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RÉSUMÉ ÉTENDU EN FRANÇAIS 

Dans la pratique quotidienne de la science de l'ingénieur, il y a un intérêt croissant pour 
développer des stratégies et des méthodes de caractérisation et de modélisation de la 
propagation des incertitudes, de la variabilité et des systèmes aléatoires. En particulier, la 
l'analyse de fiabilité est devenue un outil puissant dans le processus de conception, 
d'optimisation de la maintenance et de la prédiction de la durée de vie des structures. Pour les 
matériaux conçus par l’Homme, actuellement utilisés dans l'industrie, de nombreux efforts sont 
faits pour assurer leurs propriétés finales, et maitriser les incertitudes sur ces propriétés, si bien 
que celles-ci, pour un produit donné sont indiquées en même temps que les propriétés elles-
mêmes. En pratique de l’ingénierie, l'une des façons de prendre en compte ces incertitudes   
consiste à utiliser les règles de conception tels que les Eurocodes, l'ASTM, etc. Par exemple, 
dans diverses approches de conception promues par les Eurocodes, les incertitudes et la 
variabilité des charges et des propriétés des matériaux sont prise en compte via la méthode des 
facteurs de sécurité partiels. 

Cependant, de telles méthodes ne sont pas imposées à la construction souterraine, malgré leur 
application dans d'autres domaines variés de la géotechnique (les Eurocodes 7, le code 
européen de conception géotechnique indiquent explicitement que le domaine de la conception 
souterraine est hors de ses domaines d'application). Cela s'explique en grande partie par la 
situation légèrement différente des ouvrages souterraines par rapport à d'autres types de 
structures. Les sols, et plus souvent les massifs rocheux qui abritent ces ouvrages, 
contrairement aux matériaux artificiels, sont des matériaux géologiques, naturels et 
hétérogènes, produits par des processus de la sédimentation, de la diagenèse et du tectonisme. 
Leur structure interne aléatoire est une combinaison de minéraux constitutifs qui régissent le 
comportement mécanique local en tout point des massifs. Cette organisation spatiale des 
minéraux (et pour cette raison, des propriétés) rend la caractérisation des propriétés des 
géomatériaux plus complexe car les incertitudes épistémiques et aléatoires doivent être 
qualifiées. L'incertitude aléatoire fait référence à la variabilité naturelle du phénomène 
considéré et l'incertitude épistémique à un manque de connaissances. L'incertitude épistémique 
associe tous les paramètres d'entrée de conception géotechnique, tels que le champ de 
contraintes in situ, les paramètres de résistance du massif rocheux, les modules de déformation, 
etc., qui n'ont jamais été connus avec précision auparavant. Mais le manque de connaissances 
ne se limite pas aux incertitudes sur les mesures des propriétés physiques (erreur de mesures et 
incertitudes inhérentes à la métrologie d’une mesure). En particulier, en géomécanique ce 
manque est principalement dû au fait qu’il y aura toujours un nombre insuffisant de données 
pour comprendre et caractériser pleinement les phénomènes en jeu, entre autres (et peut-être 
surtout) en raison de limitations physiques d’avoir plus qu’un échantillon dans un point d’un 
massif. En outre, les résultats des analyses déterministes peuvent manquer les mécanismes 
exacts de défaillance et ignorer la réponse précise de la partie la plus faible de la roche au sens 
de ses propriétés de caractère aléatoire. De plus, des échantillons provenant d'essais au 
laboratoire ou in-situ sont plus ou moins perturbés et des erreurs sont introduites dans la mesure 
et l'estimation de la résistance et de la déformation caractéristiques des roches. 

Bien que toutes ces caractéristiques particulières des géomatériaux et des massifs rocheux 
expliquent à elles seules les besoins d'approches particulières pour évaluer et réduire les 
incertitudes dans la conception des ouvrages souterraine, elles deviennent plus évidentes 
lorsque la question est posée pour le ouvrages souterrains de stockage des déchets radioactives. 
Le stockage souterrain des déchets radioactifs étant une option préférentielle dans de nombreux 
pays, les questions d'évaluation des incertitudes liées à de telles structures suscitent une 
attention croissante. Outre les sources d'incertitudes mentionnées ci-dessus, inhérentes à toutes 
les constructions souterraines, le couplage multiphysique et le comportement à long terme des 
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massifs rocheux ainsi que les incertitudes liées au comportement des structures dans de telles 
conditions sont peut-être les points centraux de la conception des installations de stockage et 
représente un défi pour les chercheurs et les ingénieurs. D'une part, les études spatiales 
(quelques dizaines de kilomètres carrés) et temporelles (quelques millions d'années) sur le 
domaine du stockage ne sont comparables à aucune construction souterraine construite jusqu'à 
présent. En revanche, la complexité de l'interaction de nombreux phénomènes de nature diverse 
(mécanique, chimique, hydraulique, thermique, radioactive) et cinétique n'est jamais vue 
auparavant dans un seul problème. Et pourtant, si l'on considère un seul problème physique 
(disons mécanique), le problème se ramifie dans d'autres problèmes et mécanismes qui 
pourraient être actifs à certains moments de la vie de l'excavation souterraine mais qui 
impactent le comportement les prochaines phases de vie des ouvrages souterrains. Par exemple, 
le comportement instantané irréversible des roches environnantes contrôlera l'amorçage et la 
croissance de la zone endommagée d’excavation autour d'une cavité. Ceci, à son tour, aura un 
impact sur la distribution des contraintes et des déformations ainsi que sur le champ 
hydraulique autour de la cavité pour, in fine, avoir un impact sur le comportement à long terme 
de l'excavation. Il est intuitivement clair que toute incertitude sur le comportement irréversible 
de la roche à tout moment de la vie de l'excavation se propagera aux incertitudes sur les phases 
futures de la vie de l'excavation. 

Les travaux de cette thèse font partie de nombreux autres travaux réalisés par la communauté 
scientifique concernant le projet du centre de stockage profond de déchets radioactifs en France 
baptisé par Cigéo, qui sera implémenté dans la couche de l’argilite du Callovo-Oxfordien 
(COx) aux départements Meuse/Haute-Marne, s’il est autorisé.   

Nous n'avons pas l'ambition ici de traiter toutes les sources d'incertitudes dans un si grand projet 
et même pas toutes celles liées à toute sorte d’excavations souterraines. Notre principale 
préoccupation dans ce travail est la propagation des incertitudes du comportement mécanique 
à long terme des massifs rocheux sur la réponse d'une ouvrage souterraine typique. 

Les résultats publiés des nombreuses études effectués ces dernières décades ont révélé une 
incertitude des valeurs des propriétés mécaniques instantanées de l'argilite du Callovo 
Oxfordien (COx) et la variabilité de ces propriétés en fonction de la profondeur. La même 
variabilité est également observée sur le comportement à long terme de la roche qui semble 
être activée à faible contrainte dévia torique. Ces variations des propriétés mécaniques suivent 
la variation de la composition minéralogique et de l'anisotropie structurale. Par exemple, les 
levés sismiques des projets de l'Andra montrent également des variations verticales et latérales 
des propriétés de l'argilite COx. En particulier, ces incertitudes ont un impact sur l’amorçage 
et l'extension de la zone fracturée due à l’excavation. 

La particularité des travaux présentés ici, par rapport aux analyses de fiabilité généralement 
effectuées sur la mécanique des structures, réside principalement dans la prise en compte du 
comportement dépendant du temps des roches conduisant à une probabilité de rupture en 
fonction du temps. 

Après une analyse des approches alternatives existant qui pourrait être utilisées d'une part pour 
l'évaluation des incertitudes liées aux propriétés mécaniques de l'argilite COx et à leur 
variabilité spatiale et d'autre part, pour quantifier leurs impacts sur la réponse d'une structure 
de stockage souterraine typique, cette thèse propose une méthodologie optimisée pour les 
analyses de fiabilité d’un ouvrage souterrain. Cette approche est tout d'abord utilisée pour 
évaluer l'impact des incertitudes des paramètres mécaniques du COx sur la probabilité de 
dépassement de la contrainte admissible d’un revêtement d'une galerie. Ensuite, l'impact de la 
variabilité de ces paramètres sur la probabilité de dépassement de la contrainte admissible à 
long terme est discuté. Pour la variabilité spatiale, les champs aléatoires gaussiens non corrélés 
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et corrélés sont traités. Particulièrement, la méthodologie développée dans cette étude peut être 
suivie pour traiter l'incertitude dans de nombreux domaines, tels que l'analyse des risques 
naturels (par exemple, les tremblements de terre, les inondations) et la prise de décision 
concernant les risques environnementaux. Nous utilisons également le Code-Aster basé sur des 
scripts Python pour étudier les modèles d'hétérogénéité des matériaux. 

