Estimation a posteriori pour la simulation des grandes échelles en mécanique des fluides incompressibles
Auteur / Autrice : | Ghina Nassreddine |
Direction : | Pascal Omnes, Toni Sayah |
Type : | Thèse de doctorat |
Discipline(s) : | Mathematiques |
Date : | Soutenance le 15/12/2020 |
Etablissement(s) : | Paris 13 |
Ecole(s) doctorale(s) : | École doctorale Galilée (Villetaneuse, Seine-Saint-Denis) |
Partenaire(s) de recherche : | Laboratoire : Laboratoire Analyse, géométrie et applications (LAGA) (Villetaneuse, Seine-Saint-Denis) |
Jury : | Président / Présidente : Marion Darbas |
Examinateurs / Examinatrices : Franz Chouly, Emmanuel Creusé, Vanessa Lleras, Patrick Hild |
Mots clés
Résumé
La simulation numérique directe (DNS) à nombre de Reynolds élevé du comportement d’un fluide décrit par les équations de Navier-Stokes est particulièrement coûteuse, voire impossible, puisque les tailles de maille et de pas de temps doivent être adaptées aux plus petites échelles des fluctuations des champs de vitesse et de pression ayant un impact sur la solution. Pour cette raison, on utilise des techniques comme la méthode de simulation des grandes échelles (LES) où l’on n’a pas besoin de résoudre l’intégralité de toutes les échelles, mais où l’effet des plus petites échelles sur les échelles résolues sera modélisé. Dans cette thèse, on s’intéresse au modèle de Smagorinksy, un des modèles les plus simples de LES et parmi les plus utilisés dans les codes de calcul. Il exprime l’effet des petites échelles par un terme de diffusion supplémentaire dont le coefficient de viscosité turbulente est une fonction des échelles résolues. Nous considérons ce modèle pour les équations instationnaires en dimension deux et stationnaires en dimensions deux et trois. On analyse ces problèmes en introduisant les formulations variationnelles équivalentes. Ensuite on introduit les problèmes discrets correspondants en se basant sur la méthode des éléments finis pour la discrétisation en espace et sur le schéma d’Euler pour la discrétisation en temps. On établit une estimation d’erreur a posteriori entre la solution des équations de Navier-Stokes originelles et la solution discrète calculée. Cette estimation ne dépend que de la solution discrète calculée, de la géométrie du maillage et des données du problème ; elle fait apparaître trois types d’indicateurs d’erreur : de discrétisation en espace, de filtrage dû à la méthode LES et de discrétisation en temps dans la cas instationnaire ou de linéarisation dans le cas stationnaire. Enfin, on montre des résultats numériques de validation où l’ensemble est implémenté à l’aide du logiciel FreeFem++