Analyse non supervisée de données issues de Systèmes de Transport Intelligent-Coopératif

par Brice Leblanc

Thèse de doctorat en Info - Informatique

Sous la direction de Hacene Fouchal et de Cyril de Runz.

Soutenue le 08-07-2020

à Reims , dans le cadre de Ecole doctorale Sciences du Numérique et de l’Ingénieur (Reims, Marne) , en partenariat avec CRESTIC - Centre de Recherches en STIC (laboratoire) .


  • Résumé

    Cette thèse se situe dans le contexte des réseaux véhiculaires (VANET), et plus particulièrement dans le contexte des Systèmes de Transport Intelligent-Coopératif (STI-C). Ces systèmes échangent des informations pour améliorer la sécurité routière.Le but de cette thèse est d'introduire des outils d'analyse de données qui peuvent fournir aux opérateurs routiers des informations sur l'utilisation et état de leurs infrastructures. Par conséquent, ces informations peuvent contribuer à améliorer la sécurité routière. Nous identifions deux cas que nous voulons traiter : l'identification des profils de conduite et la détection des obstacles routiers.Pour traiter ces questions, nous proposons d'utiliser des approches d'apprentissage non supervisées : des méthodes de regroupement pour l'identification des profils de conduite, et la détection de changement de concept pour la détection des obstacles. Cette thèse présente trois contributions principales : une méthodologie nous permettant de transformer les données brutes des STI-C en un ensemble de trajectoires puis de données d'apprentissage ; l'utilisation de méthodes classiques de regroupement et des points d'intérêt pour les profils de conduite avec des expériences sur les données issues des appareils mobiles et des journaux du réseau ; et la prise en compte d'une foule de véhicules fournissant des journaux du réseau considérés comme flux de données en entrée d'algorithmes de détection de changement de concept pour reconnaître les obstacles routiers.

  • Titre traduit

    Unsupervised analysis of Cooperative-Intelligent Transport Systems data


  • Résumé

    This thesis takes place in the context of Vehicular Ad-hoc Networks (VANET), and more specifically the context of Cooperative-Intelligent Transport System (C-ITS). These systems are exchanging information to enhance road safety.The purpose of this thesis is to introduce data analysis tools that may provide road operators information on the usage/state of their infrastructures. Therefore, this information may help to improve road safety. We identify two cases we want to deal with: driving profile identification and road obstacle detection.For dealing with those issues, we propose to use unsupervised learning approaches: clustering methods for driving profile identification, and concept drift detection for obstacle detection. This thesis introduces three main contributions: a methodology allowing us to transform raw C-ITS data in, first, trajectory, and then, learning data-set; the use of classical clustering methods and Points Of Interests for driving profiles with experiments on mobile device data and network logs data; and the consideration of a crowd of vehicles providing network log data as data streams and considered as input of concept drift detection algorithms to recognize road obstacles.


Il est disponible au sein de la bibliothèque de l'établissement de soutenance.

Consulter en bibliothèque

La version de soutenance existe

Où se trouve cette thèse\u00a0?

  • Bibliothèque : Université de Reims Champagne-Ardenne (Bibliothèque électronique). Bibliothèque universitaire.
Voir dans le Sudoc, catalogue collectif des bibliothèques de l'enseignement supérieur et de la recherche.