La thèse est organisée en quatre chapitres. 

Le premier chapitre présente le contexte et l’état de l’art de l'analyse fiabiliste en géotechnique, 
en particulier pour les ouvrages souterrains dans des massifs rocheux, en tenant compte de 
l'incertitude et de la variabilité de leurs propriétés mécaniques. Dans ce chapitre 
bibliographique on réalise une revue de quelques concepts de base de l'analyse de fiabilité 
utilisés plus tard. Les incertitudes géotechniques sont généralement classées comme 
épistémiques ou aléatoires. La première incertitude (c'est-à-dire les incertitudes épistémiques) 
concerne principalement l'erreur de mesure et l'incertitude de transformation. L'erreur de 
mesure associée à la rareté des données (qualité, quantité, spécification) provient des 
différentes étapes de l'échantillonnage, de la préparation, du transport et de la procédure de test, 
liées au manque de connaissances ou de données sur le phénomène observé qui en résulte. Cette 
source d'incertitude peut être réduite à une valeur minimale en considérant un plus grand 
nombre d'échantillons ; ce minimum dépende des erreurs systématiques impliquées dans 
l'ensemble du processus. L'incertitude de transformation est introduite lorsque les mesures sur 
le terrain ou au laboratoire sont transformées en propriétés du sol de référence à l'aide de 
modèles de corrélation empiriques ou autres. Cette incertitude peut être réduite en considérant 
des modèles empiriques ou mathématiques plus raffinés.  

L'autre source d'incertitude (c'est-à-dire l'incertitude aléatoire) est connue sous le nom 
d'incertitude irréductible ou inhérente. La variabilité inhérente au sol qui résulte principalement 
de processus géologiques naturels est de nature aléatoire. Ce type d'incertitude est associé au 
caractère aléatoire "inhérent" des processus naturels, qui se manifeste par la variabilité dans le 
temps pour les phénomènes qui se produisent en un seul endroit (variabilité temporelle), ou par 
la variabilité dans l'espace pour les phénomènes qui se produisent en différents endroits mais à 
un seul point dans le temps (variabilité spatiale), ou par variabilité à la fois dans le temps et 
dans l'espace. Pour prendre en compte l'effet de variabilité spatiale des propriétés des 
géomatériaux, le concept de champ aléatoire est largement utilisé. Selon ce concept, à n'importe 
quel endroit de la formation, les propriétés des géomatériaux sont des variables aléatoires 
caractérisées par des distributions de probabilité et corrélées avec celles des zones adjacentes. 
Cette corrélation des propriétés entre les zones adjacents (appelée également la fonction de 
corrélation) est caractérisée par les longueurs de corrélation qui indiquent la plage de 
fluctuation du paramètre ou décrivent la variabilité spatiale d'une propriété de géomatériaux 
dans les directions horizontales et verticale. Deux points dans l'espace séparés par une distance 
supérieure à la longueur de corrélation sont largement non corrélés. La plus petite longueur de 
corrélation, la plus rapide la fluctuation du paramètre de sol est ; sinon, le paramètre est 
relativement stable dans une large plage.  

L'analyse de fiabilité consiste à quantifier la propagation des incertitudes sur la probabilité que 
la réponse de la structure dépasse un critère de défaillance défini mathématiquement par la 
fonction d'état limite LSF (Limit State Function ou fonction de performance). Dans les 
problèmes de fiabilité, les variables d'entrée incertaines, appelées variables aléatoires, et leurs 
espaces sont divisés en régions de défaillance et de sécurité limitées par le LSF. Le concept de 
LSF est générique et peut être transféré à une grande famille de problèmes. Il existe également 
différents types de fonctions de performance. Dans le contexte des ouvrages souterraines, les 
fonctions de performance bien connues sont généralement liées à la convergence des tunnels, 
à la capacité de support et au rayon plastique. La quantification de la propagation de 



   ix 

 

l'incertitude pour estimer la probabilité de défaillance est le principal objectif de l'analyse de la 
fiabilité structurelle. Diverses méthodes d'analyse de fiabilité ont été développées et peuvent 
être grossièrement classées en trois groupes principaux : méthodes de fiabilité locales, 
méthodes d'échantillonnage et méthodes de fiabilité globale. Les méthodes de fiabilité locales, 
telles que FORM et SORM, sont bien connues dans les approches analytiques pour approximer 
la surface de l'état limite autour du point de défaillance le plus probable. Cependant, ces 
méthodes ne sont pas recommandées pour les fonctions hautement non linéaires et non 
différenciables car elles doivent calculer le gradient de la LSF. Dans les méthodes de fiabilité 
d'échantillonnage, la simulation de Monte Carlo (MCS) est peut-être la méthode le plus connue 
pour estimer la probabilité de défaillance en fonction du nombre de la valeur négative de la 
fonction de performance sur le nombre total d'essais. Contrairement aux méthodes de fiabilité 
locales, MCS est une méthode tout à fait robuste et universelle, elle pourrait donc être utilisée 
pour vérifier d'autres méthodes de fiabilité pour estimer la probabilité de défaillance des 
structures. Bien qu'il soit robuste et précis, MCS est une méthode généralement couteuse en 
temps de calcul en raison de l'exigence d'un grand nombre de réalisations. Cela est 
particulièrement vrai lorsqu’une réalisation de MCS est faite via l’utilisation des méthodes 
d'éléments finis ou différences finies. Plus la probabilité de défaillance est faible, plus la taille 
de l'échantillon est grande dans la méthode de Monte Carlo pour garantir la même précision de 
calcul (c'est-à-dire que l’évaluation des faibles probabilités avec MCS est peu efficace). Ainsi, 
des approches probabilistes plus avancées nécessitant un nombre d'appels limité au modèle 
mécanique sont nécessaires. Ces approches peuvent surmonter les inconvénients des méthodes 
d’échantillonnage MCS et pourraient mieux s’adapter à la non-linéarité élevée et la réponse 
chronophage d'un modèle original par un métamodèle (c'est-à-dire une approximation 
fonctionnelle ou une équation analytique). Par conséquent, ces approches permettent de réduire 
significativement le nombre d'appels au modèle mécanique coûteux en calcul, comme dans la 
méthodologie MCS brute. Le principe de la méta-modélisation consiste à proposer une fonction 
purement mathématique, qui remplace le modèle numérique souvent coûteux représentant le 
comportement du système ou de la structure étudiée. L'idée principale du métamodèle est 
d'accélérer le calcul et d'améliorer la précision de l'analyse de fiabilité, en particulier dans les 
problèmes plus complexes et spécifiques (par exemple, non linéaire élevé, la valeur minuscule 
de la probabilité de défaillance, etc.). Un métamodèle est calibré à partir d'un ensemble de 
points, appelé plan d’expérience (DoE), pour lesquels le modèle numérique a été évalué. Le 
principal défi d'une telle analyse de fiabilité basée sur un substitut réside dans la façon de 
construire un métamodèle adéquat pour approximer le LSF sans gaspillage d'échantillons et 
d'appels de fonction. Parmi divers métamodèles (par exemple, le Krigeage, les fonctions de 
base radiale (RBF), le réseau de neurones artificiels (ANN), la machine à vecteur de support 
(SVM), le chaos polynomial, ...), le métamodèle de Krigeage a l’avantage de préserver la 
variance de modèle de base et semble mieux adapté à la problématique étudiée ici. De plus, sa 
flexibilité dans l'interpolation des points d'échantillonnage permet de combiner cette technique 
avec la méthode d'échantillonnage classique, comme le MCS, pour mesurer la probabilité de 
défaillance. Nous avons adopté pour ces travaux une version bien connue de cette combinaison 
sous le nom de la méthode AK-MCS, avec une extension / amélioration récente. Bien que la 
précision et l'efficacité de la méthode AK-MCS aient été intensivement démontrées dans de 
nombreux projets de conception structurelle, elle est rarement appliquée en géotechnique, en 
particulier dans le domaine de la mécanique des roches. Cette étude bibliographique a 
également révélé qu’une grande partie des études fiabilistes géotechniques concernent les 
structures géotechniques construites dans les sols. Seuls certains chercheurs ont effectué un 
calcul probabiliste et utilisé des outils de conception pour les supports de tunnel dans le massif 
rocheux. De plus, toutes ces études sur la stabilité des ouvrages souterrains profonds ont traité 
de l'impact de l'incertitude et / ou de la variabilité des propriétés de la roche hôte sur la stabilité 
à court terme en considérant uniquement le comportement instantané des roches hôtes. De ce 
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fait  les résultats sont d’une pertinence limitée pour la conception des ouvrages de stockage car 
une large gamme de roches présente une réponse dépendant du temps important, qui dans 
certains cas peut contribuer à plus de 70% de la convergence totale. Du point de vue 
déterministe, la prise en compte de l'effet dépendant du temps sur l'analyse et la conception du 
tunnel peut être réalisée en adoptant une loi de comportement mécanique dépendante du temps 
approprié du massif rocheux. De nombreux modèles constitutifs, viscoélastiques (linéaire ou 
non linéaire) ou élasto-viscoplastique, ont été présentés dans la littérature. Ils visent à simuler 
avec précision les résultats observés en laboratoire (généralement à travers les tests de fluage 
ou de relaxation uniaxial et / ou triaxial), ou la mesure de convergence de tunnel réalisée in 
situ. Des modèles de plus en plus sophistiqués permettant de rendre compte non seulement du 
phénomène élasto-viscoplastique mais aussi de l'effet anisotrope ont été présentés dans la 
littérature. Si ces modèles correspondent assez bien à différentes observations, la détermination 
de nombreux paramètres impliqués dans les modèles présente un défi considérable si on tient 
compte des résultats expérimentaux limités disponibles. Ce défi est plus important encore dans 
le contexte de l'analyse de fiabilité lorsque la quantification de l'incertitude de l’ensemble des 
paramètres des modèles complexe devint très difficile, voire impossible. Par conséquent, pour 
l'analyse de fiabilité dépendante du temps, un modèle simple de roches, capable de décrire les 
principales caractéristiques du comportement différé, mais impliquant un nombre réduit de 
paramètres est préférable. En effet, la prise en compte de l'effet du temps sur l'analyse de 
fiabilité du tunnel dans la masse rocheuse n'a pas encore été menée dans la littérature. La 
difficulté de ce type de problème est multiple. Premièrement, comme mentionné ci-dessus, la 
quantification de l’incertitude des paramètres est difficile en raison des résultats expérimentaux 
limités. Deuxièmement, la durée du fluage-test en laboratoire (quelques heures à plusieurs 
mois) ou la mesure in situ (plusieurs mois voire plusieurs années) est très courte par rapport à 
la durée de vie du tunnel (conçu parfois pour plusieurs dizaines voire centaine d’années). Ainsi, 
la quantification de l'incertitude des propriétés mécaniques en fonction du temps de la masse 
rocheuse à partir de ces mesures, qui sera utilisée pour extrapoler le résultat à très long terme, 
doit contribuer à une incertitude (encore plus significative). 

