(uα · ∇)uα],uα) + (f ,uα).

The nonlinear term on the r.h.s of (3.3.46) can be now estimated by

−(Pσ[(uα · ∇)uα],uα) ≤ C‖uα‖24‖∇uα‖

≤ C‖uα‖‖∇uα‖‖∇uα‖

≤ C

ν
‖uα‖2‖∇uα‖2 +

ν

4
‖∇uα‖2.
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Here we used the Hölder, 2D-Ladyžhenskaya, and Young inequalities, respectively. Using

the Young inequality for the other term on the r.h.s of (3.3.46) gives

(3.3.47)
d

dt
‖uα‖2 + ν‖∇uα‖2 ≤

2

λ1ν
‖f‖2 +

C

ν
‖uα‖2‖∇uα‖2.

Using the estimate (3.3.44) leads to∫ s

0
‖uα‖2‖∇uα‖2 dt =

∫ s

0

(
‖uα‖2 + 2α2‖∇uα‖2 + α4‖∆uα‖2

)
‖∇uα‖2 dt

≤
4C2

M1

ν
∀ s ≥ 0.(3.3.48)

Here, we also used the following identity

‖uα‖2 = ‖uα‖2 + 2α2‖∇uα‖2 + α4‖∆uα‖2.

Therefore, by (3.3.47)-(3.3.48) we get (3.3.41) with

(3.3.49) ‖uα(s)‖2 + ν

∫ s

0
‖∇uα‖2 dt ≤

2F
νλ1

+
4CC2

M1

ν2
+ ‖u0‖2 =: CM2 ∀ s ≥ 0.

Step 3. L∞t H
1
x ∩ L2

tH
2
x estimate of uα. We take −∆uα as test function in (3.2.21) to

obtain

(3.3.50)
1

2

d

dt
‖∇uα‖2 + ν‖∆uα‖2 = (Pσ[(uα · ∇)uα],∆uα)− (f ,∆uα).

The nonlinear term can be estimated as follows

(Pσ[(uα · ∇)uα],∆uα) ≤ C‖uα‖4‖∇uα‖4‖∆uα‖2

≤ C‖uα‖1/2‖∇uα‖1/2‖∇uα‖1/2‖∆uα‖3/2

≤ C

ν3
‖uα‖2‖∇uα‖2‖∇uα‖2 +

ν

4
‖∆uα‖2,(3.3.51)

by using the Hölder, 2D-Ladyžhenskaya, Sobolev, and Young inequalities, respectively.

From (3.3.50)-(3.3.51) we obtain:

(3.3.52)
d

dt
‖∇uα‖2 + ν‖∆uα‖2 ≤

C

ν3
‖uα‖2‖∇uα‖2‖∇uα‖2 +

2

ν
‖f‖2,

and in particular

(3.3.53)
d

dt
‖∇uα‖2 ≤

CCM2

ν3
‖∇uα‖2‖∇uα‖2 +

2

ν
‖f‖2.

Hence, by (3.3.53) we obtain

(3.3.54) ‖∇uα(s)‖2 ≤
(
‖∇u0‖2 +

2F
ν

)
exp

{
CCM2

ν4

}
=: CM3 ∀ s ≥ 0.

Together with (3.3.52) and (3.3.54) one obtains (3.3.42). Thus, the proof is complete also

for this model.
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3.4 The rate of convergence of uα to u

In this section, we study the rate of convergence –in terms of α– of the weak solutions uα of

the three α-models to the weak solution u of the NSE (in some suitable norms) as α tends

to zero. We recall that, throughout this section the vector e, defined as in (3.1.9), denotes

the error between u and uα which are the weak solutions of the NSE (3.2.20) and of one of

the α-models (3.2.21), respectively.

3.4.1 Error estimate in L∞t L
2
x ∩ L2H1

x

The first main result in this section is given by the following theorem:

Theorem 3.4.1. Let u0 ∈ V and f ∈ L2(R+; H). Then

(3.4.55) ‖e(s)‖2 + ν

∫ s

0
‖∇e‖2 dt ≤ Crα3 ∀ s ≥ 0,

where Cr is given explicitly in (3.4.63), (3.4.65) and (3.4.66) for the L-α, SB and ML-α

models.

Proof. As the three models share some common features, in a first step we consider these

common ones, and in a second step we treat them separately to prove some specific esti-

mates.

Step 1. Common features. We subtract (3.2.21) from (3.2.20) and by multiplying by e

and integrating by parts we get

(3.4.56)
1

2

d

dt
‖e‖2 + ν‖∇e‖2 = (−Pσ[(u · ∇)u] + Pσ[N(uα)], e).

We add and subtract on the r.h.s of (3.4.56) the term ((uα · ∇)uα, e) and then rewrite it in

the following form:

R = (−Pσ[(u · ∇)u] + Pσ[N(uα)], e)

= (−(u · ∇)u +N(uα),Pσ e)

= (−(u · ∇)u +N(uα), e)

= (−(u · ∇)u + (uα · ∇)uα, e) + (−(uα · ∇)uα +N(uα), e) =: I1 + I2,(3.4.57)

We will deal with the two terms (a common one and a residual term) on the r.h.s of (3.4.57)

separately. Replacing uα by u− e, the first term in (3.4.57) is rewritten as follows:

I1 = (−(u · ∇)u + (uα · ∇)uα, e) = (−(u · ∇)u + (uα · ∇)(u− e), e)

= (−(u · ∇)u + (uα · ∇)u, e)

= ((−e · ∇)u, e)

= ((e · ∇)e,u),
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where (uα · ∇)e, e) = 0 has been used and the result is then estimated by

I1 = ((e · ∇)e,u) ≤ C‖e‖4‖∇e‖‖u‖4

≤ C‖e‖1/2‖∇e‖3/2‖u‖1/2‖∇u‖1/2

≤ C

ν3
‖u‖2‖∇u‖2‖e‖2 +

ν

4
‖∇e‖2.(3.4.58)

The first inequality from above is due to the Hölder inequality with the pairing (1/4, 1/2,

1/4), the second one is obtained by applying the 2D-Ladyžhenskaya inequality and the last

one comes from using the Young inequality with the pairing (1/4, 3/4).

The residual term I2 = (−(uα ·∇)uα+N(uα), e) will be estimated for each model separately.

Step 2. Analysis specific for the various models.

L-α model. For this model the nonlinear term is given by N(uα) = (uα · ∇)uα. The

residual term is written as follows

I2 = (−(uα · ∇)uα + (uα · ∇)uα, e) = −(((uα − uα) · ∇)uα, e).

The Hölder, 2D-Ladyžhenskaya, (3.1.8), (3.2.18), Sobolev, Poincaré, and Young inequalities

are then used to get the following estimates:

I2 ≤ C‖uα − uα‖4‖∇uα‖‖e‖4

≤ C‖uα − uα‖1/2‖∇uα −∇uα‖1/2‖∇uα‖ ‖e‖1/2‖∇e‖1/2

≤
CC

1/2
L

λ
1/2
1

α3/2‖∆uα‖1/2 ‖∆uα‖1/2 ‖∇e‖

≤
CC

1/2
L

λ
1/2
1

α3/2‖∆uα‖ ‖∇e‖

≤ CCLα
3

νλ1
‖∆uα‖2 +

ν

4
‖∇e‖2.(3.4.59)

Notice that ‖∇uα(t)‖ in the above estimate is uniformly bounded by C
1/2
L where CL given

by Lemma 3.3.2. Collecting estimates (3.4.58) and (3.4.59) we obtain

(3.4.60)
d

dt
‖e‖2 + ν‖∇e‖2 ≤ CCLα

3

νλ1
‖∆uα‖2 +

C

ν3
‖u‖2‖∇u‖2‖e‖2.

We are now going to apply the Gronwall’s lemma for (3.4.60). Although the argument is

standard we still provide the details for this model, while for the other ones the details will

be skipped. Let us define

A(s) := −C
ν3

∫ s

0
‖u‖2‖∇u‖2 dt ∀ s ≥ 0,
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where C is given in (3.4.60). Multiplying both sides of (3.4.60) by exp{A(t)} yields

(3.4.61) ‖e(s)‖2 ≤ CCLα
3

νλ1
exp{−A(s)}

∫ s

0
‖∆uα‖2 dt ∀ s ≥ 0,

where we has used the facts that A(s) ≤ 0 and e0 = 0. Thus, let us combine (3.4.61)

with Lemmas 3.3.1 and 3.3.2 to prove uniform bounds for the modulus of A(s) and for the

integral from the r.h.s. to obtain

(3.4.62) ‖e(s)‖2 ≤
CC2

L

ν2λ1
exp

{
CC2

N1

ν4

}
α3 =: ELα

3 ∀ s ≥ 0,

where CL and CN1 are given by Lemmas 3.3.2 and 3.3.1, respectively. Finally, we com-

bine (3.4.60) and (3.4.62) to get (3.4.55), with Cr given by

(3.4.63) Cr := C

(
C2
L

ν2λ1
+
C2
N1EL
ν4

)
.

SB model. In this case the residual term is given by

I2 = (−(uα · ∇)uα + (uα · ∇)uα, e)

= (−(uα · ∇)uα + (uα · ∇)uα − (uα · ∇)uα + (uα · ∇)uα, e)

= −(((uα − uα) · ∇)uα, e)− ((uα · ∇)(uα − uα), e)

= R1 +R2.(3.4.64)

The term R1 on the r.h.s of (3.4.64) can be handled as (3.4.59) in the L-α model. The second

term R2 can be estimated as in the ML-α below, observing that ‖u‖ ≤ ‖u‖. Therefore, the

constant Cr in this case has the following form

(3.4.65) Cr := C

(
C2
S

ν2λ1
+
C2
N1ES
ν4

)
where ES :=

CC2
S

ν2λ1
exp

{
C2
N1

ν4

}
.

ML-α model. In this case the residual term is rewritten as

I2 = (−(uα · ∇)uα + (uα · ∇)uα, e)

= ((uα · ∇)e,uα − uα),

and is handled precisely as in the L-α case. Then, the proof for this case follows by that of

the L-α model, with Cr given by

(3.4.66) Cr := C

(
C2
M

ν2λ1
+
C2
N1EM
ν4

)
where EM :=

CC2
M

ν2λ1
exp

{
C2
N1

ν4

}
.

From Theorem 3.4.1 we have immediately the following results:
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Corollary 3.4.1. Let u0 ∈ V and let f ∈ L2(R+; H). Then, it follows

‖e(s)‖2 + ν

∫ s

0
‖∇e‖2 dt ≤ Crα3 ∀ s ≥ 0,

where e = u− uα and Cr is given by Theorem 3.4.1 for each α-model.

Proof. The proof follows directly by Theorem 3.4.1 and (3.2.17).

Corollary 3.4.2. Let u0 ∈ V and let f ∈ L2(R+; H). Then, it follows

(3.4.67) ‖(u− uα)(s)‖2 + ν

∫ s

0
‖∇(u− uα)‖2 dt ≤ Ccor(α3 + α2) ∀ s ≥ 0,

where Ccor is given by (3.4.70).

Proof. The triangle inequality, Theorem 3.4.1, Lemma 3.3.1, relation (3.2.17), and Poincaré

inequality yield for all s ≥ 0

‖u− uα(s)‖2 ≤ 2
(
‖(u− uα)(s)‖2 + ‖(uα − uα)(s)‖2

)
≤ 2Crα

3 + 2α4‖∆uα(s)‖2

≤ 2Crα
3 + 2Cα2‖uα(s)‖2

≤ 2Crα
3 + 2C

CE
λ1

α2.(3.4.68)

Here, for each α-model CE is given by CL, CS or CM in Lemmas 3.3.2, 3.3.3 and 3.3.4,

respectively. Moreover, Cr is given by Theorem 3.4.1. Similarly, we have

ν

∫ s

0
‖∇(u− uα)‖2 dt ≤ 2ν

(∫ s

0
‖∇(u− uα)‖2 dt+

∫ s

0
‖∇(uα − uα)‖2 dt

)
≤ 2Crα

3 + 2Cα2ν

∫ s

0
‖∆uα‖2 dt

≤ 2Crα
3 + 2CCEα

2 ∀ s ≥ 0.(3.4.69)

Thus, (3.4.67) follows by (3.4.68) and (3.4.69) with the constant C given by

(3.4.70) Ccor = 2 max{Cr, CCE , CCE/λ1}.

3.4.2 Error estimate in L∞t H
1
x ∩ L2

tH
2
x

We now prove convergence rates in stronger norms, at the price of weaker rates. Throughout

the rest of the paper, we assume α < L/2π. Before going on to state the results, we start

with a technical result, see [CT09, Prop. 4.2], that follows from a well-known result due to

Brézis and Gallouët [BG80].
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Lemma 3.4.1. Let 0 ≤ α < λ
−1/2
1 = L/2π, and let uα be the weak solutions of any of

α-models considered here. Then, there exist K1 and K2 such that

(3.4.71) ‖uα(t)‖2∞ ≤ K1 log

(
L

2πα

)
+K2 ∀ t ≥ 0.

