Non-smooth and variational analysis of optimization problems and multi-leader-follower games

par Anton Svensson

Thèse de doctorat en Mathématiques appliquées

Sous la direction de Didier Aussel et de Abderrahim Hantoute.

Soutenue le 21-01-2020

à Perpignan en cotutelle avec l'Universidad de Santiago de Chile , dans le cadre de École doctorale Énergie environnement (Perpignan) , en partenariat avec Laboratoire Procédés, matériaux et énergie solaire (Perpignan) (laboratoire) et de Procédés- Matériaux et Energie Solaire / PROMES (laboratoire) .

  • Titre traduit

    Analyse non-lisse et variationnelle de problèmes d'optimisation et jeux multi-leader-follower


  • Résumé

    Cette thèse, dont le cadre général est l'optimisation, traite de problèmes d'optimisation non-lisse et de problèmes de théorie des jeux. Elle est constituée de quatre parties. Dans la première, nous présentons le contexte et l'introduction. Dans la deuxième partie, nous discutons quelques règles de calcul sous-différentiel dans des espaces généraux, et présentons notamment certaines formules plus fortes que l'état de l'art, autant dans le cas convexe que dans le cas non convexe. L'accent est mis sur les règles de calcul et conditions d'optimalité approchées et "fuzzy", pour lesquelles aucune condition de qualification n'est requise. Dans la troisième partie, nous considérons des jeux bi-niveaux à plusieurs meneurs et plusieurs suiveurs. Après quelques résultats d'existence dans le cas d'un seul meneur optimiste et dans le cas de plusieurs meneurs, nous étendons des résultats existants concernant la relation entre le problème bi-niveau original et sa reformulation obtenue grâce au remplacement des problèmes des suiveurs par la concaténation de leurs conditions d'optimalité (KKT). Finalement, dans la quatrième partie, nous abordons quelques problèmes de quasi-équilibre, qui sont une généralisation des problèmes d'équilibre de Nash et des inégalités quasi-variationnelles. Nous prouvons ainsi de nouveaux résultats d'existence qui permettent de relâcher les hypothèses standard.


  • Résumé

    This thesis is within the framework of optimization and deals with nonsmooth optimization and with some problems of game theory. It is divided into four parts. In the first introductory part, we give the context and some preliminary results. In the second part we discuss about subdifferential calculus rules in general spaces providing of some improved formulas in both the convex and the non-convex cases. Here the focus is on approximate or fuzzy calculus rules and optimality conditions, for which no qualification conditions are required. In the third part, we discuss about the so-called Multi-Leader-Follower Games. We give an existence result for the case of a single optimistic leader and multiple followers, and extend some results concerning the relation between the original problem with the reformulation obtained by replacing the followers' problem by the concatenation of their KKT conditions. Finally, in the fourth part we study quasi-equilibrium problems which are a general formulation for studying Nash equilibrium problems and quasi-variational inequalities. We provide some new existence results that relax some of the standard hypotheses.


Il est disponible au sein de la bibliothèque de l'établissement de soutenance.

Consulter en bibliothèque

La version de soutenance existe

Où se trouve cette thèse\u00a0?

  • Bibliothèque : Université Perpignan Via Domitia. Service commun de la documentation. Section Sciences.
Voir dans le Sudoc, catalogue collectif des bibliothèques de l'enseignement supérieur et de la recherche.