Dans le deuxième chapitre, l'analyse de fiabilité d'un tunnel profond creusé dans une roche 
viscoélastique linéaire a été effectuée. Le tunnel profond étudié se trouve dans une roche 
viscoélastique homogène, isotrope et incompressible soumise à une contrainte hydrostatique à 
l’infini. Le tunnel est soutenu par un système de deux revêtements élastiques installés 
successivement. L'excavation séquentielle et l'effet de l'avancement du front de taille du tunnel 
sur la section du tunnel considérée sont également pris en compte dans cette étude. Le 
comportement en fonction du temps du massif est décrit par le modèle viscoélastique de 
Burgers schématisé par une connexion en série d'un élément Kelvin et d'un élément Maxwell. 
La procédure pour dériver la solution analytique du comportement du tunnel est basée sur la 
solution de l'équation intégrale. La validation de la solution développée se fait par comparaison 
avec les résultats obtenus à partir de la simulation numérique dans le Code Aster. Une étude 
paramétrique est ensuite menée dans le contexte d'un problème déterministe pour mettre en 
évidence l'effet de différents paramètres sur la réponse du tunnel. L'accent est mis d'une part 
sur la vitesse d'avancement du tunnel, le temps d'installation et l'épaisseur des revêtements et, 
d'autre part, sur les propriétés viscoélastiques du massif rocheux (caractérisées par quatre 
paramètres du modèle Burger). Ensuite, en utilisant les valeurs moyennes des propriétés 
viscoélastiques du massif, on étudie tout d'abord la dépendance de la réponse du tunnel de la 
vitesse d'avancement du tunnel, les temps d'installation de soutènement et de revêtement et 
l'épaisseur des revêtements. Les résultats montrent qu'une excavation plus rapide conduit à une 
convergence plus prononcée du tunnel dans le temps. Ce résultat est attendu : un taux 
d'avancement significatif induit une diminution rapide du confinement et donc du déplacement 
radial à la surface du tunnel. En termes de contrainte dans les revêtements, la mise en place 
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plutôt des éléments de soutènement induit une augmentation de ces contraintes surtout dans le 
revêtement intérieur. En plus, la convergence du tunnel et des contraintes de compression dans 
les revêtements diminuent si une épaisseur plus élevée de chaque revêtement est appliquée. En 
ce qui concerne l'influence des propriétés du massif, le coefficient de viscosité associé à 
l’amortisseur de Maxwell ne présente que son effet à long terme, comme on peut s'y attendre, 
lorsque la valeur plus élevée de ce paramètre implique une diminution de la convergence du 
tunnel et la contrainte équivalente dans les revêtements. L'effet du coefficient de viscosité 
associé à l’amortisseur de Kelvin semble faible en régime transitoire (à court terme) et à long 
terme, la contribution de ce paramètre sur le comportement du tunnel et de ses supports n'est 
pas significative. Le coefficient associé au ressort de Maxwell, le paramètre caractérise le 
comportement instantané du massif, présente un effet remarquable sur la convergence du 
tunnel. Une augmentation de ce paramètre provoque dans la roche une déformation initiale plus 
faible et, par conséquent, une convergence totale plus faible à la surface du tunnel. Les résultats 
numériques montrent également une variation de la contrainte équivalente dans les revêtements 
en fonction de ce module élastique associé au ressort de Maxwell. Une valeur plus élevée de 
ce dernier paramètre peut introduire une augmentation de la contrainte de compression, 
notamment dans le deuxième revêtement. Parmi les quatre paramètres du modèle Burger, il 
semble que le module élastique associé au ressort de Kelvin présente l'effet le plus significatif : 
une variation de ce dernier paramètre peut générer dans le massif ainsi que dans les revêtements 
une perturbation notable en termes de déplacement et de contrainte. En effet, plus la valeur de 
ce paramètre est élevée, plus la convergence et la contrainte équivalente dans les deux 
revêtements sont faibles. L'effet des paramètres de Burgers avec leur incertitude a ensuite été 
étudié dans l'analyse de fiabilité dépendante du temps. Deux critères d’évaluation sont 
considérés : le premier correspond à une convergence du tunnel dépassant une certaine valeur 
tandis que le second présente un critère en contrainte et correspond le cas où l'état de contrainte 
dépasse une certaine valeur limite de contrainte admissible des matériaux constitutifs. Grâce à 
la solution analytique développée, la simulation MCS a été utilisée pour évaluer la probabilité 
de dépassement de seuil de la structure. Cette estimation est utilisée comme solution de 
référence pour étudier la précision des nouvelles techniques de méta modélisation de Krigeage 
adoptée par la suite. L'analyse de fiabilité dépendante du temps par MCS montre que la 
probabilité de dépassement du critère augmente rapidement au cours des premières années 
avant d'atteindre un taux plus faible à l'étape suivante. Ce résultat, comme attendu, est la 
conséquence du comportement monotone de la convergence des tunnels dans le temps. En 
fonction de la vitesse d'avancement du tunnel, des temps d'installation et de l'épaisseur des 
revêtements, la forte variation de la probabilité de dépassement à chaque instant a été 
remarquée. Concrètement, correspondant à une excavation rapide du tunnel, les résultats 
présentent une probabilité de dépassement plus élevée. De manière générale, une augmentation 
d'épaisseur de chaque revêtement permet de réduire la probabilité de dépassement du 
déplacement radial au niveau de la paroi du tunnel. On peut également observer qu'une vitesse 
d'excavation importante du tunnel entraîne une probabilité de dépassement de critère choisi 
plus élevée dans le second élément de support du tunnel. Par ailleurs, lorsque le premier 
revêtement est posé immédiatement après l'excavation (cas du béton projeté très souvent utilisé 
en pratique) on obtient la probabilité maximale de dépassement du critère dans cet élément. 
Néanmoins, pour une vitesse d'excavation choisie, une installation tôt de chaque revêtement 
augmente sa probabilité de dépassement des valeurs limites. Cette probabilité est plus faible 
dans le premier élément de support lorsque le deuxième revêtement est mis en place le plus tôt 
possible après l'installation du premier. Cependant, il génère dans ce second revêtement une 
probabilité de dépassement de seuil plus importante. Les applications numériques montrent 
que, une variation modérée des épaisseurs des revêtements peut générer un changement 
significatif de cette probabilité dans chaque élément de support. Cette forte diminution de la 
probabilité est compatible avec une réduction notable de la contrainte en compression dans 
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deux revêtements. En considérant les valeurs admissibles plus faibles de la contrainte de 
compression dans chaque revêtement, nous notons comme attendu une probabilité plus élevée 
(pour l’épaisseurs des revêtement fixée). Grâce à ces résultats de l'analyse de fiabilité de MCS, 
la précision et l'efficacité du métamodèle Krigeage choisi ont été vérifiées. Une modification 
de la méthode bien connue AK-MCS est proposée. Cette modification, consiste à faire un choix 
optimal les nouveaux échantillons d'apprentissage améliorant et accélérant la procédure de 
calcul de la probabilité de dépassement avec un nombre d’échantillon plus petite du DoE 
(indiquant ainsi l'efficacité de la fonction d'apprentissage). Dans ce travail, la fonction 
d'apprentissage U modifiée est proposée pour sélectionner un nouveau point d'apprentissage 
approprié qui vérifie deux conditions : le nouveau point sera près de la surface limite et loin 
des points d'apprentissage existant du DoE. Ainsi, à la différence de la méthode AK-MCS 
initiale, parmi les échantillons candidats on ne choisit pas forcément celui dont la valeur U est 
la plus basse. Au lieu de cela, la fonction d'apprentissage U modifiée vise à trouver, parmi les 
points les plus proches de l'état limite, le nouveau point d'entraînement qui est suffisamment 
éloigné des points d'entraînement existants du DoE actuel en vérifiant la contrainte condition 
de distance minimale. Cette distance est calculée comme la distance minimale entre les 
hyperparamètres du métamodel entre l’itération précédent et l’itération actuelle. Cette distance 
diminue avec l’augmentation du nombre des itérations. Une valeur élevée de ce paramètre de 
distance aux premières itérations permet de rechercher le nouveau point d'apprentissage dans 
l'espace des variables d'entrée dans un domaine suffisamment large, permettant ainsi d’éviter 
des valeurs minimisant la fonction U et qui de ce fait n’ont donc qu’un effet mineur sur la 
variation du métamodèle de Krigeage. La validation et l'amélioration significative de cette 
méthode AK-MCS modifié ont été démontrées dans deux exemples : d’abord dans un problème 
académique puis dans le cas d'un tunnel creusé dans la roche viscoélastique linéaire de type 
Burger. Nos vérifications numériques ont également mis en évidence l'avantage d'utiliser un 
sous-ensemble de nouveaux points pour enrichir le DoE aidant à réduire le nombre d'itérations 
pour atteindre la convergence de calcul de probabilité de dépassement. Ce fait est utile pour les 
autres études des chapitres suivants où l'évaluation de la fonction de performance doit être 
effectuée numériquement avec un calcul parallèle disponible. 

