Thèse soutenue

Méthodes d’éléments discrets et d’intégration temporelle pour l’élasto-plasticité et la fissuration dynamique

FR  |  
EN
Auteur / Autrice : Frédéric Marazzato
Direction : Alexandre ErnKaram Sab
Type : Thèse de doctorat
Discipline(s) : Mathématiques
Date : Soutenance le 29/05/2020
Etablissement(s) : Paris Est
Ecole(s) doctorale(s) : École doctorale Mathématiques, Sciences et Technologies de l'Information et de la Communication (Champs-sur-Marne, Seine-et-Marne ; 2015-....)
Partenaire(s) de recherche : Laboratoire : Centre d'enseignement et de recherche en mathématiques et calcul scientifique (Champs-sur-Marne, Seine-et-Marne)
Jury : Président / Présidente : Patrick Joly
Examinateurs / Examinatrices : Alexandre Ern, Karam Sab, Yves Renard, Eugenio Oñate, Flaviana Iurlano, Ivan Iordanoff, Jean-Philippe Braeunig
Rapporteurs / Rapporteuses : Yves Renard, Eugenio Oñate

Résumé

FR  |  
EN

Cette thèse propose des contributions aux méthodes éléments discrets (MED) et à l’intégration temporelle explicite avec pour objectif applicatif les calculs de fissuration et de fragmentation pour des matériaux métalliques soumis à des chargements dynamiques. Les MED, qui sont traditionnellement utilisées pour simuler le comportement de matériaux granulaires, sont ré-interprétées à la lumière des méthodes de discrétisation de gradient afin d’être appliquées à la simulation de matériaux continus. Les maillages utilisables avec la MED proposée ont été étendus des maillages de Voronoi à des maillages polyédriques généraux. Les comportements simulables par la méthode ont été étendus de l’élasto-dynamique à l’élasto-plasticité dynamique par l’ajout d’un degré de liberté tensoriel par cellule. De plus, la méthode est robuste par rap-port à la limite incompressible et ses paramètres ne dépendent que des paramètres matériau. Une méthode d’intégration temporelle explicite conservant une pseudo-énergie, même pour des comportements non-linéaires et des pas de temps variables, a également été développée afin d’éviter une dissipation numérique de l’énergie disponible pour la dissipation plastique et la fissuration. Cette méthode a été couplée avec la MED précédente. Enfin, la propagation de fissures de Griffith à travers les facettes du maillage a été intégrée à la MED pour des comportements élastiques linéaires en deux dimensions d’espace. Le taux de restitution d’énergie est calculé pour chaque mode de fissuration à partir des facteurs d’intensités des contraintes qui sont approchés près de la fissure. Enfin, un critère de maximisation de la densité d’énergie élastique sur les facettes liée à la pointe de fissure permet de simuler l’orientation de la propagation