Proof. For the proof apply the same argument as in [CT09, Prop. 4.2], with the only

difference that here due to the global estimates (we derived previously) we can work on

arbitrary time intervals. Note that in [CT09, Prop. 4.2] it is required u0 ∈ D(A). However,

thanks to the estimates which are presented in Section 3.3, it is enough to take u0 ∈ V.

We are now in order to state the next main result in this section.

Theorem 3.4.2. Let α < L/2π, u0 ∈ V, f ∈ L2(R+; H), and let us define

D(s) := ‖∇e(s)‖2 + ν

∫ s

0
‖∆e‖2 dt ∀ s ≥ 0.

Then, the following estimates hold true:

1. For the L-α model

D(s) ≤ CR α2,

where CR is given by (3.4.81).

2. For the SB model

D(s) ≤ CR α2

(
K1 log

(
L

2πα

)
+K2 + CS

)
,

where CR is given by (3.4.83).

3. For the ML-α model

D(s) ≤ CR α2

(
K1 log

(
L

2πα

)
+K2 + CM

)
,

where CR is given by (3.4.88).

Here, the constants CS, CM , K1 and K2 are given by Lemmas 3.3.4, 3.3.3 and 3.4.1,

respectively.

Proof. As before we first prove estimates valid for all models and then we pass to consider

the specific ones.

Step 1. Common features.

Subtracting (3.2.21) from (3.2.20) and taking −∆e as a test function yields:

(3.4.72)
1

2

d

dt
‖∇e‖2 + ν‖∆e‖2 = (−Pσ[(u · ∇)u] + Pσ[N(uα)],−∆e).
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Adding and subtracting the term ((uα · ∇)uα,−∆e) to the r.h.s of (3.4.72):

(3.4.73) RHS = (−(u · ∇)u + (uα · ∇)uα,−∆e) + (−(uα · ∇)uα +N(uα),−∆e).

By recalling the definition e = u− uα, the first term on the r.h.s of (3.4.73) can be split as

follows:

I1 = (−(u · ∇)u + (uα · ∇)uα,−∆e)

= (−(u · ∇)u + ((u− e) · ∇)(u− e),−∆e)

= (−(u · ∇)u + (u · ∇)u− (u · ∇)e− (e · ∇)u + (e · ∇)e,−∆e)

= ((u · ∇)e,∆e) + (e · ∇)u,∆e) =: I11 + I12,(3.4.74)

where the vanishing of the term ((e · ∇)e,−∆e) has been used. The first term on the r.h.s

of (3.4.74) is bounded by

I11 = ((u · ∇)e,∆e) ≤ C‖u‖4‖∇e‖4‖∆e‖

≤ C‖u‖1/2‖∇u‖1/2‖∇e‖1/2‖∆e‖3/2

≤ C

ν3
‖u‖2‖∇u‖2‖∇e‖2 +

ν

6
‖∆e‖2.(3.4.75)

In (3.4.75), the Hölder, 2D-Ladyžhenskaya, and Young inequalities have been applied. Sim-

ilarly, the other term on the r.h.s of (3.4.74) can be handled as follows:

I12 = ((e · ∇)u,∆e) ≤ C‖e‖4‖∇u‖4‖∆e‖

≤ C‖e‖1/2‖∇e‖1/2‖∇u‖1/2‖∆u‖1/2‖∆e‖

≤ C

λ
1/2
1

‖∇e‖‖∇u‖1/2‖∆u‖1/2‖∆e‖

≤ C

νλ1
‖∇e‖2‖∇u‖‖∆u‖+

ν

6
‖∆e‖2.(3.4.76)

Using (3.4.75)-(3.4.76) the quantity I1 in (3.4.74) can be bounded by

I1 ≤
(
C

ν3
‖u‖2‖∇u‖2 +

C

νλ1
‖∇u‖‖∆u‖

)
‖∇e‖2 +

ν

3
‖∆e‖2.(3.4.77)

In the following, we will estimate the second term I2 from the r.h.s of (3.4.73), separately

for each α-model.

Step 2. Analysis specific for the various models.
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L-α model. The nonlinear term is given in this case by N(uα) = (uα · ∇)uα. Therefore,

the residual term I2 can be estimated as follows

I2 = (−(uα · ∇)uα + (uα · ∇)uα,−∆e)

= ((uα − uα) · ∇)uα,−∆e)

≤ C‖uα − uα‖4‖∇uα‖4‖∆e‖

≤ C‖uα − uα‖1/2‖∇uα −∇uα‖1/2‖∇uα‖1/2‖∆uα‖1/2‖∆e‖

≤ Cα‖∇uα‖‖∆uα‖‖∆e‖

≤ C

ν
α2‖∇uα‖2‖∆uα‖2 +

ν

6
‖∆e‖2

≤ CCLα
2

ν
‖∆uα‖2 +

ν

6
‖∆e‖2,(3.4.78)

where the Hölder, 2D-Ladyžhenskaya, (3.1.8)-(3.2.17), and Young inequalities have been

applied. Moreover, CL is given by Lemma 3.3.2. Using estimates (3.4.72)-(3.4.78) leads to

d

dt
‖∇e‖2 + ν‖∆e‖2 ≤

(
C

ν3
‖u‖2‖∇u‖2 +

C

νλ1
‖∇u‖‖∆u‖

)
‖∇e‖2

+
CCLα

2

ν
‖∆uα‖2,(3.4.79)

and we can rewrite it as follows

y′(t)− g(t)y(t) ≤ h(t) ∀ t ≥ 0,

where for all t ≥ 0
y(t) := ‖∇e(t)‖2,

g(t) :=
C

ν3
‖u(t)‖2‖∇u(t)‖2 +

C

νλ1
‖∇u(t)‖‖∆u(t)‖,

h(t) :=
CCLα

2

ν
‖∆uα(t)‖2.

Therefore, since ∇e(0) = 0, an application of the Gronwall’s lemma gives

(3.4.80) ‖∇e(s)‖2 ≤ CCL
ν2

exp

{
C2
N1

ν4
+
C

1/2
N1C

1/2
N2

ν2λ1

}
α2 =: RLα

2 ∀ s ≥ 0.

Finally, combining (3.4.79) and (3.4.80) yields

‖∇e(s)‖2 + ν

∫ s

0
‖∆e‖2 dt ≤ CR α2 ∀ s ≥ 0,

where

(3.4.81) CR :=

(
C2
N1

ν4
+
C

1/2
N1C

1/2
N2

ν2λ1

)
RL +

CC2
L

ν2
.
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SB model. In this case the nonlinear term is given by N(uα) = (uα · ∇)uα and adding

and subtracting the term (uα · ∇)uα lead us to

I2 = (−(uα · ∇)uα + (uα · ∇)uα,−∆e)

= (−(uα · ∇)uα + (uα · ∇)uα − (uα · ∇)uα + (uα · ∇)uα,−∆e)

=: I21 + I22.(3.4.82)

Here, the first term on the r.h.s of (3.4.82) can be handled as follows

I21 = (−(uα · ∇)uα + (uα · ∇)uα,−∆e)

= (((uα − uα) · ∇)uα,∆e),

which is similar to (3.4.78) in the L-α model. The other term can be rewritten as follows

I22 = (−(uα · ∇)uα + (uα · ∇)uα,−∆e)

= ((uα · ∇)(uα − uα),−∆e),

which turns out to be similar to (3.4.86) in the ML-α model below. Therefore, the constant

CR in this case is similar as in the ML-α model and has the form

(3.4.83) CR :=

(
C2
N1

ν4
+
C

1/2
N1C

1/2
N2

ν2λ1

)
RS +

CCS
ν2

.

Here CS is given by Lemma 3.3.3 and

RS :=
CCS
ν2

exp

{
C2
N1

ν4
+
C

1/2
N1C

1/2
N2

ν2λ1

}
.

Thus, the proof is complete.

ML-α model. The nonlinear term is given now by N(uα) = (uα · ∇)uα and the residual

term can be rewritten as follows

I2 = (−(uα · ∇)uα + (uα · ∇)uα,−∆e)

= ((uα · ∇)(uα − uα),−∆e)

= (((uα − uα) · ∇)(uα − uα),−∆e) + ((uα · ∇)(uα − uα),−∆e)

=: I21 + I22.(3.4.84)
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The first term from the r.h.s of (3.4.84) can be estimated by

I21 = (((uα − uα) · ∇)(uα − uα),−∆e)

≤ C‖uα − uα‖4‖∇uα −∇uα‖4‖∆e‖2

≤ C‖uα − uα‖1/2‖∇uα −∇uα‖ ‖∆uα −∆uα‖1/2‖∆e‖

≤ Cα‖∆uα‖‖∇uα‖‖∆e‖

≤ C

ν
α2‖∇uα‖2‖∆uα‖2 +

ν

12
‖∆e‖2

≤ CCM
ν

α2‖∆uα‖2 +
ν

12
‖∆e‖2,(3.4.85)

where CM is given by Lemma 3.3.4. Next, we bound the second term on the r.h.s of (3.4.84)

as follows (recall in the all section we are in the case α < L/2π):

I22 = ((uα · ∇)(uα − uα),−∆e)

≤ C‖uα‖∞‖∇uα −∇uα‖‖∆e‖

≤ Cα‖uα‖∞‖∆uα‖‖∆e‖

≤ Cα2

ν
‖uα‖2∞‖∆uα‖2 +

ν

12
‖∆e‖2

≤ Cα2

ν

(
K1 log

(
L

2πα

)
+K2

)
‖∆uα‖2 +

ν

12
‖∆e‖2.(3.4.86)

Here, K1 and K2 are given in Lemma 3.4.1. In (3.4.85)-(3.4.86), we have used the inequali-

ties Hölder, 2D-Ladyzhenshaya, Young and formula (3.4.71) in Lemma 3.4.1. Putting (3.4.77)

and (3.4.85)-(3.4.86) into the r.h.s of (3.4.72), we obtain

d

dt
‖∇e‖2 + ν‖∆e‖2 ≤

(
C

ν3
‖u‖2‖∇u‖2 +

C

νλ1
‖∇u‖‖∆u‖

)
‖∇e‖2

+
Cα2

ν

(
K1 log

(
L

2πα

)
+K2 + CM

)
‖∆uα‖2.(3.4.87)

Since inequality (3.4.87) shares a similar structure with (3.4.79) then the rest of the proof

follows by that of the L-α model. The constant CR in this case is given by

(3.4.88) CR :=

(
C2
N1

ν4
+
C

1/2
N1C

1/2
N2

ν2λ1

)
RM +

CCM
ν2

.

Here

RM :=
CCM
ν2

exp

{
C2
N1

ν4
+
C

1/2
N1C

1/2
N2

ν2λ1

}
.

Thus, the proof is complete.

From the Theorem 3.4.2 we can easily deduce the following corollaries for related errors.
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Corollary 3.4.3. Let u0 ∈ V, f ∈ L2(R+; H). Then

‖∇e(s)‖2 + ν

∫ s

0
‖∆e‖2 dt ≤ D(s) ≤ CRh(α) ∀ s ≥ 0,

where e = u − uα, CR is given as in Theorem 3.4.2 and h(α) is given by Corollary 3.4.4

below.

Proof. The proof follows directly by Theorem 3.4.2 and (3.2.17).

Corollary 3.4.4. Let u0 ∈ V, f ∈ L2(R+; H), and let us define

E(s) := ‖∇(u− uα)(s)‖2 + ν

∫ s

0
‖∆(u− uα)‖2 dt ∀ s ≥ 0.

Then, it follows

(3.4.89) E(s) ≤ 2CR h(α) + 2CCEα
2 ∀ s ≥ 0,

where

h(α) :=


α2 for the L-α model,

α2 (K1 log(L/2πα) +K2 + CS) for the SB model,

α2 (K1 log(L/2πα) +K2 + CM ) for the ML-α model.

Proof. The proof shares the same idea with Corollary 3.4.2. We start with

‖∇(u− uα)(s)‖2 ≤ 2(‖∇(u− uα)(s)‖2 + ‖∇(uα − uα)(s)‖2)

≤ 2CR h(α) + 2α4‖∇∆uα(s)‖2

≤ 2CR h(α) + 2Cα2‖∇uα(s)‖2

≤ 2CR h(α) + 2CCEα
2 ∀ s ≥ 0,(3.4.90)

where (3.2.17) has been used in the third inequality. The constant CE is defined as in

Corollary 3.4.2. Similarly, for all s ≥ 0

I = ν

∫ s

0
‖∆u−∆uα‖2 dt

≤ 2ν

∫ s

0
‖∆u−∆uα‖2 dt+ 2ν

∫ s

0
‖∆uα −∆uα‖2 dt

≤ 2CRh(α) + 2να4

∫ s

0
‖∆∆uα‖2 dt

≤ 2CRh(α) + 2α2ν

∫ s

0
‖∆uα‖2 dt

≤ 2CRh(α) + 2CCEα
2.(3.4.91)

Therefore, (3.4.89) follows by combining (3.4.90) and (3.4.91).
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3.5 The rate of convergence of pα to p

In this section we focus on the order of the error of the pressure, by using the results from

the previous sections. Let p and pα be the pressures associated to the weak solutions u and

uα of the NSE (3.1.1)-(3.1.3) and all α-models (3.1.4)-(3.1.6), respectively. It will be shown

that the difference

q := p− pα

is bounded in terms of the parameter α, uniformly in time, in a suitable norm.