Dans le troisième chapitre, la méthode AK-MCS modifiée a été appliquée pour étudier la 
stabilité à long terme d'un revêtement d’une alvéole profonde dans le contexte du stockage des 
déchets radioactifs dans l'argilite du Callovo Oxfordien (COx). Dans ce contexte, la stabilité 
du revêtement en béton de l’alvéole pendant la période d'exploitation d'environ 100 ans est 
cruciale pour assurer la fonctionnalité du système mécanique à l'intérieur de la galerie. Grâce 
à ses propriétés favorables (faible conductivité hydraulique, faible diffusion moléculaire, forte 
capacité de rétention des radionucléides), la roche COx est considérée comme une formation 
géologique potentielle pour un stockage profond des déchets radioactifs en France. Pour mieux 
comprendre le comportement de cette roche argileuse, des programmes de recherche intensifs 
ont été menés combinant des essais au laboratoire, des observations in-situ et des simulations 
numériques. Parallèlement à de nombreux programmes d'essais au laboratoire 
(uniaxial/triaxial, fluage et relaxation), des observations in situ ont été réalisées pour 
caractériser le comportement mécanique et hydromécanique à court et long terme des roches 
COx. Depuis 2000, l'Agence nationale de gestion des déchets radioactifs (Andra) réalise des 
études dans un Laboratoire de Recherche Souterrain (URL) à Bure (à près de 300 km à l'Est de 
Paris) des départements de la Meuse et de la Haute Marne (M/HM). À l'URL M/HM, diverses 
expériences scientifiques et technologiques ont été menées pour les propriétés/comportements 
le la roche hôte COx, ainsi que démontrer la faisabilité de la construction/opération d’un 
stockage profond de déchet radioactive. En particuler, la réponse hydromécanique de la roche 
COx, vis-à-vis des excavations et des charges de nature différente est exhaustivement étudiée. 
Les résultats obtenus au cours de ces programmes expérimentaux ont fourni d'énormes 
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connaissances sur le comportement à court et à long terme de l'argilite COx et l'impact de 
différents types de support sur le comportement des galeries. Du point de vue mécanique, 
divers essais de laboratoire, confirmés et complétés par les mesures in situ, ont montré un 
comportement complexe du COx à court et à long terme. Le comportement à court terme de 
cette roche hôte semble être prédominé par les mécanismes élastoplastiques et 
d'endommagement tandis que le fluage est plus répandu à long terme. Les résultats des essais 
de fluage au laboratoire mettent en évidence une phase de fluage transitoire dans la première 
étape, qui est suivie d'une deuxième phase asymptotique à un taux de déformation constant. En 
particulier, il est également indiqué que plus de 80% de la convergence des galeries observée 
a été atteinte au cours des 100 premiers jours et que les taux de convergence diminuent avec le 
temps. De plus, la surveillance des revêtements des galeries expérimentales confirme les effets 
significatifs du matériau compressible, qui peut être utilisé pour séparer le revêtement en béton 
de l'argilite COx (c'est-à-dire que le matériau agit comme revêtement extérieur dans le système 
de support de galerie). Ce matériau compressible peut être composé de coulis compressible ou 
d'une couche compressible à l'arrière du revêtement. La raison principale de l'utilisation de ce 
matériau compressible (avec une compressibilité de 30% à 80% du volume initial) est qu’il 
permet d'absorber la convergence dans le temps de la roche hôte et de réduire ainsi 
considérablement la contrainte radiale transmise au revêtement intérieur en béton. Les objectifs 
dans cette étude sont de quantifier l'effet de l'incertitude des propriétés du COx et de l’impact 
du matériau compressible sur la stabilité à long terme du revêtement en béton d’une galerie 
circulaire. Bien que des mécanismes de couplage complexes (tels que les modèles thermo-
hydromécaniques couplés et le mécanisme d'endommagement) puissent régir la réponse en 
fonction du temps des ouvrages de stockage de déchets nucléaires, cette étude est limitée au 
seul le comportement mécanique de la roche. Conformément aux choix des galeries de 
stockage in situ, nous considérons la galerie de notre étude orientée parallèlement à la direction 
de la contrainte horizontale principale. Pour simuler le comportement mécanique de cette 
galerie, on adopte un modèle de déformation plane avec une galerie de section circulaire de 
rayon de 5.05 m et une dimension totale du modèle de de 55 m de chaque côté.  Sur les 
frontières externes du modèle là contrainte in situ (isotrope dans ce cas et égale à 12.5 MPa) 
est imposée. Cette contrainte isotrope est prise de manière similaire aux contraintes principales 
suivant la direction verticale et celle de la contrainte mineure horizontale. La galerie considérée 
est supportée par un revêtement en béton C60/75 qui est séparé du massif par une couche 
compressible. Trois modèles constitutifs différents sont traités, qui sont respectivement un 
modèle viscoplastique pour la roche hôte, un modèle élastique non linéaire pour le revêtement 
compressible et un comportement élastique linéaire pour le revêtement en béton. Le modèle 
viscoplastique classique de Lemaitre est choisi pour caractériser le comportement à long terme 
de la roche hôte. Le choix de ce modèle simple est justifié par sa capacité à capter le 
comportement temporel des roches COx via un nombre limité de paramètres à calibrer, ce qui 
facilite considérablement le processus de quantification de l'incertitude à partir des essais de 
fluage au laboratoire. Le comportement du matériau compressible du revêtement extérieur est 
modélisé par un modèle élastique tri-linéaire avec le module élastique qui varie en fonction de 
la déformation volumétrique. Comme première tentative de quantification de l'incertitude des 
propriétés mécaniques à long terme de l'argilite du COx, dans cette étude, nous utilisons les 
données de sept essais de fluage triaxiaux correspondant à sept contraintes déviatoriques 
appliquées. L'analyse inverse pour déterminer les paramètres du modèle Lemaitre est réalisée 
en ajustant les données d'au moins deux tests de fluage sous deux contraintes déviatoriques 
différentes. Au total, l'analyse statistique des résultats obtenus est réalisée avec 88 échantillons 
générés à partir d'au moins deux essais. Les applications numériques ont été réalisées à la fois 
pour l'analyse déterministe et la fiabilité. En particulier, l'analyse de fiabilité basée sur le 
métamodèle de Krigeage vise à évaluer la probabilité de dépassement de la contrainte 
admissible dans le revêtement en béton de la galerie à 100 ans. Un sous-ensemble de quatre 
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échantillons enrichis à chaque itération au cours du processus itératif est choisi grâce à la 
possibilité d'utiliser des calculs parallèles dans Code Aster. Les résultats numériques montrent 
une diminution, comme prévu, de la probabilité de dépassement de la contrainte admissible en 
revêtement en béton lorsque cette valeur limite augmente. Pour une valeur fixée de 
compressibilité de la couche compressible (c'est-à-dire la valeur limite de déformation 
volumique entre le deuxième et la troisième branche élastique du modèle tri-linéaire) du 
revêtement compressible, la probabilité de dépassement de la contrainte admissible du 
revêtement en béton varie considérablement lorsque l'épaisseur du système de support varie. 
L’effet de la variation de l'épaisseur du revêtement intérieur est même plus remarquable. Le 
taux de déconfinement au moment de l'installation des revêtements peut également présenter 
un effet important sur la probabilité de dépassement des valeurs limites du support en béton. 
La stabilité à long terme du revêtement en béton est plus élevée, lorsque la compressibilité dans 
la première couche de support augmente. Suite aux résultats obtenus, on observe une faible 
probabilité de dépassement de la contrainte admissible dans le revêtement de la galerie en 
adoptant une épaisseur de 0.2(m) dans la couche compressible qui recouvre le support en béton 
final de 0.5(m) d'épaisseur. La probabilité est inférieure à 1% lorsque la contrainte admissible 
du béton est supérieure à 26 MPa. Ces résultats numériques confirment l'effet évident et 
l'avantage très significatif du matériau compressible pour assurer la stabilité de l’élément de 
support en béton de la galerie ainsi que démontrer la robustesse du dimensionnement actuel de 
l’alvéole considéré du projet Cigéo. 

