Reconstruction et correspondance de formes par apprentissage
Auteur / Autrice : | Thibault Groueix |
Direction : | Renaud Marlet, Mathieu Aubry |
Type : | Thèse de doctorat |
Discipline(s) : | Signal, Image, Automatique |
Date : | Soutenance le 22/10/2020 |
Etablissement(s) : | Paris Est |
Ecole(s) doctorale(s) : | École doctorale Mathématiques, Sciences et Technologies de l'Information et de la Communication |
Partenaire(s) de recherche : | Laboratoire : Laboratoire d'informatique de l'Institut Gaspard Monge (1997-2009) - Laboratoire d'Informatique Gaspard-Monge / LIGM |
Jury : | Président / Présidente : Cordelia Schmid |
Examinateurs / Examinatrices : Renaud Marlet, Mathieu Aubry, Niloy Mitra, Pascal Fua, Matthew P.A. Fisher | |
Rapporteurs / Rapporteuses : Niloy Mitra, Pascal Fua |
Mots clés
Mots clés contrôlés
Mots clés libres
Résumé
L'objectif de cette thèse est de développer des approches d'apprentissage profond pour modéliser et analyser les formes 3D. Les progrès dans ce domaine pourraient démocratiser la création artistique d'actifs 3D, actuellement coûteuse en temps et réservés aux experts du domaine. Nous nous concentrons en particulier sur deux tâches clefs pour la modélisation 3D : la reconstruction à vue unique et la mise en correspondance de formes.Une méthode de reconstruction à vue unique (SVR) prend comme entrée une seule image et prédit le monde physique qui a produit cette image. SVR remonte aux premiers jours de la vision par ordinateur. Étant donné que plusieurs configurations de formes, de textures et d'éclairage peuvent expliquer la même image il faut formuler des hypothèses sur la distribution d'images et de formes 3D pour résoudre l’ambiguïté. Dans cette thèse, nous apprenons ces hypothèses à partir de jeux de données à grande échelle au lieu de les concevoir manuellement. Les méthodes d'apprentissage nous permettent d'effectuer une reconstruction complète et réaliste de l'objet, y compris des parties qui ne sont pas visibles dans l'image d'entrée.La mise en correspondance de forme vise à établir des correspondances entre des objets 3D. Résoudre cette tâche nécessite à la fois une compréhension locale et globale des formes 3D qui est difficile à obtenir explicitement. Au lieu de cela, nous entraînons des réseaux neuronaux sur de grands jeux de données pour capturer ces connaissances implicitement.La mise en correspondance de forme a de nombreuses applications en modélisation 3D telles que le transfert d'attribut, le gréement automatique pour l'animation ou l'édition de maillage.La première contribution technique de cette thèse est une nouvelle représentation paramétrique des surfaces 3D modélisées par les réseaux neuronaux. Le choix de la représentation des données est un aspect critique de tout algorithme de reconstruction 3D. Jusqu'à récemment, la plupart des approches profondes en génération 3D prédisaient des grilles volumétriques de voxel ou des nuages de points, qui sont des représentations discrètes. Au lieu de cela, nous présentons une approche qui prédit une déformation paramétrique de surface, c'est-à-dire une déformation d'un modèle source vers une forme objectif. Pour démontrer les avantages ses avantages, nous utilisons notre nouvelle représentation pour la reconstruction à vue unique. Notre approche, baptisée AtlasNet, est la première approche profonde de reconstruction à vue unique capable de reconstruire des maillages à partir d'images sans s’appuyer sur un post-traitement indépendant, et peut le faire à une résolution arbitraire sans problèmes de mémoire. Une analyse plus détaillée d’AtlasNet révèle qu'il généralise également mieux que les autres approches aux catégories sur lesquelles il n'a pas été entraîné.Notre deuxième contribution est une nouvelle approche de correspondance de forme purement basée sur la reconstruction par des déformations. Nous montrons que la qualité des reconstructions de forme est essentielle pour obtenir de bonnes correspondances, et donc introduisons une optimisation au moment de l'inférence pour affiner les déformations apprises. Pour les humains et d'autres catégories de formes déformables déviant par une quasi-isométrie, notre approche peut tirer parti d'un modèle et d'une régularisation isométrique des déformations. Comme les catégories présentant des variations non isométriques, telles que les chaises, n'ont pas de modèle clair, nous apprenons à déformer n'importe quelle forme en n'importe quelle autre et tirons parti des contraintes de cohérence du cycle pour apprendre des correspondances qui respectent la sémantique des objets. Notre approche de correspondance de forme fonctionne directement sur les nuages de points, est robuste à de nombreux types de perturbations, et surpasse l'état de l'art de 15% sur des scans d'humains réels