Theorem 3.5.1. Let u0 ∈ V, f ∈ L2(R+; H). We define

I(s) :=

∫ s

0
‖∇q‖2 dt ∀ s ≥ 0.

Then, the following estimates hold true:

1. For for the L-α model

I(s) ≤ C1α
5/2 + C2α

3 ∀ s ≥ 0,

where C1 and C2 are given by (3.5.96).

2. For for the SB model

I(s) ≤ C1α
3 + C2α

5/2

(
log

(
L

2πα

)
+ 1

)1/2

+ C3α
2

(
log

(
L

2πα

)
+ 1

)
∀ s ≥ 0,

where C1, C2 and C3 are given by (3.5.100).

3. For for the ML-α model

I(s) ≤ C1α
4 + C2α

3 + C3(α5/2 + α2)

(
log

(
L

2πα

)
+ 1

)
∀ s ≥ 0,

where C1, C2 and C3 are given by (3.5.105).

Proof. It follows subtracting from the NSE (3.1.1)-(3.1.3) the α-model (3.1.4)-(3.1.6) that

(3.5.92) −∆q = ∇ · [(u · ∇)u−N(uα)] =: ∇ · g.

We are assuming that p and pα are periodic and with zero average. The vanishing of the

mean values of p and pα ensure their uniqueness (up to an arbitrary function of time).

Multiplying (3.5.92) by q and integrating on Ω the Cauchy-Schwarz inequality yields

(3.5.93) ‖∇q‖2 ≤ ‖g‖2 =

∫
Ω
|(u · ∇)u−N(uα)|2 dx.
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In order to estimate the error of the pressure we are led to bound the r.h.s of (3.5.93).

Replacing e by u− uα, adding and subtracting the term (uα · ∇)uα gives

‖g‖2 =

∫
Ω
|(u · ∇)u−N(uα)|2 dx

=

∫
Ω
|(u · ∇)u− (uα · ∇)uα + (uα · ∇)uα −N(uα)|2 dx

=

∫
Ω
| − (e · ∇)u + (uα · ∇)e + (uα · ∇)uα −N(uα)|2 dx

≤ 4

∫
Ω

(
|(e · ∇)u|2 + |(uα · ∇)e|2 + |(uα · ∇)uα −N(uα)|2

)
dx.(3.5.94)

By (3.5.94) one has for all s ≥ 0:

(3.5.95) I(s) =

∫ s

0
‖g‖2 dt ≤ 4(I1 + I2 + I3)(s).

The estimate is given for each α-model separately.

L-α model. In this case we have N(uα) = (uα · ∇)uα. Each term on the r.h.s of (3.5.95)

will be estimated below. First,

I1(s) :=

∫ s

0

∫
Ω
|(e · ∇)u|2 dx dt

≤
∫ s

0
‖e‖24‖∇u‖24 dt

≤
∫ s

0
‖e‖ ‖∇e‖ ‖∇u‖ ‖∆u‖ dt

≤ C1/2
r C

1/2
N2 α

3/2

(∫ s

0
‖∇e‖2 dt

)1/2(∫ s

0
‖∆u‖2 dt

)1/2

≤ CrCN2

ν
α3 ∀ s ≥ 0,

where we have used the Hölder and 2D-Ladyžhenskaya inequalities, Lemmas 3.3.1, 3.4.1,

and 3.4.2. Next, we have

I2(s) :=

∫ s

0

∫
Ω
|(uα · ∇)e|2 dx dt

≤
∫ s

0
‖uα‖ ‖∇uα‖ ‖∇e‖ ‖∆e‖ dt

≤ CL
λ1/2

(∫ s

0
‖∇e‖2 dt

)1/2(∫ s

0
‖∆e‖2 dt

)1/2

≤
CLC

1/2
r C

1/2
R

ν
α5/2 ∀ s ≥ 0,
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here we have used the Hölder and 2D-Ladyžhenskaya inequalities, Lemma 3.3.2, Theo-

rems 3.4.1 and 3.4.2, respectively. Finally

I3(s) :=

∫ s

0

∫
Ω
|((uα − uα) · ∇)uα|2 dx dt

≤
∫ s

0
‖uα − uα‖ ‖∇(uα − uα)‖ ‖∇uα‖ ‖∆uα‖ dt

≤ 2CCLα
3

∫ s

0
‖∆uα‖‖∆uα‖ dt

≤
2CC

3/2
L

ν
α3 ∀ s ≥ 0,

here in addition we have used (3.1.8), (3.4.90), and Lemma 3.3.2. Thus the proof of the

convergence rate for this model follows by collecting the previous estimates

(3.5.96) I(s) ≤
CLC

1/2
r C

1/2
R

ν
α5/2 +

(
CrCN2

ν
+

2CC
3/2
L

ν

)
α3 ∀ s ≥ 0.

SB model. For this model we have for all s ≥ 0

I(s) =

∫ s

0

∫
Ω
|(u · ∇)u− (uα · ∇)uα + (uα · ∇)uα − (uα · ∇)uα|2 dxdt

≤ 4(I1 + I2 + I3)(s).(3.5.97)

One has used the fact that uα = u− e in the second term inside the integral. Similarly, by

using Corollary 3.4.1 and Lemma 3.3.3 we get

I1(s) :=

∫ s

0

∫
Ω
|((u− uα) · ∇)u|2 dxdt

≤
∫ s

0
‖u− uα‖ ‖∇(u− uα)‖ ‖∇u‖ ‖∆u‖ dt

≤
C

1/2
N2

ν
C1/2
cor (α2 + α3)1/2

(
ν

∫ s

0
‖∇(u− uα)‖2 dt

)1/2(
ν

∫ s

0
‖∆u‖2 dt

)1/2

≤ CN2

ν
Ccor(α

2 + α3) ∀ s ≥ 0.(3.5.98)

We deal with the second integral by using Lemma 3.3.3 and Theorems 3.4.1 and 3.4.2 to

show

I2(s) :=

∫ s

0

∫
Ω
|(uα · ∇)e|2 dxdt

≤
∫ s

0
‖uα‖‖∇uα‖‖∇e‖‖∆e‖ dt

≤ CCS

νλ
1/2
1

(
ν

∫ s

0
‖∇e‖2 dt

)1/2(
ν

∫ s

0
‖∆e‖2 dt

)1/2

≤ CCS

νλ
1/2
1

C1/2
r C

1/2
R α5/2

(
K1 log

(
L

2πα

)
+K2 + CS

)1/2

since α ≤ L

2π
.(3.5.99)

81



CHAPTER 3. MODELING ERROR OF α-MODELS

Similarly, the last term can be estimated for all s ≥ 0 by

I3(s) :=

∫ s

0

∫
Ω
|(uα · ∇)(u− uα)|2 dxdt

≤
∫ s

0
‖uα‖‖∇uα‖‖∇(u− uα)‖‖∆(u− uα)‖ dt

≤
C

1/2
S

νλ
1/2
1

(2CR h(α) + 2CCSα
2)1/2

(
ν

∫ s

0
‖∇uα‖2 dt

)1/2(
ν

∫ s

0
‖∆(u− uα)‖2 dt

)1/2

≤ CS

νλ
1/2
1

(2CR h(α) + 2CCSα
2)

=
CCS

νλ
1/2
1

[
CR α

2

(
K1 log

(
L

2πα

)
+K2 + CS

)
+ CSα

2

]
since α ≤ L

2π
.

Therefore, by the above estimates we get

(3.5.100)

I(s) ≤ CN2

ν
Ccor(α

2 + α3) +
CCS

νλ
1/2
1

C1/2
r C

1/2
R α5/2

(
K1 log

(
L

2πα

)
+K2 + CS

)1/2

+
CCS

νλ
1/2
1

[
CR

(
K1 log

(
L

2πα

)
+K2 + CS

)
+ CS

]
α2.

Thus the proof for this model is completed.

ML-α model. For this model I1 is estimated as in the L-α above. We start with I2 by

I2(s) ≤
∫ s

0
‖uα‖ ‖∇uα‖ ‖∇e‖ ‖∆e‖ dt

≤ CM

λ
1/2
1

(∫ s

0
‖∇e‖2 dt

)1/2(∫ s

0
‖∆e‖2 dt

)1/2

≤
CMC

1/2
r C

1/2
R

ν
α5/2

(
K1 log

(
L

2πα

)
+K2 + CM

)1/2

,(3.5.101)

for all s ≥ 0. One has used the results Lemma 3.3.4, Theorems 3.4.1 and 3.4.2. The term

I3 is bounded by

(3.5.102) I3(s) :=

∫ s

0

∫
Ω
|(uα · ∇)(uα − uα)|2 dx dt ≤ 2(I31 + I32)(s).

By (3.4.90) and Lemma 3.3.4 yield

I31(s) :=

∫ s

0

∫
Ω
|((uα − uα) · ∇)(uα − uα)|2 dx dt

≤
∫ s

0
‖uα − uα‖24 ‖∇(uα − uα)‖24 dt

≤
∫ s

0
‖uα − uα‖ ‖∇(uα − uα)‖2‖∆(uα − uα)‖ dt

≤
CC2

M

ν
α4 ∀ s ≥ 0.(3.5.103)
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The other term can be estimated for all s ≥ 0 by

I32(s) :=

∫ s

0

∫
Ω
|(uα · ∇)(uα − uα)|2 dx dt

≤
∫ s

0
‖uα‖2∞‖∇(uα − uα)‖2 dt

≤
(
K1 log

(
L

2πα

)
+K2

)
α2

∫ s

0
‖∆uα‖2 dt

≤ CM
ν

(
K1 log

(
L

2πα

)
+K2

)
α2,(3.5.104)

here Lemma 3.4.1 and (3.2.18) have been applied. Therefore, by (3.5.101)-(3.5.104)

I(s) ≤ CrCN2

ν
α3 +

CMC
1/2
r C

1/2
R

ν
α5/2

(
K1 log

(
L

2πα

)
+K2 + CM

)1/2

+
CC2

M

ν
α4 +

CM
ν

(
K1 log

(
L

2πα

)
+K2

)
α2,(3.5.105)

which concludes the proof.

The Poincaré inequality and Theorem 3.5.1 directly give us the following consequence:

Corollary 3.5.1. Let u0 ∈ V and f ∈ L2(R+; H). Then∫ s

0
‖q‖2 dt ≤ 1

λ1

∫ s

0
‖∇q‖2 dt ≤ g(α) ∀ s ≥ 0,

where

g(α) :=



C1α
5/2 + C2α

3,

C1α
3 + C2α

5/2

(
log

(
L

2πα

)
+ 1

)1/2

+ C3α
2

(
log

(
L

2πα

)
+ 1

)
,

C1α
4 + C2α

3 + C3(α5/2 + α2)

(
log

(
L

2πα

)
+ 1

)
,

for the L-α, SB and ML-α model, respectively. The constants Ci for i = 1, 2, 3 are given as

in Theorem 3.5.1.

3.6 The 3D case: a few additional remarks

This section is devoted to give a few remarks in the 3D case. First, known results on the

rate of convergence in the 3D case are recalled. Then the possibility of the irregularity on

the convergence rate is also provided.
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3.6.1 Known results

The problem in the periodic box Ω = [0, L]3 is rather different since the solutions of the NSE

are not known to be globally smooth. Moreover, the available estimates for the convective

term are different from those employed in the previous sections.

One of the first results on the rate of convergence in the 3D case is given by Chen, Guenther,

Kim, Thomann, and Waymire [CGK+08]. The authors proved the following estimate

(3.6.106)

∫ T

0
‖u− uα‖ dt ≤ C(T )α,

where (and in the sequel) ‖ · ‖ denotes the L2(Ω) norm, u and uα are the weak solutions

of the NSE and Navier-Stokes-α model (known as the viscous Camassa-Holm equations),

respectively. Their analysis is carried out in the 3D periodic setting and assumes a small

data condition of Besov type (such that existence and uniqueness of weak solutions u of the

3D NSE is ensured).

Another result concerning the convergence rate has been obtained by the author of [Dun18].

For both 2D and 3D cases it is provided for all α-models herein (also for the Navier-Stokes-α

model) that

(3.6.107) sup
t∈[0,T ]

‖e(t)‖2 +

∫ T

0
‖∇e‖2 dt ≤ C(T )α2.

Here as previous parts e = u− uα. The result is obtained under assumptions on the data

uα(0, ·) = u0 ∈ V and f ∈ L2([0, T ]; H). In addition, an extra assumption is made on the

weak solution of the 3D NSE such that u ∈ L4([0, T ];H1(Ω)3). The latter condition ensures

existence and uniqueness of the weak solutions. Note that the logarithmic term in (3.1.10)

is removed.