Le dernier chapitre de la thèse est dédiée à l’étude des incertitudes liées à la variabilité spatiale 
(incertitude aléatoire) des paramètres du comportement à long terme du COx. Ce type 
d’incertitude est généralement représenté par des champs aléatoires. Mathématiquement, ce 
champ aléatoire peut s’exprimer sous la forme d’une fonction de corrélation (telle que la 
fonction de Markovien ou de Gaussienne) avec un paramètre caractéristique essentiel, la 
longueur de corrélation spatiale. Pour la modélisation numérique (c'est-à-dire l'évaluation 
directe de la fonction de performance), ce champ aléatoire doit être discrétisé par une technique 
appropriée. Après la discrétisation de tous les champs aléatoires, l'évaluation probabiliste peut 
être effectuée comme un problème d'incertitude abordé dans les chapitres précédents. 
Néanmoins, l'augmentation significative du nombre de variables aléatoires après la 
discrétisation de ces champs aléatoires entraîne une difficulté prononcée dans la construction 
du métamodèle puisque la demande de calcul augmente de façon exponentielle à mesure que 
le nombre de variables augmente (problème appelé curse of dimensionality). La résolution du 
problème de grande dimension est toujours un sujet de recherche en cours dans la littérature et 
très souvent des approches de réduction de modèles sont entreprises. Un outil intéressant appelé 
représentation de modèle à grande dimension (High-Dimensional Model Representation 
HDMR) a reçu beaucoup d'attention au cours de ces deux dernières décennies. Dans cette 
méthode, une procédure de projection systématique entre les entrées et les sorties est prescrite 
pour révéler la hiérarchie des corrélations entre les variables d'entrée tandis qu'en réalité, pour 
chaque système physique, seules des corrélations d'ordre relativement faible des variables 
d'entrée affectent significativement la sortie. Cette propriété permet d'exprimer le HDMR en 
seulement quelques niveaux hiérarchiques pour représenter le système physique avec une 
précision satisfaisante. Chaque niveau hiérarchique de HDMR vise à appliquer un opérateur de 
projection approprié à la fonction de sortie. Entre les deux HDMR bien connus : l'ANOVA 
(Analyse de variance) -HDMR et le Cut-HDMR, ce dernier a été choisi dans les travaux du 
quatrième chapitre de cette thèse.  L'effet de la variabilité spatiale des propriétés de l’argilite 
du COx sur la stabilité à long terme du support de la galerie a été étudié en utilisant la méthode 
AK-MCS modifiée ou la méthode Cut-HDMR en combinaison avec le métamodèle de 
Krigeage (notée ici AK-HDMR). Les hypothèses adoptées dans le chapitre précédent ont été 
retenue dans ces études, à ceci près que la variabilité spatiale des propriétés de la roche a été 
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prise en compte, ce qui signifie que le massif environnant du tunnel est hétérogène. Chacun 
des quatre paramètres du modèle Lemaitre, décrivant le comportement dépendant du temps de 
l'argilite du COx, est décrit par un champ aléatoire éventuellement corrélé avec les champs 
aléatoires des autres paramètres Chaque champ aléatoire est caractérisé par une longueur de 
corrélation spatiale appropriée qui doit être établie par des caractérisation spatiale de ces 
paramètres. Néanmoins, dans le but de vérifier l’efficacité de la méthodologie développée et 
du fait que toutes les données concernant la longueur de corrélation des propriétés mécaniques 
de la roche COx ne sont disponibles, dans ces études nous considérons que tous les champs 
aléatoires ont la même valeur de longueur de corrélation. La méthode bien connue Expansion 
Optimal Linear Estimation (EOLE) a été adaptée pour discrétiser les champs aléatoires et 
étendue pour s'attaquer à leur relation de corrélation (c'est-à-dire la discrétisation des champs 
aléatoires intercorrélés). Cette procédure de discrétisation présente une étape nécessaire pour 
l'évaluation directe (c'est-à-dire la résolution numérique du problème déterministe) par le code-
Aster. Les valeurs de l'ordre d'expansion tronqué (N) et la longueur de corrélation sont deux 
facteurs principaux pour l'évaluation et le contrôle de la précision des méthodes de 
discrétisation. Les résultats numériques montrent que l'ordre d'expansion tronqué (N) augmente 
rapidement lorsque la longueur de corrélation spatiale diminue. La méthode AK-MCS modifiée 
est d'abord choisie pour estimer la probabilité de dépassement de la contrainte admissible du 
revêtement en béton de la galerie dans le contexte de la variabilité spatiale de la roche hôte 
COx. Deux cas de variabilité isotrope et anisotrope dans l'espace des propriétés des roches COx 
avec le même ordre d'expansion tronqué N (et donc avec les mêmes valeurs de 100 variables 
aléatoires après la discrétisation) sont pris en considération. Ces études nous permettent de 
vérifier la possibilité de AK-MCS pour gérer le problème plus complexe, qui, pratiquement, 
peut représenter jusqu'à 100 variables, selon certaines études dans la littérature. Contrairement 
à ces dernières contributions dans le contexte des problèmes académiques, notre étude 
numérique montre que l'AK-MCS ne peut être raisonnablement appliqué que lorsque le nombre 
maximum de variables est d'environ 50. Au-delà de ce nombre, nous constatons une 
augmentation drastique des points d’entrainement du DoE et le temps nécessaire pour 
construire métamodèle de Krigeage. Il ressort de l'analyse de fiabilité que la diminution de la 
longueur de corrélation réduit la probabilité de dépassement des valeurs limites dans l'élément 
de support final de la galerie. En fixant la longueur de corrélation selon la direction horizontale 
et en utilisant la longueur de corrélation verticale plus petite, la probabilité de dépassement de 
la contrainte admissible du revêtement en béton diminue considérablement. Ces études mettent 
en évidence l'effet de variabilité spatiale des propriétés des roches COx sur la probabilité de 
dépassement du revêtement en béton de la galerie. En comparaison avec le problème 
d'incertitude, une probabilité plus faible a été remarquée dans ce problème de variabilité. 
Cependant, cette observation doit être renforcée en tenant compte les valeurs de la longueur de 
corrélation plus petites des propriétés des roches COx. Néanmoins, la limite de l'AK-MCS pour 
gérer le problème de grande dimension ne permet pas de mener ce type d'étude qui nécessite 
en fait une extension appropriée de la technique de métamodélisation AK-MCS. Dans une 
première tentative, la méthode de représentation du modèle à haute dimension (HDMR) a été 
considérée pour traiter ce problème. L'idée principale de la méthode HDMR est d'approcher 
une fonction de performance multi-variables par une combinaison des métamodèles de 
composants d'ordre zéro, premier, second et supérieur. Certaines études dans la littérature 
montrent que le HDMR peut être tronqué jusqu'au premier ordre (Cut-HDMR1) ou au second 
ordre (HDMR2) car les interactions de l’ordre supérieure à deux entre les variables d'entrée du 
HDMR sont négligeables. Pour dériver chaque métamodèle composant de HDMR, différentes 
méthodes peuvent être utilisées. Dans ce travail, le métamodèle AK-MCS, tel qu'introduit dans 
les chapitres précédents, est choisi pour construire chaque composant du Cut-HDMR, et nous 
notons la méthode adoptée comme AK-HDMR1 et AK-HDMR2 correspondant à chaque 
configuration de la méthode HDMR tronquée au premier ou au second ordre. Les études 
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numériques dans les deux cas de roches viscoélastiques et visoplastiques montrent que la 
probabilité de dépassement des valeurs limites dans le revêtement en béton prédite par l'AK-
HDMR1 n'est pas exacte, et le résultat est largement amélioré par l'AK-HDMR2. Bien que le 
nombre de métamodèles construits augmente dans l'AK-HDMR2, cette méthode réduit 
considérablement le nombre de variables aléatoires et donc le temps nécessaire pour construire 
les métamodèles. Si la précision de cet AK-HDMR2 a été démontrée dans le cas d'un problème 
d'incertitude, son applicabilité dans le cas d'un problème de variabilité nécessite cependant plus 
d'améliorations. 
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ABSTRACT 

