Thèse soutenue

Transformations birationnelles et automorphismes de quelques variétés hyperkähleriennes

FR  |  
EN
Auteur / Autrice : Pietro Beri
Direction : Alessandra Sarti
Type : Thèse de doctorat
Discipline(s) : Mathématiques
Date : Soutenance le 12/10/2020
Etablissement(s) : Poitiers
Ecole(s) doctorale(s) : École doctorale Sciences et Ingénierie des Systèmes, Mathématiques, Informatique (Limoges ; 2018-2022)
Partenaire(s) de recherche : Laboratoire : Laboratoire de mathématiques et applications - LMA (Poitiers) - Laboratoire de Mathématiques et Applications / LMA-Poitiers
faculte : Université de Poitiers. UFR des sciences fondamentales et appliquées
Jury : Président / Présidente : Emanuele Macrì
Examinateurs / Examinatrices : Alessandra Sarti, Pol Vanhaecke, Enrica Floris, Jean-Philippe Furter
Rapporteurs / Rapporteuses : Emanuele Macrì, Laurent Manivel

Résumé

FR  |  
EN

Mon travail de thèse porte sur les doubles EPW sextiques, une famille de variétés hyperkähleriennes qui, dans le cas général, sont équivalentes par déformation au schéma de Hilbert de deux points sur une surface K3. Notamment j'ai utilisé le lien que ces variétés ont avec les variétés de Gushel-Mukai, qui sont des variétés de Fano dans une Grassmannienne si leur dimension est plus grande que deux, des surface K3 si la dimension est deux.Le premier chapitre contient quelques rappels de théorie des équations de Pell et des réseaux, qui sont fondamentals pour l’étude des variétés hyperkähleriennes. Ensuite je rappelle la construction qui associe un revêtement double à un faisceau sur une variété normale.Dans le deuxième chapitre j’aborde les variétés hyperkähleriennes et je décris leurs premières propriétés ; j’introduis aussi le premier cas de variété hyperkählerienne qui a été étudiée, les surfaces K3. Cette famille de surfaces correspond aux variétés hyperkähleriennes en dimension deux.Je présente ensuite brièvement certains des derniers résultats dans ce domaine, notamment je définis différents espaces de modules de variétés hyperkähleriennes et je décris l’action d’un automorphisme sur le deuxième groupe de cohomologie d’une variété hyperkähleriennes.Les outils introduits dans le chapitre précédent ne fournissent pas de description géométrique de l'action de l'automorphisme sur la variété, dans le cas où la variété est un schéma de Hilbert de points sur une surface K3. Dans le troisième chapitre, j’introduis donc une description géométrique à une certaine déformation près. Cette déformation prend en compte la structure du schéma de la variété de Hilbert. Pour ce faire, j'introduis un isomorphisme entre une composante connexe de l'espace de modules des variétés de type K3[n] avec une polarization, et l'espace de modules des variétés de même type avec une involution dont le rang de l'invariant est un. Il s’agit d’une généralisation d’un résultat obtenu par Boissière, An. Cattaneo, Markushevich et Sarti en dimension deux. Les deux premières parties de ce chapitre sont un travail en collaboration avec Alberto Cattaneo.Dans le quatrième chapitre, je définis les EPW sextiques, en présentant l'argument de O'Grady, qui montre qu'un double revêtement d'un EPW sextique dans le cas général est une variété de type K3[2]. Ensuite, je présente les variétés Gushel-Mukai, en mettant l'accent sur leur lien avec les EPW sextiques ; cette approche a été introduite par O'Grady, poursuivie par Iliev et Manivel et systématisée par Kuznetsov et Debarre.Dans le cinquième chapitre, j’utilise les outils introduits dans le quatrième chapitre dans le cas où on peut associer une surface K3 à une EPW sextique X. Dans ce cas je donne des conditions explicites sur le groupe de Picard de la surface pour que X soit une variété hyperkählerienne. Cela permet d'utiliser le théorème de Torelli pour une surface K3 pour démontrer l'existence de quelques automorphismes sur X. Je donne des bornes sur la structure d'un sous-groupe d'automorphismes d'une EPW sextique sous conditions d'existence d'un point fixe pour l'action du groupe.Toujours dans le cas d'existence d'une surface K3 associée à une EPW sextique X, j’améliore la borne obtenue précédemment sur les automorphismes de X, en donnant un lien explicite avec le nombre de coniques sur la surface K3. Je montre que la symplecticité d'un automorphisme sur X dépend de la symplecticité d'un automorphisme correspondant sur la surface K3.Le sixième chapitre est un travail en collaboration avec Alberto Cattaneo. J'étudie le groupe d'automorphismes birationels sur le schéma de Hilbert des points sur une surface projective K3, dans le cas générique. Cela généralise le résultat obtenu en dimension deux par Debarre et Macrì. Ensuite j’étudie les cas où il existe un modèle birationel où ces automorphismes sont réguliers. Je décris de façon géométrique quelques involutions dont on avait prouvé l'existence auparavant.