3.6.2 Possible of the irregularity on the convergence rate

The well-known Leray-Serrin-Prodi (LSP) uniqueness assumption for the 3D NSE, see

Leray [Ler34b], Prodi [Pro59] and Serrin [Ser63], is given by

(3.6.108) u ∈ Lr([0, T ];Ls(Ω)3) where
3

s
+

2

r
= 1, s ≥ 3.

It is also known, see for example Galdi [Gal00, Def. 2.1 and Theorem 4.2], that weak

solutions satisfying LSP condition are unique and regular in the set of all Leray-Hopf weak

solutions.

As mentioned above, the author of [Dun18] required u ∈ L4([0, T ];H1(Ω)3) to provide

(3.6.107). Then the standard Sobolev embedding implies that u ∈ L4([0, T ];L6(Ω)3) which
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satisfies (3.6.108) with r = 4 and s = 6. For more details, C(T ) in (3.6.107) is given by the

form

(3.6.109) C(T ) = C1 exp

{
C

ν3

∫ T

0
‖∇u‖4 ds

}
,

where C is the Sobolev constant and C1 = C1(u0, f , ν). It follows that the error is uniformly

bounded in time, i.e.,

sup
t≥0
‖e(t)‖2 + ν

∫ ∞
0
‖∇e‖2 dt ≤ C∞α2,

where

C∞ = C1 exp

{
C

ν3

∫ ∞
0
‖∇u‖4 ds

}
.

The story is totally different if the weak solutions of the 3D NSE do not satisfy (3.6.108).

Assume that a weak solution u of the NSE is regular up to a time T∗ < ∞ and cannot

be smoothly extended, we say that u becomes irregular at the time T∗ (or that T∗ is

an epoch of irregularity). Assume that T∗ is the first time that u becomes irregular, see

Galdi [Gal00, Def. 6.1], then it is well-known that the H1(Ω)-norm of u, ‖∇u(t)‖2 will blow-

up as t approaches T∗ from below, see for instance [Gal00, Theorem 6.4], Leray [Ler34b]

and Scheffer [Sch76]. More specifically, there exists ε = εT∗ > 0 small enough such that

(3.6.110) ‖∇u(t)‖ ≥ Cν3/4

(T∗ − t)1/4
∀ t ∈ (T∗ − ε, T∗),

where C > 0 is only depending on Ω. Using (3.6.110) the constant C(T ) in (3.6.109) with

T∗ − ε < T < T∗ will blow-up in the following way

C(T ) = C1 exp

{
C

ν3

∫ T

0
‖∇u‖4 ds

}
≥ C1 exp

{
C

ν3

∫ T

T∗−ε
‖∇u‖4 ds

}
≥ C1 exp

{
C

∫ T

T∗−ε

1

T∗ − s
ds

}
= C1

εC

(T∗ − T )C
,

which shows the effect of being T∗ an epoch of irregularity on the convergence rate.

3.7 Conclusions

In this work, after assuming the not so restrictive assumptions on the data u0 ∈ V and

f ∈ L2(R+; H), we provided the rate of convergence, as α → 0+, of uα to u as well

as of pα to p. In addition our argument is tied up to the periodic case mostly because

of special properties of the Stokes operator A and of the convective term in this setting.
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The extension of the results to other boundary conditions such as the Dirichlet boundary

conditions is left as future works. Moreover, it is more complicated to extend the results to

the Euler equations (perfect fluids without viscosity).

In the 3D case extra-assumptions for the uniqueness of solution of the NSE are probably

necessary to be assumed, to obtain rates of convergence. As mentioned in the introduction,

we do not present the case of the Navier-Stokes-α here where the nonlinear term is not

well-defined in the 2D case. However, the results for this model should similar to that of

the L-α model (provided above).

It seems to be the case that all results herein can be established when the periodic domain

Ω = [0, L]2 is replaced by the whole space R2, following the approach developed in [LB18].

However, the existence and uniqueness of weak solutions of all α-models herein needs to be

studied carefully. Also this issue will be investigated in a forthcoming work.
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Chapter 4

Rotational forms of Large Eddy
Simulation turbulence models:
modeling and mathematical theory

“No one has greater love than this, to
lay down one’s life for one’s friends.”

JN 15:13
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This chapter is mostly based on the research paper [BLN20].

Abstract: In this chapter we present a derivation of a back-scatter rotational Large

Eddy Simulation model, which is the extension of the Baldwin and Lomax model to non-

equilibrium problems. The model is particularly designed to mathematically describe a

fluid filling a domain with solid walls and consequently the differential operators appearing

in the smoothing terms are degenerate at the boundary. After the derivation of the model,

we prove some of the mathematical properties coming from the weighted energy estimates

and which allow to prove existence and uniqueness of a class of regular weak solutions.
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Key words: Fluid mechanics; Turbulence models; Rotational Large Eddy Simulation mod-

els; Navier-Stokes equations.

2010 MSC: 76D05, 35Q30, 76F65, 76D03, 35Q35.

4.1 Introduction

The aim of this paper is twofold: From one side we are deriving in a consistent way a

rotational Large Eddy Simulation model, capable of taking into account of back-scatter of

energy; from another side we are also showing, by using rather elaborate functional analysis

tools, the existence of weak solutions for the models we propose.

Recall that, the motion of a turbulent incompressible flow in a 3D domain Ω can be simulated

by using a turbulence model such as the following eddy viscosity model1:

(4.1.1)

{
vt + div (v ⊗ v)− div

(
(2ν + νturb) Dv

)
+∇p = f ,

div v = 0,

where vt = ∂tv for simplicity, v = v(t,x) = (v1(t,x), v2(t,x), v3(t,x)) is the mean velocity

of the fluid, p = p(t,x) the mean pressure, ν > 0 the kinematic viscosity, νturb ≥ 0 the eddy

viscosity (also known as the turbulent viscosity), f = f(t,x) = (f1(t,x), f2(t,x), f3(t,x))

the external source term, Dv = 1
2(∇v +∇vT ) the deformation stress of the mean velocity,

and ”div ” stands for the divergence operator.

In the whole chapter we will consider the problem with homogeneous Dirichlet boundary

conditions, i.e.,

v = 0 on (0, T )× ∂Ω,

and this poses certain technical problems, which are not present in the case of homogeneous

turbulence treated in the whole space or in the space-periodic setting. However, numerical

simulations would require the use of wall laws (see [CRL14]).

One basic problem in turbulence modeling is the determination of the eddy viscosity νturb, for

which there are many options (see a comprehensive presentation of this question in [BIL06,

CRL14]). One of the most popular models (and one among the first introduced) is the

Smagorinsky one [Sma60] for which the eddy viscosity is given by

νturb = κ `2|Dv|,
1Thanks to the divergence free constraint divv = 0, we have div (v⊗v) = (v ·∇)v where v⊗v = (vivj)

for 1 ≤ i, j ≤ 3. Therefore, these both forms are used throughout this chapter without any confusion, but
also the ”rotational form” will be used.
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where κ is the von Kármán dimensionless constant (the value of which is about 0.41)

and ` is the Prandtl mixing length (see [Pra10]). The peculiarity of the modeling and

of the equations derived is the degeneracy of the differential operators by means of the

function `(x), which is vanishing at the boundary. The models we study can be interpreted

as obtained with the application of a differential filter with radius vanishing near to the

boundary; hence, the model is not over-smoothing the boundary layer. The analysis of

wall-laws or of other boundary conditions requires tools not developed yet for this problem.

In the case of a flow over a plate, identified by the plane (x, y, 0) and the domain Ω =

R2 × {z > 0}, one finds in Obukhov [Obu46] the following law

` = `(z) = κz.

Considering a bi-layer model for a turbulent boundary layer over a plate, Baldwin & Lo-

max [BL78] suggested –from heuristic arguments– to use in the inner part of boundary layer

the following formula

(4.1.2) νturb = κ `2(z)|ω|,

where ω = curl v denotes the mean vorticity, while the function ` (not a constant now) is

determined by the Van Driest formula [VD56],

`(z) := κ z (1− e−z/A);

here A depends on the oscillations of the plate and on the kinematic viscosity ν, while z ≥ 0

is again the distance from the plate. As it is well-known, the Smagorinsky model is over-

diffusive, and model (4.1.2) looks to be a very interesting alternative, leading by (4.1.1) to

the system

(4.1.3)

{
vt + div (v ⊗ v)− ν∆v − div (κ `2(z)|ω|Dv) +∇p = f ,

div v = 0.

However, the eddy viscosity term −div (κ `2(z)|ω|Dv) in (4.1.3) does not follow the rota-

tional structure of formula (4.1.2). In [RLZ19], the authors suggest a purely rotational form

curl (κ `2(x)|ω|ω) –which is consistent with (4.1.2)– yielding the following system

(4.1.4)

{
vt + div (v ⊗ v)− ν∆v + curl (κ `2(x)|ω|ω) +∇π = f ,

div v = 0,

for some modified pressure term π.

In addition to being over-diffusive, the Smagorinsky model (but this limitation is also shared

by non adaptive eddy viscosity models) is not capable of taking into account phenomena of
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back-scatter of energy. Consequently, system (4.1.4) seems of interest limited to (statisti-

cally) stationary or equilibrium flows. A first complete existence theory for the Baldwin &

Lomax model in the steady case has been recently given in [BB20].

In order to consider more complex physical settings, a variant has been proposed in [RLZ19]

including a non-smoothing dispersive term, in the same spirit as in Voigt models (also writ-

ten as Voight sometimes). The mathematical theory in this case needs to handle degenerate

operators and weighted estimates. For this reason, in [ABLN20] we have modeled a back-

scatter term of a Voigt form such as −α div (`(x) Dvt), where α > 0 denotes the length

scale, for turbulence evolving towards a statistical equilibrium, where `(x) is a smooth pos-

itive function, vanishing only at the boundary of the domain and with a prescribed rate.

In [ABLN20] we also studied the properties of the corresponding PDE system, in conjunc-

tion with the equation satisfied by the turbulent kinetic energy (TKE in the following).

In [RLZ19], the authors suggested instead a back-scatter term under rotational form, such

as curl (`2(x)ωt), obtaining the following system:

(4.1.5)

{
vt + curl (`2(x)ωt) + div (v ⊗ v)− ν∆v + curl (κ `2(x)|ω|ω) +∇π = f ,

div v = 0,

for some modified pressure term π.

In this paper we show:

1. How to derive systems (4.1.4) and (4.1.5) from a standard turbulence modeling pro-

cedure,

2. Existence and uniqueness results of classes of weak solutions for these systems supple-

mented with smooth enough initial data and Dirichlet homogeneous boundary condi-

tions, under certain reasonable mathematical assumptions.

The main mathematical result we prove is the following.

Theorem 4.1.1. Assume that:

• the domain Ω is bounded and of class C2 (not necessarily with a flat boundary);

• the function ` : Ω→ R+ is of class C2 and satisfies the two following properties:

(4.1.6) `(x) ≈
√
d(x, ∂Ω) for x close to ∂Ω,

where d(x, ∂Ω) denotes the distance from the boundary and

(4.1.7) ∀ K ⊂⊂ Ω, ∃ `K ∈ R?+ s.t. `(x) ≥ `K > 0 ∀x ∈ K;
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• f ∈ L2(0, T ;L2(Ω)3) and v0 ∈W 1,3
0,σ (Ω)2.

Then, System (4.1.5) with v(0) = v0 in Ω and v = 0 on (0, T )× ∂Ω has a unique ”regular

weak” solution.

Theorem 4.1.1 is a consequence of the weighted estimate (4.4.31) below, which is the main

mathematical result of this paper and of a proper application of monotonicity techniques,

coupled with localization of the test functions.

Plan of the chapter. Chapter 4 is organized as follows: In Section 4.2 we set the mathema-

tical framework that we use in the whole chapter. Sections 4.3 provide the turbulence

modeling where Subsections 4.3.1 and 4.3.2 are devoted to modeling and to explain the

motivations for the systems (4.1.4) and (4.1.5). The analysis of the obtained model from

the previous section is presented in Section 4.4 where the proofs of the main weighted

estimate (4.4.31) and Theorem 4.1.1 are provided in Subsections 4.4.1 and 4.4.2, respectively.

4.2 Functional setting

In the sequel Ω ⊂ R3 will be a smooth and bounded open set, as usual we write x =

(x1, x2, x3) for all x ∈ R3. In particular, we assume that the boundary ∂Ω is of class

C0,1, such that the normal unit vector n at the boundary is well defined and other relevant

properties hold true. We also define the distance d(x, A) of a point from a closed set A ⊂ R3

as follows

d(x, A) := inf
y∈A
|x− y|,

and we denote by d(x) the distance of x from the boundary of the domain Ω

(4.2.8) d(x) := d(x, ∂Ω) ∀x ∈ Ω.