Design an underground structure in the rock mass is traditionally based on the deterministic (or 
semi-probabilistic) approach, in which the sources of uncertainty are addressed through the 
partial safety factors. However, the efficiency of this approach to derive an optimal and hence 
the construction cost has been considered as an open question. Recently, an advanced technique 
based on reliability analysis is used on the optimization of mechanical structure design from 
the assessment of the uncertainties propagation on their failure probability.  So far,  the 
application of such methods for designing deep tunnels has been only focused on the short-
term behavior of rock masses. In many cases, moreover, these methods lost their effectiveness 
when a strongly nonlinear behavior is considered. However, this is the case in some specific 
contexts, such as the deep nuclear waste disposal, where different nonlinear mechanisms (e.g., 
creep, damage, thermo-hydro-mechanical coupling, etc.) are significant sources of uncertainty 
on the long-term stability of structures. 

This dissertation aims at evaluating the failure probability in the long-term of the concrete 
lining of deep tunnels by considering the uncertainty of the time-dependent behavior of the 
host rock. To this purpose, an extension/modification of the reliability analysis technique using 
the Kriging-based metamodel was carried out. The performance and the efficiency of this 
metamodel compared to the classical Monte-Carlo Simulation (MCS) method were firstly 
demonstrated in the context of a sequential construction of a deep tunnel in a linear viscoelastic 
rock. The metamodel is then applied to analyze the stability of the concrete lining of a gallery 
for a period of 100-years, which is typically the exploitation period of waste disposal galleries 
built in Callovo-Oxfordian (COx) claystone - the geological formation chosen for the 
implementation of the nuclear waste disposal in France if the project is licensed. The long term 
behavior of COx is described by the viscoplastic model of Lemaitre. The assessment of 
uncertainties and cross-correlation of Lemaitre’s model is carried out using the raw database 
from creep tests performed by the laboratory test on the sample scale. The reliability analysis 
exhibited that the long-term stability of concrete inner liner has been affected by the uncertainty 
of the host rock properties and the great benefit of the compressible layer. According to these 
studies, the stability can be determined as a function of the compressibility and/or the thickness 
of the compressible layer. Moreover, the spatial variability of the mechanical properties of the 
host rock was also undertaken. To deal with the high dimensional problem associated with the 
discretization of the random fields, an adaptation of the Cut-HDMR method combined with the 
Kriging-based metamodeling technique was proposed in this study. The applicability of such a 
method was then tested through numerical applications. 

Keywords: uncertainty, spatial variability, reliability analysis, Kriging metamodel, deep 
tunnel, compressible material, COx claystone.  
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RÉSUMÉ 

La conception d'une structure souterraine dans les massifs rocheux est traditionnellement basée 
sur l'approche déterministe (ou semi-probabiliste), dans laquelle les sources d’incertitude sont 
prises en compte par les coefficients de sécurités partiels. Cependant, l'efficacité de cette 
approche pour dériver une conception optimale et donc le coût de construction a été considérée 
comme une question ouverte. Alternativement, des approches fiabilistes sont utilisées de plus 
en plus ces dernières années permettant d’optimiser la conception de structures de génie civil 
à partir d’évaluation de la probabilité de leur défaillance due à la propagation d’incertitude 
connue des paramètres. Cependant, jusqu’au présent, ce type de méthodes pour les ouvrages 
souterrains, a été appliqué àconsidérer uniquement au comportement à court terme de ces 
ouvrages. Très souvent, les méthodes utilisées dans de tels contexte, perdent de leur efficacité 
lorsque les problèmes sont fortement non-linéaire. Or, tel est le cas, dans certains contextes, tel 
que le stockage profond des déchets radioactifs, où plusieurs mécanismes non linéaires (fluage, 
endommagement, couplage thermo-hydro-mécanique, etc) sont sources d’incertitude et 
impactent fortement la stabilité à long-terme des ouvrages.  

Ce travail de thèse vise à évaluer la probabilité de défaillance à long terme du revêtement en 
béton des tunnels profonds en considérant l’incertitude des paramètres du comportement 
différé de la roche hôte. Pour cela, une extension/modification de la technique d’analyse 
fiabiliste par le métamodèle de Krigeage a été d’abord mise en place. La performance et 
l’efficacité de ce métamodèle modifié en comparaison avec la méthode classique MCS a été 
démontrée dans le cadre de la construction séquentielle d’un tunnel profond dans une roche 
viscoélastique linéaire. Ce métamodèle de Krigeage est ensuite appliqué pour analyser la 
stabilité pendant la période d’exploitation de 100 ans du revêtement en béton d’une galerie 
construite dans la couche argileuse de Callovo-Oxfordien (COx), la formation géologique 
choisie pour la construction du stockage profond des déchets radioactifs en France, s’il est 
autorisé. La quantification des incertitudes et corrélations des paramètres du modèle de 
Lemaitre pour la roche hôte a été réalisée en utilisant les résultats des essais de fluage au 
laboratoire à l’échelle de l’échantillon. Le soutènement de la galerie étudiée est compressible 
avec un comportement fortement non-linéaire, décrite  par un modèle élastique tri-linéaire. Les 
études fiabilistes ont montré une influence importante d’incertitude des propriétés de la roche 
hôte et un grand avantage du voussoir compressible sur la stabilité à long terme du revêtement 
en béton. Selon ces études, la stabilité à 100 ans du revêtement est considérablement augmentée 
en fonction de la compressibilité et/ou de l’épaisseur de la couche compressible du système de 
support de la galerie. Une considération de la variabilité spatiale des propriétés mécaniques de 
la roche hôte a aussi été effectuée. Pour traiter le problème de grande dimension associé à la 
discrétisation des champs aléatoires, une adaptation de la méthode Cut-HDMR combinée avec 
la metamodélisation de Krigeage a été proposée dans cette étude. L’applicabilité de telle 
méthode a été ensuite testée à travers des applications numériques.   

