Thèse soutenue

Conception d'un système de contrôle d’antennes basé sur la radio logicielle pour réception et émission améliorées de données

FR  |  
EN
Auteur / Autrice : Clément Campo
Direction : Jean-Marie PaillotHervé BoeglenLoïc Bernard
Type : Thèse de doctorat
Discipline(s) : Electronique, Microélectronique, Nanoélectronique et Micro-ondes
Date : Soutenance le 16/10/2020
Etablissement(s) : Poitiers
Ecole(s) doctorale(s) : École doctorale Sciences et Ingénierie des Systèmes, Mathématiques, Informatique (Limoges ; 2018-2022)
Partenaire(s) de recherche : Laboratoire : XLIM - XLIM / XLIM
faculte : Université de Poitiers. UFR des sciences fondamentales et appliquées
Jury : Président / Présidente : Jean-François Diouris
Examinateurs / Examinatrices : Jean-Marie Paillot, Hervé Boeglen, Loïc Bernard, Geneviève Baudoin, Sébastien Hengy
Rapporteurs / Rapporteuses : Jean-Michel Friedt, Renaud Loison

Résumé

FR  |  
EN

Aujourd’hui média incontournable d’échange d’informations, les ondes électromagnétiques sont plus que jamais présentes dans notre environnement. Le nombre toujours croissant d’appareils connectés appelle à une meilleure utilisation des ressources spectrales disponibles. Dans le cadre particulier des télécommunications avec un projectile, étudié dans cette thèse, les communications doivent en plus être discrètes et fiables dans un environnement hostile. Dans le contexte général des télécommunications comme dans ce dernier domaine d’application, le filtrage spatial reconfigurable dynamiquement permis par les réseaux d’antennes offre ainsi de nombreux atouts pour les défis présents et à venir. Le contrôle de réseaux d’antennes nécessite une électronique fonctionnant en cohérence et en alignement de phase. Dans une précédente thèse, un système analogique a permis de dépointer vers une station alliée le lobe principal d’un réseau embarqué dans un projectile, durant toute la trajectoire de ce dernier. Ce système n’autorise cependant que 16 configurations pour le diagramme de rayonnement du réseau et n’est fonctionnel qu’autour de 5,2 GHz. Par opposition, la radio logicielle utilise des composants large-bande programmables, qui permettent le traitement des signaux reçus ou à émettre en bande de base numérique. Son utilisation rendrait ainsi possible un contrôle du diagramme de rayonnement du réseau plus précis et un fonctionnement sur de larges bandes de fréquences. Cette technologie reste pourtant encore peu utilisée dans le cadre des applications à cohérence de phase. Ces travaux étudient donc les possibilités offertes par la radio logicielle pour les applications à cohérence, avec la contrainte supplémentaire d’alignement des phases, à travers les télécommunications avec un projectile. Des réseaux d’antennes de géométries linéaire et planaire sont étudiés. Un système de contrôle d’antennes de 4 voies en réception et émission est conçu à partir de radios logicielles commerciales. Des solutions, distinctes pour la réception et l’émission de données, sont développées pour assurer une compensation automatisée des déphasages entre les voies. Plusieurs algorithmes de traitement d’antennes et d’estimation d’angle d’arrivée (DOA) sont implémentés en C++. Les équipements disponibles ne permettant une mesure automatisée des diagrammes de rayonnement des réseaux pilotés par radios logicielles, un montage expérimental est proposé. Les performances du système sont alors quantifiées en chambre anéchoïque pour des réseaux d’antennes de différentes géométries et des fréquences de fonctionnement allant de 2,3 à 5,2 GHz. Selon le réseau piloté, le lobe principal ou un nul de rayonnement peuvent être dépointés dans des plages angulaires allant de 60 à plus de 100°, selon une ou deux dimensions. Les algorithmes implémentés sont également utilisés pour développer une station au sol de suivi de projectile basée sur l’estimation de DOA de l’émetteur embarqué dans le projectile et testée en conditions réelles. Plusieurs projectiles volant à une vitesse proche de celle du son sont alors correctement suivis électroniquement. Le rapport signal à bruit du signal recombiné grâce à la station de suivi est plus de 5 dB supérieur à celui d’une unique antenne du réseau et les données de vol du projectile sont correctement décodées.