For our analysis we will use the customary Lebesgue (Lp(Ω), ‖ . ‖p) and Sobolev spaces

(W k,p(Ω), ‖ . ‖k,p) of integer index k ∈ N and with 1 ≤ p ≤ ∞. The L2(Ω)-norm will

be denoted by ‖ . ‖ for simplicity. We use boldface for vectors, matrices and tensors. We

recall that Lp0(Ω) denotes the subspace of Lp(Ω) with zero mean value, while W 1,p
0 (Ω) is the

closure of the smooth and compactly supported functions with respect to the ‖ . ‖1,p-norm.

As usual we denote H1
0 (Ω) = W 1,2

0 (Ω). In addition, if Ω is bounded and if 1 < p <∞, the

following two relevant inequalities hold true:

1) the Poincaré inequality

(4.2.9) ∃CP (p,Ω) > 0 : ‖u‖p ≤ CP ‖∇u‖p ∀u ∈W 1,p
0 (Ω)3;

2The divergence-free spaces W 1,p
0,σ (Ω) are defined below by (4.2.12).
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2) the Korn inequality

(4.2.10) ∃CK(p,Ω) > 0 : ‖∇u‖p ≤ CK‖Du‖p ∀u ∈W 1,p
0 (Ω)3.

The Korn inequality allows to control the full gradient in Lp(Ω) by its symmetric part,

for functions which are zero at the boundary (see for instance in Malek, Nečas, Rokyta,

and Ružička [MNRR96]). Classical results (see Bourguignon and Brezis [BB74]) concern

controlling the full gradient with curl & divergence. The following inequality holds true:

For all s ≥ 1 and 1 < p <∞, there exists a constant C = C(s, p,Ω) such that,

‖u‖s,p ≤ C
[
‖div u‖s−1,p + ‖curl u‖s−1,p + ‖u · n‖s−1/p,p,∂Ω + ‖u‖s−1,p

]
,

for all u ∈ W s,p(Ω)3, where ‖ . ‖s−1/p,p,∂Ω is the trace norm as explained below. This same

result has been later improved by von Wahl [vW92] obtaining, under geometric conditions

on the domain, the following estimate without lower order terms: Let Ω be such that

b1(Ω) = b2(Ω) = 0, where bi(Ω) denotes the i-th Betti number, that is the dimension of the

i-th homology group H i(Ω,Z). Then, there exists C = C(p,Ω) such that

(4.2.11) ‖∇u‖p ≤ C
(
‖div u‖p + ‖curl u‖p

)
,

for all u ∈ W 1,p(Ω)3 satisfying either (u · n)|∂Ω = 0 or (u × n)|∂Ω = 0. As usual in

fluid mechanics, when working with incompressible fluids, it is natural to incorporate the

divergence-free constraint directly in the function spaces. These spaces are built upon

completing the space of free divergence smooth vector fields with compact support, denoted

as φ ∈ C∞0,σ(Ω)3, in an appropriate topology. For 1 < p <∞ we define

(4.2.12)


Lpσ(Ω) :=

{
φ ∈ C∞0,σ(Ω)3

}‖ . ‖p
,

W 1,p
0,σ (Ω) :=

{
φ ∈ C∞0,σ(Ω)3

}‖ . ‖1,p
.

A basic tool in mathematical fluid mechanics is the construction of a continuous right

inverse of the divergence operator with zero Dirichlet boundary conditions. An explicit

construction is due to the Bogovskĭı and it is reviewed in Galdi [Gal11, Chapter 3]. The

following results holds true.

Proposition 4.2.1. Let ω ⊂ R3 be a bounded Lipchitz domain and let f ∈ Lp0(ω). Then,

there exists at least one u = Bogω(f) ∈W 1,p
0 (ω)3 which solves the boundary value problem{

div u = f in ω,

u = 0 on ∂ω.

Among other spaces, the operator Bogω is linear and continuous from Lp0(ω) to W 1,p
0 (ω)3,

for all p ∈ (1,∞).
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4.3 Modeling

In this part we perform the modeling leading to the model (4.1.4) in Subsection 4.3.1 and

the rotational back-scatter model (4.1.5) in Subsection 4.3.2.

4.3.1 On the Baldwin & Lomax model

We start by recalling some facts about the Baldwin & Lomax model which will be used

later on. Let Ω ⊂ R3 denote the flow domain. We decompose any field ψ = ψ(t,x) with

(t,x) ∈ R+ × Ω, as the sum of its mean (denoted by a bar) and its fluctuation,

ψ = ψ + ψ′,

as suggested by Reynolds [BIL06, CRL14]. The bar operator denotes any linear statistical

filter that does not need to be specified, beside that we assume it verifies at least the

Reynolds rules:

(4.3.13) ∂ψ = ∂ψ and ψ = ψ,

for any linear differential operator ∂.

Let us start by considering the following rotational form of the Navier-Stokes equations

(NSE in the sequel),

(4.3.14)

vt + ω × v − ν∆v +∇
(
p+
|v|2

2

)
= f ,

div v = 0,

where (v, p) denotes the pair of the velocity and the pressure, and the alternative form of

the convective term follows by using the well-known identity

(v · ∇) v =
1

2
∇|v|2 + ω × v,

where ω = curl v. We apply the bar operator to (4.3.14). By using the Reynolds rules (4.3.13),

one obtains to the following system

(4.3.15)

{
vt + ω × v + ω′ × v′ − ν∆v +∇q = f ,

div v = 0,

where the force is chosen such that f = f for simplicity. The Bernoulli pressure and the

fluctuation of the vorticity are given, respectively, by

q = p+
|v|2

2
and ω′ = curl v′.
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This leads to the issue of modeling the turbulent flux term ω′ × v′ only by mean (averaged)

quantities. According to the Helmholtz-Hodge theorem, under reasonable regularity and

decay assumptions, there exists a unique vector field A(R) such that

(4.3.16)

{
curl A(R) = ω′ × v′,

div A(R) = 0,

and in what follows we call A(R) the “rotational Reynolds stress.” As usual in turbulent

modeling, the fundamental question is how to express A(R) in terms of averaged quantities.

It is natural to assume that A(R) is a function of the mean vorticity ω. Following the

standard Reynolds-stress modeling-procedure and respecting the divergence free constraint

div A(R) = 0, we are led to set

(4.3.17) A(R) = νturbω +∇ψ,

for some scalar function ψ which will be specified later on. Notice that from the Reynolds

rules combined with the Schwarz theorem, we have divω = 0. Therefore, taking the

divergence of (4.3.17) and using div A(R) = 0 yields a Poisson equation for ψ:

−∆ψ = div (νturbω),

hence, since ω is divergence-free,

ψ = (−∆)−1(∇νturb · ω).

In conclusion, the closure assumption for the rotational Reynolds stress can be expressed

as follows

(4.3.18) A(R) = νturbω +∇(−∆)−1(∇νturb · ω).

Taking the curl of (4.3.18) gives

curl A(R) = curl (νturbω).

Therefore, according to the Baldwin & Lomax model if νturb = κ `2(x)|ω|, and by noting

that 
1

2
|v|2 =

1

2
|v|2 + k,

div (v ⊗ v) = ω × v +∇
(
|v|2

2

)
,

(where k = 1
2 |v′|2 denotes the turbulent kinetic energy) we get as closure equations from (4.3.15)

the following system:{
vt + div (v ⊗ v)− ν∆v + curl (κ `2(x)|ω|ω) +∇(p+ k) = f ,

div v = 0,

94



CHAPTER 4. ROTATIONAL FORMS OF LES TURBULENCE MODELS

which yields to the system (4.1.4) by setting the modified pressure π = p + k, and where

we recall that ω = curl v. In a vorticity/velocity formulation it is also relevant to consider

the rotational form of the convective term, hence{
vt + ω × v − ν∆v + curl (κ `2(x)|ω|ω) +∇q = f ,

div v = 0.

4.3.2 Introduction of the rotational back-scatter term

Following a modeling similar to that already employed in [ABLN20], we show in this section

how to derive the following model

(4.3.19)

{
vt + curl (`2ωt) + ω × v − ν∆v + curl (κ`2|ω|ω) +∇q = f ,

div v = 0,

for a turbulent flow evolving towards a statistical equilibrium.

Equation (4.3.15) combined with (4.3.16) becomes:

(4.3.20)

{
vt + ω × v − ν∆v + curl A(R) +∇q = f ,

div v = 0.

According to Leray’s result [Ler34b], we know any turbulent solution (smooth enough to

carry on all the calculations) to (4.3.20) satisfies the energy inequality

(4.3.21)
1

2

d

dt
‖v(t)‖2 + ν‖∇v(t)‖2 + 〈curl A(R),v(t)〉 ≤ 〈f(t),v(t)〉,

in the sense of distributions over (0, T ), provided that the boundary conditions do not bring

additional terms (such as occurs i) with the no-slip boundary condition; ii) when Ω = R3,

or iii) in the space periodic case, for instance). Let us set

I (t) := 〈curl A(R),v(t)〉.

The aim of what follows is to study the contribution of this term in the energy inequal-

ity (4.3.21). To do so, we use the well-known formula

(4.3.22) νturb = Ck`
√
k,

relating eddy viscosity νturb and turbulent kinetic energy k, see [CRL14]. Then, we com-

bine (4.3.22) with νturb = κ`2|ω|, leading to the closure equation for k

(4.3.23) k =
`2

2
|ω|2 =

`2

2
|curl v|2.

We assume now that the production of turbulent kinetic energy is mainly due to small

scales eddies, which are in a statistical equilibrium and that no-stratification occurs. By a
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straightforward generalization of what is done in [CRL14, Section 4.4.1], we get the following

equation for k:

(4.3.24) kt + v · ∇k + div
(
e′v′

)
= A(R) · ω − ε+ f ′ · v′,

where the rotational turbulent dissipation is given in this case by ε = ν|ω′|2, and e′ de-

notes the fluctuation of the kinetic energy of the fluctuation e = 1
2 |v
′|2. The combination

of (4.3.23) and (4.3.24) gives the formal following energy equality:

(4.3.25)
d

dt

∫
Ω
k(t) =

∫
Ω
`2ωt · ω = I (t)−

∫
Ω
ε(t) + 〈f ′,v′〉.

From (4.3.21) and (4.3.25) it follows the following inequality

(4.3.26)
1

2

d

dt

(
‖v(t)‖2 + ‖`ω(t)‖2

)
+ ν‖∇v(t)‖2 + ‖

√
ε(t)‖2 ≤ 〈f(t),v(t)〉+ 〈f ′,v′〉.

The energy inequality (4.3.26) suggests to add the term `2ωt to the rotational Reynolds

stress in formula (4.3.18), leading to the following expression for the no-equilibrium rota-

tional Reynolds stress

(4.3.27) A(R) = `2ωt + νturbω +∇(−∆)−1(∇νturb · ω).

When we plug (4.3.27) into (4.3.20) to get the following energy inequality

(4.3.28)
1

2

d

dt

(
‖v(t)‖2 + ‖`ω(t)‖2

)
+ ν‖∇v(t)‖2 + ‖

√
νturbω(t)‖2 ≤ 〈f(t),v(t)〉.

We compare (4.3.26) and (4.3.28), which is consistent when the following compatibility

condition is satisfied:

(4.3.29) ‖
√
νturbω(t)‖2 + 〈f ′,v′〉 ≤ ‖

√
ε(t)‖2,

which we assume to be held near statistical equilibium. Hence, (4.3.19) follows by combining

(4.3.20) and (4.3.27). Finally, (4.3.19) yields the model (4.1.5) by setting the modified

pressure π = p+ k. An example which satisfies (4.3.29) is given by the following remark.

Remark 4.3.1. The assumption in condition (4.3.29) can be justified as in [ABLN20,

Remark 2.2]. More precisely, (for a time averaging filter) this condition holds true when

source term is constant f(t,x) = f(x), without turbulent fluctuation, i.e., f ′ = 0. It implies

a decrease of TKE, which means a decrease of the turbulence, towards a laminar state, or

a stable statistical equilibrium, such as a grid turbulence.
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4.4 Analysis of the model

In this part of the chapter we perform the mathematical analysis of the back-scatter rota-

tional model, by using established methods of analysis for non-Newtonian fluids. We first

present the main weighted estimate in Subsection 4.4.1 and then proving the existence and

uniqueness results in Subsection 4.4.2, as stated in Theorem 4.1.1.

4.4.1 Main estimate

In this section we show a bound involving the weighted-curl and weighted-gradient, which

does not follow directly from the classical tools combining weighted estimates and harmonic

analysis. As employed in [BB20] it can be shown that for fields in W 1,p
0,σ (Ω) one can prove

the weighted estimate

(4.4.30)

∫
Ω
|∇v(x)|pw(x) dx ≤ C(w,Ω, p)

∫
Ω
|curl v(x)|pw(x) dx,

provided that the weight function w ∈ L1
loc(R

3), which is s.t. w ≥ 0 a.e., belongs to the

Muckenhoupt class Ap, for 1 < p <∞, that is there exists C such that

sup
Q⊂Rn

(
−
∫
Q

w(x) dx

)(
−
∫
Q

w(x)1/(1−p) dx

)p−1

≤ C,

where Q denotes a cube in R3 (see also in Stein [Ste93]). It is well-known that the powers

of the distance function w(x) =
(
d(x, ∂Ω)

)α
are Muckenhoupt weights of class Ap if and

only if −1 < α < p−1, hence in the relevant cases we could not infer the required estimates

if `(x) =
(
d(x, ∂Ω)

)α
, for α ≥ p− 1.