Mots-clés: incertitude, variabilité spatiale, analyse fiabiliste, métamodèle de Krigeage, 
tunnel profond, matériau compressible, l’argilite COx. 
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GENERAL INTRODUCTION 

Context 

In the science and engineering of everyday practice, the mitigation of hazards and risks is of 
capital importance. Herein there is an increasing interest in developing strategies and methods 
for characterization and modeling of uncertainties propagation, variability, and random 
systems. In particular, in the engineering of structures design and on the estimation of the life 
expectancy of structures, the reliability analysis has become powerful tools for the optimization 
design process and structure maintenance. For human-made materials currently used in the 
industry, many efforts are made to assure full control of the final properties, and the 
uncertainties on the properties of a produced material are given at the same time as the 
properties themselves. One of the ways these methods are used in practice is through the design 
rules/codes such as Eurocodes, ASTM, and so on. For example, in various design approaches 
promoted by Eurocodes, the partial safety factors method is applied to take into consideration 
the uncertainties and variability of loads and material properties.  

However, such methods are not imposed on underground construction, despite their application 
in other various fields of geotechnics (Eurocodes 7, European geotechnical code of design 
explicitly indicates the domain of underground designed to be out of its application fields). 
This is explained, by large, from the slightly different situation of underground excavations as 
compared with other types of structures. The soils, and more often, the rock masses that host 
these excavations, in contrast to human-made materials, are natural, heterogeneous geological 
materials produced by depositional and post-depositional processes, containing tectonism, 
diagenesis as well as sedimentation (Lü et al., 2018). Their random evolutive internal structure 
is described by a combination of constitutive minerals that govern local mechanical behavior 
at any point of massifs. This spatial organization of minerals (and for that reason, of properties) 
makes the characterization of the properties of geomaterials more complex since both epistemic 
and aleatoric uncertainty should be qualified.  Using the terminology used by (Sudret, 2007) 
the aleatoric uncertainty makes reference to natural variability in the phenomenon under 
consideration and epistemic uncertainty to a lack of knowledge. Aleatory uncertainty can be 
understood as input parameters for geotechnical design, for example, in situ stress field, rock 
mass strength parameters and modulus of deformation, so forth. Yet, they have never known 
precisely before. The lack of knowledge is limited to uncertainties in the measurements of the 
physical properties of the rock masses and lack data to understand and characterize the 
phenomenon, among other things entirely. Because the physical limitations of a number of 
measurements could be taken in the region concerned, besides, the results of deterministic 
analyses can miss the exact failure mechanisms and ignore the precise response that might pass 
through the weakest part of the rock in the sense of its randomness properties. Moreover, 
samples from laboratory or field tests are more or less disturbed; yet errors are often introduced 
in the measurement and estimation of the strength and deformation characteristic of the rocks. 

While all these particular features of geomaterials and rock masses explain by themselves the 
need for specific approaches to mitigate uncertainties or to verify the robustness of 
underground design, they become more evident when the underground waste storage is in 
question. Since deep underground radioactive waste disposal has been a preferential option in 
many countries, the questions of assessment of uncertainties linked with such structures rise 
with increasing attention. Besides the multiphysics coupling, the long-term behavior of rock 
masses and the uncertainties linked with the behavior of structures in such conditions are 
perhaps the central points on the design of storage facilities. Such sources of uncertainties 
represent a challenge for researchers and engineers. On the one hand, spatial (e.g., several tens 
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of square kilometers) and temporal scale (e.g., some million years) of studies on the storage 
field are with no comparison with any up-to-now built-up underground construction. On the 
other hand, the complexity of interaction many phenomena of various nature (mechanical, 
chemical, hydraulic, thermal, radioactive) and kinetics are never seen before in a single 
problem.  And yet, if one considers just one physical problem (let say mechanical one), it is 
ramified in other problems and mechanisms that could be active in some moments of the life 
of underground excavation but constraint behavior of the structure on the next phases of the 
underground structure. For example, the irreversible instantaneous behavior of surrounding 
rocks will control the Excavation Damage Zone's initiation and growth around a cavity. This, 
in turn, will impact the stress and strain distribution as well as the hydraulic field around the 
cavity to impact the long-term behavior of the excavation. It is intuitively clear that any 
uncertainty on the irreversible behavior of rock at any moment of the life of the excavation will 
be propagated to uncertainties in the future phases. 

The work of this thesis is a part of the number of studies performed by the scientific community 
relating to the Cigéo project. This is deep geological disposal for high-level radioactive waste 
(HLW), and intermediate level long-life radioactive waste (IL-LLW) called Cigéo is planned 
to be constructed in deep Callovo-Oxfordian claystone (COx) formation if licensed. 

We have not to ambition here to deal with all sources of uncertainties in such a big project and 
even not all those linked to all kinds of underground excavations. Our principal interest in this 
work is the propagation of uncertainties of long-term mechanical behavior of rock masses on 
the response of a typical underground excavation.   

Because of the above-mentioned reasons being inherent of any underground constructions on 
the rocks and in long-term analysis, the problem is not straightforward. Certainly, there is a 
large number of results from laboratory and in situ tests performed on rock masses from 
Callovo-Oxfordian claystone (COx) (Armand et al., 2007; Zhang et al., 2013; Jia et al., 2016). 
These published papers revealed an uncertainty in COx of instantaneous mechanical properties 
values along with the depth and some random variation with extensions.  The same variability 
is also observed in the long-term behavior of rock that seems to be activated at low differential 
stress (Billig et al., 2007; Jia et al., 2008; Martin et al., 2010; Mohajerani, 2011; Armand et al., 
2014). These variations of mechanical properties follow the variation of the mineralogical 
composition and structural anisotropy. For example, the seismic surveys on the Cigeo projects 
of Andra also show vertical and lateral variations in the properties of COx claystone (Armand 
et al., 2014). In particular, these uncertainties impact the initiation and extension of the 
Excavation Damage Zone  (Schuëller et al., 2004). 

For the probabilistic approaches of deep underground tunnel structures, one could cite, among 
others (Pan and Dias, 2017; Shokri et al., 2019; Zhang et al., 2020) for the tunnel stability. 
When data on the quality of the rock mass is sufficient, a probabilistic approach allows us either 
to understand the risks of the project better or to have a more efficient geo-mechanical zoning 
and a more reliable cost estimate. However, probabilistic calculation and design tools are not 
yet widely used for tunnel lining (Oreste, 2005). 

The particularity of the work presented here, compared with reliability analyses generally 
performed on structural mechanics, resides principally in considering the time-dependent 
behavior of the rocks leading with probability failure evolving with the time. 

After an analysis of alternative approaches, on the one hand, that could be used for the 
assessment of the uncertainties related to the mechanical properties of COx and their spatial 
variability; on the other hand, their impacts on the response of a typical underground storage 
structure, this dissertation proposes an optimized methodology for reliability analyses.  This 
approach is firstly used for the evaluation of the impact of the uncertainties on the mechanical 
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parameters of  COx. Then the innovative consideration of the compressible material as the 
outer liner on the probability failure of the inner liner of a gallery is also investigated. Later the 
impact of the variability in the space of the rock properties on the long-term failure probability 
is discussed.  For the spatial variability, both the uncorrelated and correlated Gaussian random 
fields are addressed with nonlinear structural problems. Remarkably, the treatment of 
uncertainty methodology contained in this study can be followed to treat uncertainty in many 
fields, such as analysis of natural hazards (e.g., wind, earthquakes, floods) and decision making 
in environmental risks. We also use the Code-Aster based on Python scripts for studying 
material heterogeneity models. 

Research objectives 

The thesis's principal objective is to establish a methodology for estimation in terms of 
probability to failure of the inner liners, the impact of the uncertainties of mechanical behavior 
of rock masses on the stability of underground storage excavations. Once established, the 
methodology is used to evaluate this impact by considering either the epistemic uncertainties 
linked to the long-term behavior of surrounding rock masses or those linked with these 
parameters' spatial variability.  For that, following auxiliary problems with increasing 
complexity and  a step-by-step research approach is followed consisting to: 

(1) Demonstrate and compare diverse reliability analysis methods applied to benchmark 
tunneling problems. Especially, methods for selecting samples from the meta-model could be 
applied for the real project to tackle the uncertainty and the inherent spatial soil variability. It 
is necessary to propose a new approach to deal with these problems base on the 
viscoelastic/viscoplastic behavior of rock mass. 