In our case, we can prove a crucial estimate, close to (4.4.30), in a different and direct way,

by using the special Hilbert structure when p = 2. Our estimate, displayed in the following

lemma, is based on elementary direct computations and plays a fundamental role on the

analysis of the rotational back-scatter system (4.1.5).

Lemma 4.4.1. Assume that the function ` is such that `2 ∈W 2,∞(Ω) and let v ∈W 1,2
0,σ (Ω).

Then, there exists a positive constant C(`) = C(‖D2`2‖∞) such that

(4.4.31)

∫
Ω
`2|∇v|2dx ≤

∫
Ω
`2|curl v|2dx + C(`)

∫
Ω
|v|2dx.

Proof. We start from the well-known vector-calculus identity

(4.4.32) −∆v = curl (curl v)−∇(div v) = curl (curl v),
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that holds for any divergence free vector field v. Then multiplying (4.4.32) by `2v and

integrating by parts on Ω we obtain3:

(4.4.33)

∫
Ω
∇v : ∇(`2v) dx =

∫
Ω

(curl v) · (curl (`2v)) dx,

where the fact that v = 0 on ∂Ω has been used. We argue in two steps, considering

separately both sides of (4.4.33) one after another.

Step 1. The left-hand side (l.h.s) of (4.4.33) can be rewritten as follows∫
Ω
∇v : ∇(`2v) dx =

∫
Ω

3∑
i,j=1

∂jvi ∂j(`
2vi) dx

=
1

2

∫
Ω

3∑
i,j=1

∂jv
2
i ∂j`

2 dx +

∫
Ω

3∑
i,j=1

(∂jvi)
2`2 dx

=
1

2

∫
Ω

3∑
j=1

∂j

(
3∑
i=1

v2
i

)
∂j`

2 dx +

∫
Ω
`2|∇v|2 dx

=
1

2

∫
Ω

3∑
j=1

∂j |v|2∂j`2 dx +

∫
Ω
`2|∇v|2 dx

=
1

2

∫
Ω
∇|v|2 · ∇`2 dx +

∫
Ω
`2|∇v|2 dx

= −1

2

∫
Ω
|v|2∆`2 dx +

∫
Ω
`2|∇v|2 dx,(4.4.34)

where v = (v1, v2, v3) and in the last equality in (4.4.34) we used integration by parts

possible again since v = 0 on ∂Ω.

Step 2. The right-hand side (r.h.s) of (4.4.33) can be rewritten as∫
Ω

(curl v) · (curl (`2v)) dx =

∫
Ω
`2|curl v|2 dx +

∫
Ω

(curl v) ·
(
(∇`2)× v

)
dx,(4.4.35)

where the identity curl (`2v) = `2curl v + (∇`2) × v has been used. Combining (4.4.34)

and (4.4.35) yields

(4.4.36)∫
Ω
`2|∇v|2 dx =

∫
Ω
`2|curl v|2 dx +

∫
Ω

(curl v) ·
(
(∇`2)× v

)
dx +

1

2

∫
Ω
|v|2∆`2 dx,

=: I1 + I2 + I3.

The difficulty in the r.h.s of (4.4.36) is due to the integral I2, that we will consider in the

following. Let δij denotes the Kronecker tensor,

(4.4.37) δij = 1 if i = j, δij = 0 if i 6= j.

Let εijk denotes the Levi-Civita tensor, that is fully characterised by:

3We denote A : B =
∑
i,j aijbij for any two matrices A = (aij) and B = (bij) for 1 ≤ i, j ≤ 3.
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ε123 = 1, εijk is antisymmetric against the indices.

In particular the vector cross product is expressed through the Levi-Civita tensor by the

equation

(a× b)i =
3∑
j=1

3∑
k=1

εijkajbk,

and the following relation holds (see [CRL14])

(4.4.38) εijkεpqk = δipδjq − δiqδjp.

Using these tools, we rewrite component by component the integrand in I2 as follows

(4.4.39)

(curl v) ·
(
(∇`2)× v

)
=

3∑
i,j,k,m,p=1

εijk(∂jvk) εimp(∂m`
2)vp

=
3∑

j,k,m,p=1

(δjmδkp − δjpδkm)(∂jvk) (∂m`
2)vp

=

3∑
j,k=1

[(∂jvk) (∂j`
2)vk − (∂jvk) (∂k`

2)vj ]

=
1

2
∇|v|2 · ∇`2 −

3∑
j,k=1

(∂jvk) (∂k`
2)vj .

As v and ` vanishe at the boundary and v is divergence-free, we deduce from (4.4.39)

(4.4.40)

I2 =

∫
Ω

(curl v) ·
(
(∇`2)× v

)
dx =

1

2

3∑
j=1

∫
Ω
∇|v|2 · ∇`2 dx−

3∑
j,k=1

∫
Ω

(∂jvk) (∂k`
2)vj dx

= −1

2

∫
Ω
|v|2 ∆`2 dx +

3∑
j,k=1

∫
Ω
vjvk ∂jk`

2 dx,

which leads to

I2 ≤
∣∣∣∣∫

Ω
(curl v) ·

(
(∇`2)× v

)
dx

∣∣∣∣ ≤ C‖D2`2‖∞‖v‖2.

In addition, the other integral I3 on the r.h.s of (4.4.36) is bounded by

I3 =
1

2

∫
Ω
|v|2∆`2 dx ≤ C‖D2`2‖∞‖v‖2.

We get the estimate (4.4.31) by combining the two estimates above and (4.4.36), which

concludes the proof.
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4.4.2 Existence and uniqueness results

Throughout this section, we assume that assumptions (4.1.6) and (4.1.7) in Theorem 4.1.1

hold, that is `(x) = O(
√
d(x, ∂Ω)) near the boundary and ` is strictly positive inside the

domain. Moreover, we also assume that f ∈ L2(0, T ;L2(Ω)3) and v0 ∈ W 1,3
0,σ (Ω). Finally,

recall that ω = curl v. As in (4.2.8) we write d(x, ∂Ω) = d(x).

Without loss of generality, and according to the modeling introduced in [ABLN20] motivated

by dimensional analysis, we consider now the back-scatter Baldwin & Lomax model with

the following explicit expression for the length `

(4.4.41) `(x) =
√
d0 d(x) for some length d0 > 0,

which is consistent with assumptions (4.1.6) and (4.1.7) and `2(x) = d0 d(x) ∈ C2(Ω), if

the boundary of the domain ∂Ω is at least of class C2 (cf. the assumptions in Lemma 4.4.1

and see also Gilbarg and Trudinger [GT01, Chapter 14]). Consequently, we now study the

existence and uniqueness problems for the following model

(4.4.42)

{
vt + curl (d0 dωt) + ω × v − ν∆v + curl (d0 d |ω|ω) +∇p = f ,

div v = 0,

where p is some modified pressure and, again for simplicity and without loss of generality,

we suppose from now on that d0 = 1. Recall that the above system is supplemented by the

Dirichlet boundary conditions v = 0 on (0, T )× ∂Ω and the initial datum v(0) = v0 in Ω.

In order to prove existence of weak solutions we observe that the basic a-priori estimate is

obtained by testing with v itself and obtaining (after integration by parts, if solutions are

smooth to perform all computations) the following energy inequality for all s ∈ (0, T )

‖v(s)‖2 + ‖
√
dω(s)‖2 + ν

∫ s

0
‖∇v‖2 dt+ 2

∫ s

0

∫
Ω
d |ω|3 dxdt

≤ ‖v0‖2 + ‖
√
dω0‖2 +

C

ν

∫ s

0

∫
Ω
‖f‖2dxdt.

Here, the vanishing contribution of the rotational convection term has been used (after

modifying the pressure) and the dimensionless constant C comes from applying the Poincaré

and Young inequalities. It follows by using (4.2.9) and a natural f ∈ L2(0, T ;L2(Ω)3)

assumption, that
v ∈ L∞(0, T ;L2(Ω)3) ∩ L2(0, T ;H1

0 (Ω)3),

d1/2ω ∈ L∞(0, T ;L2(Ω)3),

d1/3ω ∈ L3(0, T ;L3(Ω)3).
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Hence, from one side we have for the mean velocity v the same estimates valid for the Leray-

Hopf weak solutions of the Navier-Stokes equations; On the other side we have further esti-

mates on the mean vorticity which are weighted by the distance from the boundary, hence

not enough to directly apply standard methods. We observe that both (dispersive/back-

scatter and dissipative/eddy viscosity) the additional degenerate terms pose some math-

ematical difficulties: If in the system (4.4.42) one would have been given the following

smoothing term

curl (|ω|ω),

then the a-priori estimate, and the divergence-free constraint with (4.2.11) will imply di-

rectly that v ∈ L3(0, T ;W 1,3
0,σ (Ω)), allowing us to apply the same tools valid for the Smagorin-

sky model as in [Lio69]. Here the estimates degenerate at the boundary (being the mean

vorticity weighted by the distance function d) and this prevents from using the solution

itself as a legitimate test function.

Next, if the dispersive term would have been given by

curl (ωt) = −∆vt,

(where the equality is valid for divergence-free functions) the same well-known tools valid for

the Voigt model can be used as in [CLT06]. We note in particular that in problem (4.4.42)

the presence of this dispersive term does not allow us to prove by comparison the classical

regularity in negative spaces for the time derivative vt (as needed by Aubin-Lions type

compactness results); In addition it is also not easy to prove from the weak formulation

that the solution is weakly continuous in L2(Ω) as required by the compactness results à la

Hopf (or in the refined form of Landes and Mustonen [LM87]).

Each term poses some questions which can be separately handled, but the combination of

the effects of both weighted terms requires to have a precise interplay between some local

(in space) estimates on a double approximated system.

For these reasons we first ε-regularize the system by a hyper-dissipative term and we then

approximate it by a Galerkin procedure. We first pass to the limit in the Galerkin system

and then pass to the limit in the smoothed system, by using further regularity on the time

derivative which is obtained in a way similar to [ABLN20].

4.4.3 The approximate system: existence and further regularity

For simplicity we assume from now on that f = 0, but the introduction of an external force

f ∈ L2(0, T ;L2(Ω)3) can be done with minor changes. Moreover, throughout the section,

we assume ` =
√
d, but observe that assumptions (4.1.6) and (4.1.7) would be enough.
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In order to apply the standard Galerkin method and monotonicity, we approximate the

system (4.4.42) by the following one

(4.4.43){
vεt + curl (dωεt) + ωε × vε − ν∆vε + curl (d |ωε|ωε)− εdiv (|Dvε|Dvε) +∇pε = 0,

div vε = 0,

and we study it with homogeneous Dirichlet boundary conditions.

The above system falls within the standard class of monotone problems as those considered

in Lions [Lio69] and Ladyžhenskaya [Lad69] in the analysis of the Smagorinsky model. Here,

in addition to the standard Smagorinsky model, we have two perturbation terms, which can

be easily handled.

We have the following result.

Theorem 4.4.1. Let be given v0 ∈ W 1,3
0,σ (Ω), then there exists a unique weak solution

vε to system (4.4.43) with v0 as initial datum and with homogeneous Dirichlet boundary

conditions. This means that

vε ∈ L∞(0, T ;L2
σ(Ω)3) ∩ L3(0, T ;W 1,3

0,σ (Ω)),

is such that

(4.4.44)

∫ T

0

∫
Ω

(ωε × vε) · φ+ ν∇vε : ∇φ+ d |ωε|ωε · curlφ+ ε |Dvε|Dvε : Dφ dxdt

=

∫ T

0

∫
Ω

vε · φt + dωε · curl φt dxdt+

∫
Ω

v0 · φ(0) + dω0 · curl φ(0) dx,

for all φ ∈ C∞0,σ([0, T )× Ω)3.

Proof. Testing by divergence free test vector fields as is custom, we do not consider the

pressure term that can be recovered through the usual ways. The proof is based on an

application of the Galerkin method to prove existence of approximate solutions. Denoting

by vε,m ∈ Vm for all t ∈ (0, T ) a finite dimensional approximation to vε one has the following

energy estimate for all s ∈ [0, T ]

‖vε,m(s)‖2 + ‖
√
dωε,m(s)‖2 + 2ν

∫ s

0
‖∇vε,m‖2 dt+ 2ε

∫ s

0
‖Dvε,m‖33 dt

+ 2

∫ s

0

∫
Ω
d |ωε,m|3 dxdt ≤ ‖v0‖2 + ‖

√
dω0‖2,

which shows, by using (4.2.9)-(4.2.10) that

vε,m ∈ L∞(0, T ;L2
σ(Ω)3) ∩ L3(0, T ;W 1,3

0,σ (Ω)),

with estimates depending on ε > 0, but independent of m ∈ N.
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Next, testing with vt, we can see that the contribution of the rotational convective term

can be estimated as follows:∣∣∣ ∫
Ω

(ω × v) · vt dx
∣∣∣ ≤ ‖vt‖ ‖v‖6‖ω‖3
≤ ‖vt‖ ‖v‖6‖∇v‖3

≤ C‖vt‖ ‖∇v‖ ‖Dv‖3

≤ 1

2
‖vt‖2 + C‖∇v‖2 ‖Dv‖23,

for smooth enough v, where we used the Korn inequality (4.2.10).

By using vε,mt as test function and the previous estimates (where v is replaced by vε,m) we

then obtain the following differential inequality

1

2

(
‖vε,mt (s)‖2 + ‖

√
dωε,mt (s)‖2

)
+
d

dt

ν

2
‖∇vε,m‖2 +

d

dt

ε

3
‖Dvε,m‖33

+
d

3dt

∫
Ω
d |ωε,m|3dx ≤ C‖∇vε,m‖2 ‖Dvε,m‖23.

An application of the Gronwall lemma –possible since vε,m ∈ L3(0, T ;W 1,3
0,σ (Ω))– shows that

vε,m ∈ L∞(0, T ;W 1,3
0,σ (Ω)) and vε,mt ∈ L2(0, T ;L2(Ω)3),

again uniformly in m ∈ N. The above estimates with Aubin-Lions compactness lemma

(cf. [Lio69]) are enough to infer that, for each fixed ε > 0, there exists

vε ∈ L∞(0, T ;W 1,3
0,σ (Ω)) ∩H1(0, T ;L2

σ(Ω)),

such that when m→ +∞

vε,m
∗
⇀ vε in L∞(0, T ;W 1,3

0,σ (Ω)),

vε,m ⇀ vε in L3(0, T ;W 1,3
0,σ (Ω)),

vε,mt ⇀ vεt in L2(0, T ;L2
σ(Ω)3),

√
dωε,mt ⇀

√
dωεt in L2(0, T ;L2(Ω)3),

|Dvε,m|Dvε,m ⇀ χ1 in L3/2(0, T ;L3/2(Ω)9),

|Dvε,m|Dvε,m
∗
⇀ χ1 in L∞(0, T ;L3/2(Ω)9),

d2/3 |ωε,m|ωε,m ⇀ χ2 in L3/2(0, T ;L3/2(Ω)3),

d2/3 |ωε,m|ωε,m ∗
⇀ χ2 in L∞(0, T ;L3/2(Ω)3),

vε,m → vε in L2(0, T ;Lqσ(Ω)3) ∀ q <∞.

The above convergences are enough to pass to the limit in the approximate equations, except

in the monotone terms.
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In particular, for the Baldwin & Lomax term, it follows that∫ T

0

∫
Ω
d |ωε,m|ωε,m · curl φ dxdt

=

∫ T

0

∫
Ω
d2/3 |ωε,m|ωε,m · d1/3curl φ dxdt

m→+∞→
∫ T

0

∫
Ω
χ2 · d1/3curl φ dxdt

=

∫ T

0

∫
Ω
d1/3χ2 · curl φdxdt,

for all smooth functions φ with compact support. Hence, one gets (the trick of distributing

powers of the distance function on the integrands will be used several times in the sequel)∫ T

0

∫
Ω

(ω × v) · φ+ ν∇v : ∇φ+ εχ1 : Dφ+ d1/3χ2 · curlφ dxdt

=

∫ T

0

∫
Ω

v · φt + dω · curl φt dxdt+

∫
Ω

v0 · φ(0) + dω0 · curl φ(0) dx,

and for almost all 0 ≤ s0 ≤ s ≤ T it holds

1

2

(
‖vε(s)‖2 + ‖

√
dωε(s)‖2

)
+

∫ s

s0

[
ν‖∇vε(t)‖2 +

∫
Ω

(
εχ1 : Dvε + d1/3χ2 · ωε

)
dx

]
dt

=
1

2

(
‖vε(s0)‖2 + ‖

√
dωε(s0)‖2

)
.

Hence, to show that vε is a solution to (4.4.43) one needs to prove that

(4.4.45) χ1 = |Dvε|Dvε and χ2 = d2/3 |ωε|ωε,

at least almost everywhere in (0, T )× Ω.

This can be proved by using the standard monotonicity argument (Minty-Browder trick) as

developed in the time evolution problem in [Lad69, Lio69]. The only thing to be verified is

that the function

vε,m − vε,

is a legitimate test function. This follows by the regularity of the time derivative we proved.

Hence, the classical argument proceeds as in (cf. [Lio69, page 207]) showing that the ap-

proximate solution vε satisfies

ε

∫ s

0

∫
Ω

(χ1 − |Dφ|Dφ) : (Dvε −Dφ) dxdt ≥ 0,∫ s

0

∫
Ω

(χ2 − d2/3 |curl φ|curl φ) · (d1/3ωε − d1/3curl φ) dxdt

‖∫ s

0

∫
Ω

(dχ2 |curl φ|curl φ) · (ωε − curl φ) dxdt ≥ 0,
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for a.e. s ∈ [0, T ] and for arbitrary φ ∈ L3(0, T ;W 1,3
0,σ (Ω)), since they are both coming from

monotone terms. This is enough to imply by monotonicity of the functions

B 7→ |B|B and b 7→ dα|b|b,

(which is valid for all matrices B, vectors b, α ∈ R+, and smooth functions d such that

d > 0 for all x ∈ Ω, cf. [BB20, Lemma 3.2]) that the equalities in (4.4.45) hold true. We

finally proved that there exists vε such that

(4.4.46)

∫ T

0

∫
Ω

[
vεt · φ+ dωεt · curl φ+ (ωε × vε) · φ

]
dxdt

+

∫ T

0

∫
Ω

[
ν∇vε : ∇φ+ ε |Dvε|Dvε : Dφ+ d |ωε|ωε · curl φ

]
dxdt = 0,

at least for all φ ∈ L3(0, T ;W 1,3
0,σ (Ω)). Well-known estimates can be also applied to show

that the solution vε is unique.

Remark 4.4.1. Due to the regularity of the solution of the approximated system we can use

the function vε,m − vε as test function. In the case of the non-regularized system (4.4.42)

we will see that localization in the space variable is needed and this is not compatible with

the finite dimensional Galerkin approximation.

4.4.4 Proof of Theorem 4.1.1

We now consider the original problem (without the ε-regularization) and give the proof of

the main result of the paper.

Proof of Theorem 4.1.1. The proof is divided into two steps. Let us start with the existence

part.

Step 1: Existence part. To construct weak solutions to (4.4.42) we consider the limit

ε → 0 of solutions to (4.4.43). By the estimate coming from the energy inequality we also

have by using Lemma 4.4.1 the following inequality, for all s ∈ (0, T )

1

2
‖vε(s)‖2 + min

{
1,

1

2C(`)

}
‖
√
d∇vε(s)‖2 + 2ν

∫ s

0
‖∇vε‖2 dt+ 2ε

∫ s

0
‖Dvε‖33 dt

+ 2

∫ s

0

∫
Ω
d |ωε|3 dxdt ≤ ‖v0‖2 + ‖

√
dω0‖2,

which shows that

vε ∈ L∞(0, T ;L2
σ(Ω)3) ∩ L2(0, T ;W 1,2

0,σ (Ω)) and d1/3ωε ∈ L3((0, T )× Ω),

105



CHAPTER 4. ROTATIONAL FORMS OF LES TURBULENCE MODELS

with estimates independent of ε > 0. We now extract further information from the other

bound which is independent of ε, namely

√
d∇vε ∈ L2(0, T ;L2(Ω)9),

coming from the other term on the left-hand side. We use now the inequality

‖v‖H1/2(Ω)3 ≤ C‖
√
d∇v‖ ∀v ∈W 1,2

0 (Ω)3,

which is a simplification of that proved in [ABLN20, Theorem 3.1] and H1/2(Ω) denotes

the famous critical fractional Sobolev space.

Here, we have the full gradient instead of the deformation tensor on the right-hand side

and since we are working with the Galerkin approximations we need to verify it at least

for functions in W 1,2
0 (Ω), instead that for general distributions: This is why the estimate is

less technical than that in [ABLN20]. By using the Sobolev embedding H1/2(Ω) ⊂ L3(Ω),

valid in three space dimensions, we finally have the following version of a classical Lions

and Magenes result

(4.4.47) ‖v‖3 ≤ C‖v‖1/2,2 ≤ C‖
√
d∇v‖ ∀v ∈W 1,2

0 (Ω)3.

This is still not enough for our purposes, but we pass at the estimate obtained testing with

vεt. We can also write the following estimate, which follows as in [ABLN20, Section 4]

(4.4.48)

∣∣∣ ∫
Ω

(ωε × vε) · vεt dx
∣∣∣ ≤ ‖vεt‖3‖vε‖6‖ωε‖ ≤ C‖vt‖3‖∇vε‖2

≤ 1

2
min

{
1,

1

2C(`)

}
‖
√
d∇vεt‖2 + C1(`)‖∇vε‖4,

valid for smooth functions for some C1(`). At the level of the Galerkin approximation we

can use the above estimate and then the bound is inherited by the limit in m→ +∞. Hence,

by testing by vε,mt the Galerkin system and by using Lemma 4.4.1, with the estimation on

the convective term (4.4.48), we get (after passing to the limit m → +∞) the following

differential inequality

1

2
‖vεt‖2 +

1

2
min

{
1,

1

2C(`)

}
‖
√
d∇vεt‖2 +

d

dt

ν

2
‖∇vε‖2 +

d

dt

ε

3
‖Dvε‖33

+
d

3dt

∫
Ω
d |ωε|3 dx ≤ C1(`)‖∇vε‖4.

In particular, for all s ∈ (0, T ) it holds

ν

2
‖∇vε(s)‖2 ≤ ν

2
‖∇v0‖2 +

ε

3
‖Dv0‖33 +

1

3

∫
Ω
d |ω0|3 dx + C1(`)

∫ s

0
‖∇vε‖4 dt,
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which shows that, by using the Gronwall’s lemma (see for example [ABLN20, Lemma 4.1])

ν

2
‖∇vε(s)‖2 ≤

(
ν

2
‖∇v0‖2 +

ε

3
‖Dv0‖33 +

1

3

∫
Ω
d |ω0|3 dx

)
exp

{
C1(`)

∫ s

0
‖∇vε‖2 dt

}
≤
(
ν

2
‖∇v0‖2 +

1

3

∫
Ω
d |ω0|3 dx

)
exp

{
C1(`)

2ν

(
‖v0‖2 + ‖

√
dω0‖2

)}
=: F (`,v0),

where we have used the uniform estimate for vε in L2(0, T ;W 1,2
0 (Ω)3, previously proved.

Therefore, from the above differential inequality we get, for all s ∈ (0, T )

1

2

∫ s

0

(
‖vεt‖2 + min

{
1,

1

2C(`)

}
‖
√
d∇vεt‖2

)
dt+

ν

2
‖∇vε(s)‖2 +

1

3

∫
Ω
d |ωε(s)|3 dx

+
ε

3
‖Dvε(s)‖33 ≤

ν

2
‖∇v0‖2 +

1

3

∫
Ω
d |ω0|3 dx + C1(`)F (`,v0)

(
‖v0‖2 + ‖

√
dω0‖2

)
,

for all ε > 0. The latter implies in particular that

vεt ∈ L2(0, T ;L3(Ω)3 ∩H1/2(Ω)3) and vε ∈ L∞(0, T ;W 1,2
0,σ (Ω)),

with bounds uniform in ε > 0. (The validity of the estimates can be justified working again

with the Galerkin approximation showing estimates not depending on m in a standard way.)

We can now use this information to pass to the limit as ε→ 0.

In particular, by the a priori estimates, and since d > 0 for all x ∈ Ω observe that we can

infer

dK

∫ T

0

∫
K
|ωε|3 dxdt ≤

∫ T

0

∫
Ω
d |ωε|3 dxdt,

with 0 < dK := minx∈K d(x). Next, being the right-hand side bounded independently of

ε > 0 this shows that we have (up to a sub-sequence) L3-weak convergence in (0, T ) ×K.

Considering a family of closed balls Bq,rq ⊂ Ω with rational center q ∈ Q3 and rational

radius rq ∈ Q+ which form a covering of Ω, and using a diagonal argument we can show

that we can find a sub-sequence {ωε} converging in L3 in any compact set of (0, T ) × Ω.

Moreover, one has also the weak-∗ convergence in L∞(0, T ;L3(K)).

By collecting all information coming from the above a priori estimates, we can infer that

there exists

v ∈W 1,2(0, T ;L3
σ(Ω)3 ∩H1/2(Ω)3) ∩ L∞(0, T ;W 1,2

0,σ (Ω)),

with

ω ∈ L∞(0, T ;L3
loc(Ω)3),

107



CHAPTER 4. ROTATIONAL FORMS OF LES TURBULENCE MODELS

such that

vε
∗
⇀ v in L∞(0, T ;W 1,2

0,σ (Ω)),(4.4.49)
√
dωε

∗
⇀
√
dω in L∞(0, T ;L2(Ω)3),(4.4.50)

vεt ⇀ vt in L2(0, T ;H1/2(Ω)3 ∩ L3
σ(Ω)3),(4.4.51)

√
dωεt ⇀

√
dωt in L2(0, T ;L2(Ω)3),(4.4.52)

ε|Dvε|Dvε ⇀ 0 in L3/2(0, T ;L3/2(Ω)9),(4.4.53)

d |ωε|ωε ⇀ χ in L3/2(0, T ;L3/2(Ω)3),(4.4.54)

d |ωε|ωε ∗⇀ χ in L∞(0, T ;L3/2(Ω)3),(4.4.55)

ωε ⇀ ω in L3(0, T ;L3(K)3), ∀K ⊂⊂ Ω,(4.4.56)

ωε
∗
⇀ ω in L∞(0, T ;L3(K)3), ∀K ⊂⊂ Ω,(4.4.57)

and by Aubin-Lions lemma

vε → v in L2(0, T ;W
3/4,2
0,σ (Ω)3) ⊂ L2(0, T ;L4(Ω)3),(4.4.58)

All terms in the equation with the weak formulation (4.4.44) for vε pass to the limit, except

the nonlinear one concerning the Baldwin & Lomax stress tensor. We obtain then

(4.4.59)

∫ T

0

∫
Ω

vt · φ+ dωt · curl φ+ (ω × v) · φ+ ν∇v : ∇φ+ χ · curl φ dxdt = 0,

for all smooth test functions φ with compact support in (0, T )× Ω.

The last step is to show that the limit v (and it curl ω) satisfies the system (4.4.42) in a weak

sense. To this end it would be classical to take the difference between the equation satisfied

by vε and that satisfied by v, test by the difference and show that the limit vanishes. This

is needed to show that

d |ωε|ωε → d |ω|ω,

at least a.e. in (0, T )×Ω. All the other terms work fine, the only problem is then to make

sure that the integral below is well-defined

(4.4.60)

∫ T

0

∫
Ω

(d |ωε|ωε − d |ω|ω) · (ωε − ω) dxdt→ 0,

and to show that it vanishes. The a priori estimates we have on the solution are not enough

for this results: the integral in (4.4.60) can be well-defined if taken over a compact subset

of K ⊂ Ω, being ω ∈ L3
loc(Ω)3 for a.e. t ∈ [0, T ], but not over the whole domain Ω.
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In order to overcome this problem we have to localize. So let us fix an open ball B :=

B(x, R) ⊂ Ω and take a cut-off function 0 ≤ η ∈ C∞0 (Ω)) such that{
η(x) = 1 if x ∈ B/2 := B(x, R/2),

η(x) = 0 if x ∈ Ω\B.

In this way, since for a.e. t ∈ (0, T ) it follows that v(t) ∈ L3(Ω)3, and ω(t) ∈ L3(B)3 we

have that
η (vε − v)|∂B = 0,

div (η (vε − v)) = ∇η · (vε − v) ∈ L3(B),

curl (η (vε − v)) = ∇η × (vε − v) + η (ωε − ω) ∈ L3(B)3,

it follows then by (4.2.11) that η (vε − v) ∈ L3(0, T ;W 1,3
0 (B)3). Concerning the regularity,

for all ε > 0 the vector η (vε − v) will be suitable as test function, but it still not allowed

since η (vε − v) is not divergence-free. So in order to be able to use it we need to subtract

its divergence. This can be done by means of the Bogovskĭı operator BogB( . ) associated

to the ball B. Note that we are using it for all fixed t ∈ [0, T ] and this does not create

problems since the functions are smooth enough to consider the time as a parameter. Hence,

a legitimate test function is the following one

Φε :=

{
η (vε − v)− BogB(∇η · (vε − v)) in B,

0 in Ω\B.

From the continuity of the Bogovskĭı operator as in Proposition 4.2.1 we can infer that

supp Φε ⊂ B for all t ∈ [0, T ] and

Φε ∈ L∞(0, T ;W 1,2
0,σ (Ω)) ∩ L3(0, T ;W 1,3

0,σ (Ω)).

Moreover, from the convergence of the approximated sequence we also have, by interpola-

tion, that vε − v→ 0 in L3(0, T ;L3(Ω)3), hence

Φε → 0 in L3(0, T ;L3(Ω)3),(4.4.61)

Φε ⇀ 0 in L3(0, T ;W 1,3
0 (B)3),(4.4.62)

BogB(∇η · (vε − v))→ 0 in L3(0, T ;W 1,3
0 (B)3).(4.4.63)

We then obtain from the weak formulation of the regularized problem (4.4.46) the following
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equality

I :=

∫ T

0

∫
Ω
η
(
d |ωε|ωε − d |ω|ω

)
·
(
ωε − ω

)
dxdt

= −
∫ T

0

∫
Ω

(
d |ωε|ωε − d |ω|ω

)
· ∇η ×

(
vε − v

)
dxdt

−
∫ T

0

∫
Ω

(
d |ωε|ωε − d |ω|ω

)
· curl

[
BogB(∇η · (vε − v))

]
dxdt

− ν
∫ T

0

∫
Ω

D(vε − v) : DΦε dxdt+

∫ T

0

∫
Ω

(
ω × v − ωε × vε

)
· Φε dxdt

+

∫ T

0

∫
Ω

(
χ− d |ω|ω

)
· curl Φε dxdt− ε

∫ T

0

∫
Ω
|Dvε|Dvε : DΦε dxdt

−
∫ T

0

∫
Ω

(vεt − vt) · Φε dxdt−
∫ T

0

∫
Ω
d (ωεt − ωt) · curl Φε dxdt

=: (I) + (II) + (III) + (IV ) + (V ) + (V I) + (V II) + (V III).

The strong L3(0, T ;L3(Ω)3) convergence of vε and the continuity of the Bogovskĭı operator,

with (4.4.63) imply that (I) and (II) vanish as ε → 0 (we also used that the function d is

uniformly bounded). We write then the following equality

(III) = −ν
∫ T

0

∫
Ω
η|D(vε − v)|2 dxdt− ν

∫ T

0

∫
Ω

D(vε − v) : ∇η ⊗ (vε − v) dxdt

+ ν

∫ T

0

∫
Ω

D(vε − v) : D
[
BogB(∇η · (vε − v))

]
dxdt,

where the first term is non-positive and the second and third one vanish on account

of (4.4.58) and (4.4.63). The convergence of the term (IV ) follows from uniform bounds

in L2(0, T ;W 1,2(Ω)3) and (4.4.61). The term (V ) → 0 due to (4.4.62) and the bound in

L3/2((0, T ) × B) of χ and |ω|ω. Next, (V I) → 0, due the L3(0, T ;W 1,3(B)3) bound of

vε − v and (4.4.53).

Concerning the terms involving the time derivative, which are the new ones with respect to

the steady problem treated in [BB20], it follows that they both vanish as ε → 0. In fact,

in (V II) the term vεt − vt is bounded in L2(0, T ;L2(Ω)3), by (4.4.59), while Φε vanishes

strongly in L2(0, T ;L2(Ω)3). Moreover, regarding (V III), we rewrite it as∫ T

0

∫
Ω

(
√
dωεt −

√
dωt) ·

√
dΦε dxdt,

and observe that the quantity
√
dωεt −

√
dωt is bounded in L2(0, T ;L2(Ω)3) by (4.4.52),

while
√
dΦε converges strongly to zero in L2(0, T ;L2(Ω)3) by (4.4.58).
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In this way we proved that

min
x∈B/2

d(x)

∫ T

0

∫
B/2

(|ωε|ωε − |ω|ω) · (ωε − ω) dxdt

= min
x∈B/2

d(x)

∫ T

0

∫
B/2

η (|ωε|ωε − |ω|ω) · (ωε − ω) dxdt

≤
∫ T

0

∫
B/2

d(x) η (|ωε|ωε − |ω|ω) · (ωε − ω) dx

≤
∫ T

0

∫
B
d(x) η (|ωε|ωε − |ω|ω) · (ωε − ω) dxdt→ 0,

which is enough to prove that |ωε|ωε → |ω|ω a.e. in (0, T )×B/2. The arbitrariness of the

ball B ⊂ Ω implies that

|ωε|ωε → |ω|ω a.e. in (0, T )× Ω.

This proves, by the identification of weak and almost everywhere limits, the validity of the

limit d |ωε|ωε ⇀ d |ω|ω, at least in L3/2(0, T ;L3/2(Ω)3) ending the proof of the existence

part, since v satisfies ∫ T

0

∫
Ω

[vt · φ+ dωt · curl φ+ (ω × v) · φ] dx dt

+

∫ T

0

∫
Ω

[ν∇v : ∇φ+ d |ω|ω · curl φ] dxdt = 0,

for all φ ∈ C∞0,σ((0, T )× Ω)3.

Observe that the hypotheses on the initial datum v0 ∈ W 1,3
0,σ (Ω) are enough to make the

integrals well-defined. In the limit only the weighted estimate
∫

Ω d |ω0|3 dx <∞ is needed.

So at the price of further technical questions related to approximation by smooth functions

in weighted space as in Kufner [Kuf85], one can relax the hypotheses on the initial datum

as follows:

v0 ∈W 1,2
0,σ (Ω) with

∫
Ω
d |ω0|3 dx <∞,

such that there exists a sequence vε0 ∈W
1,3
0,σ (Ω) satisfying

vε0 → v0 in W 1,2
0,σ (Ω) and

∫
Ω
d |ωε0|3 dx ≤ 2

∫
Ω
d |ω0|3 dx.

We continue now with the uniqueness part.

Step 2: Uniqueness part. Since we proved existence of rather regular weak solutions, we

can now prove their uniqueness. As usual we suppose that there exists two solutions v1, v2

corresponding to the same initial datum. We take the difference and it follows that all
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estimates satisfied by the velocity are inherited by the difference and hence δ v := v1 − v2

and δω := ω1 − ω2 satisfy in particular the following

δ v ∈ L∞(0, T ;W 1,2
0,σ (Ω)),

√
d (δω) ∈ L∞(0, T ;L2(Ω)3),

δ vt ∈ L2(0, T ;H1/2(Ω)3 ∩ L3
σ(Ω)),

√
d (δωt) ∈ L2(0, T ;L2(Ω)3),

δω ∈ L∞(0, T ;L3(K)3), ∀K ⊂⊂ Ω.

It follows that if we write the equation satisfied by the difference δ v, we can rigorously test

by the difference itself. All terms work directly, the only one that needs to be checked is

the monotone one. In fact, if we write

(4.4.64)

∫ T

0

∫
Ω

(
d |ω1|ω1 − d |ω2|ω2

)
·
(
ω1 − ω2

)
dxdt,

this would be surely finite if ωi ∈ L3(0, T ;L3(Ω)3), which we do not know. Nevertheless we

can observe that, for all i, j = 1, 2∣∣∣∣∣
∫ T

0

∫
Ω
d |ωi|ωi · ωj dxdt

∣∣∣∣∣ ≤
(∫ T

0

∫
Ω
d |ωi|3 dxdt

)2/3 (∫ T

0

∫
Ω
d |ωj |3 dxdt

)1/3

<∞,

hence the integral in (4.4.64) is well defined, and then by monotonicity it follows that∫ T

0

∫
Ω

(
d |ω1|ω1 − d|ω2|ω2

)
·
(
ω1 − ω2

)
dxdt ≥ 0.

This proves that

1

2
‖δ v(s)‖2 +

1

2
‖
√
d (δω(s))‖2 +

ν

2

∫ s

0
‖∇(δ v)‖2 dt ≤ C

ν

∫ s

0
‖∇v2‖4‖δ v‖2 dt,

by using the standard inequalities for the nonlinear term (as in [ABLN20, Section 4]), since

δ v(0) ≡ 0. The bound ∇v2 ∈ L∞(0, T ;L2(Ω)9) and the Gronwall lemma implies that

‖δ v(s)‖ ≡ 0 for all s ∈ [0, T ], hence the uniqueness follows.
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[NH80] J. Nečas and I. Hlaváček. Mathematical theory of elastic and elasto-plastic

bodies: an introduction, volume 3 of Studies in Applied Mechanics. Elsevier

Scientific Publishing Co., Amsterdam-New York, 1980.

[NN18] Toan T. Nguyen and Trinh T. Nguyen. The inviscid limit of Navier-Stokes

equations for analytic data on the half-space. Arch. Ration. Mech. Anal.,

230(3):1103–1129, 2018.

[NN19a] Quoc-Hung Nguyen and Phuoc-Tai Nguyen. Onsager’s conjecture on the en-

ergy conservation for solutions of Euler equations in bounded domains. J.

Nonlinear Sci., 29(1):207–213, 2019.

[NN19b] Toan T. Nguyen and Trinh T. Nguyen. The inviscid limit of Navier-Stokes

equations for vortex-wave data on R2. SIAM J. Math. Anal., 51(3):2575–2598,

2019.
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