(2) Provide a comprehensive literature review of state of the art on deep geological disposal of 
radioactive waste, emphasizing the geomechanical description of COx claystone in terms of 
rock parameters, mechanical material behavior, and tunnel construction. 

(3) Quantify the uncertainty in mechanical properties of COx from the laboratory tests (in a 
project of Andra) to model a deep tunnel in rocks by considering the uncertainty and variability, 
and notably regarding time-dependent problems in periods such a hundred years. 

(4) Estimate the probability of failure and incorporate the inherent variability in material input 
parameters into evaluating the stability of tunnels (e.g., liners or tunneling supports). It can be 
understood as calculating the probability of failure if a prescribed threshold of system response 
is exceeded. In other words, the computation is based on limited area functions with respect to 
the uncertainty of the parameter in a quantitative and verifiable manner. 

(5) Investigate the tri-linear model adaptation in Aster Code for the compressible material 
coating used in the project. Then, to perform two-dimensional numerical analyses on the COx 
rock and support liners responses. 

(6) Help the readers understand and apply mathematical frameworks of uncertainty and spatial 
variability in geotechnical engineering.  

The most important objective here is to propose a practical approach to perform a reliability-
based analysis of the tunnel; yet, the approach may be used in other fields. The non-
performance probability of exceedance of the allowable support strength will be investigated 
with two main cases: uncertainty problems (as in Chapters 2 and 3) and variability problems 
(as in Chapter 4).  
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The layout of the thesis 

The dissertation is organized according to the subsequent chapters: 

Chapter 1 presents the state-of-the-art of the existing popular models to simulate the 
viscoelastic and viscoplastic behavior of rock masses by considering uncertainty and 
variability, which can be divided into four main parts. The first one is a quick review of some 
basic concepts of reliability analysis and techniques used to solve structure reliability problems. 
In which several keywords of the study will be mentioned, namely: uncertainty, variability, 
reliability analysis, random variables, random fields, performance function, time-dependent 
reliability analysis. Secondly, some popular reliability analysis methods will be revisited. 
Thirdly, we will show the state-of-the-art reliability analysis of the underground structure. 
Then, the long-term massif behavior, especially viscoplasticity of the rock mass, is also briefly 
reviewed. 

Chapter 2 illustrates the time-dependent reliability analysis of a deep double-lined tunnel in 
linear visco-elastic rocks. The analytical method will be used to compare and validate the 
closed-form solution with some suitable reliability methods. That can effectively use in the 
next sections for the real project and compare with numerical tests in the ideal cases (e.g., 
incompressible rocks, isotropic and homogenous materials). 

Chapter 3 precisely shows the emphasis of this study: Application of tunneling analyses via 
considering the uncertainty in time-dependent, viscoplastic rocks into a specific project of 
Andra The method for simulating in 2D the digging of a tunnel that forces on the uncertainty 
of the geo-mechanical parameters. The expected results will be some failure probabilities of 
the main-liner corresponding to the prescribed limit states and to considered time (one hundred 
years). Some parametric case studies are also addressed for obtaining the general and exact 
behavior of the support system (i.e., the concrete liner). 

Chapter 4 characterizes the spatial variability of four input parameters of COx rocks within 
nonlinear viscoelastic problems. The assessment of stochastic rock characteristics, including 
spatially correlated properties, is deeply considered. Using similar settings from previous 
chapters, we can discretize the random fields with expansion optimal linear estimation method 
(EOLE) and high-dimensional model representation (HDMR). The case studies are different 
from the ones in Chapter 3 at the evaluation of the spatial variability. This chapter also mentions 
mathematical frameworks to quantify the variability and the correlation length of rock 
properties at different scales.   

At the end of the thesis, we give conclusions and perspectives. 
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CHAPTER 1. BACKGROUND OF RELIABILITY ANALYSIS AND ITS 

APPLICATION FOR UNDERGROUND STRUCTURES 

1.1. Introduction 

This chapter presents the background and state-of-the-art application of the reliability analysis 
for geotechnical engineering, especially the construction of underground structures, by 
considering the uncertainty and variability of its surroundings' mechanical properties (rock 
masses). Firstly, a quick review of some basic reliability analysis concepts, in which the 
essential keywords (namely: uncertainty, reliability analysis, variability) will be mentioned. 
Next, some commonly used reliability analysis methods will be highlighted. Then, we present 
a quick review of the state-of-the-art reliability analysis of the underground structure. The last 
part of this chapter aims to synthesize some well-known models that characterize the long term 
behavior, focusing on the viscoplasticity of rock mass.  

1.1.1. Uncertainty concepts 

Uncertainties are inherent, unavoidable in the natural geomaterials (rocks, soils), and must be 
addressed when designing any construction (Gulvanesian and Holicky, 2005). In geotechnical 
and geological engineering, uncertainty plays a vital role as a central feature (Christian, 2004); 
thus, it is necessary to extend the deterministic analysis to stochastic (or non-deterministic, or 
probabilistic) one. Uncertainty in geotechnical response prediction is a complex phenomenon 
resulting from many different sources, which are typically classified as epistemic or aleatoric 
(Lacasse et al., 1996). Figure 1-1 demonstrates the types of uncertainty in geotechnical soil 
properties. 

In geotechnics, there are two types of epistemic uncertainties: measurement error and 
transformation uncertainty. The first type is associated with the scarcity of data (quality, 
quantity, specification) coming from different sampling stages, preparation, transport, and 
testing procedure, which is mainly explained by the lack of knowledge or data on the resulting 
observed phenomenon. This uncertainty can be reduced to a minimum value by considering a 
larger number of samples, in which the minimum value depends on the systematic errors 
involved in the whole process. While using empirical or other correlation models when 
transforming data from laboratories or in situ measurements can be another type of epistemic 
uncertainty, so-called transformation uncertainty. It is possible to significantly reduce the 
characteristics of uncertainty by using more refined empirical or mathematical models for the 
latter type (Silva et al., 2015). 

 

 

 

 

 

 

 
Figure 1-1: Categories of uncertainty in soil properties 

On the other hand, uncertainties can be classified as aleatoric if the modeler does not predict 
the possibility of lowering them (Kiureghian and Ditlevsen, 2009). This type is also well-
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known as inherent uncertainty. The soil variability that mostly results from natural geological 
processes modifying soil mass in situ is aleatoric (i.e., linked to the inherent randomness). This 
intrinsic variability of rock is based on the complex history of formation and the continual 
reworking of geological materials linked to the impossibility of a deterministic description of 
the phenomenon's intrinsic variability under consideration.  The aleatoric uncertainty can be 
expressed by spatial variability in space for phenomena occurring in different locations but at 
a single point in time, or by temporal variability over time for phenomena occurring in a single 
location, or both in time and space.  

1.1.2. Spatial variability concepts 

In this subsection, some popular theoretical concepts related to spatial variability are presented. 
Others will be mentioned in chapter 4 (e.g., a method for discretizing random fields, error 
measures for random field discretization, correlated random fields, and so on). 

Spatial variability: The inherent spatial variability of geomaterials could be simply understood 
as the variation of rock (soil) properties from one point to another in space (Sekhavatian and 
Choobbasti, 2019). In the reliability analysis, the spatial variability of geomaterials properties 
is defined through the random field concept.   

Random field: Random field theory is a mathematical concept that allows us to model the 
uncertainties of physical properties in a continuous medium regarding either spatial variability 
or randomness. In this context, a random field H(x, ) is a collection of random variables 
indexed by continuous parameters x d ( d is multidimensional domain). Here, x 
also denotes the geographical location (i.e., the coordinates of the system). Note that for a given 
x0 ∈ D, H(x0, ) is a random variable. Contrarywise, for a provided outcome  0∈, H(x,  0) 
is a realization of the field (the output is a trajectory, i.e., a curve).  

The random field is simply a stochastic process that usually takes on values in a Euclidean 
space and has a parameter space with a dimensionality of at least 1. In geotechnical mechanics, 
a random field can be in time or distance. However, in most cases in geotechnical mechanics, 
as well as in our study, random fields are considered in the space; in other words, the spatial 
variability is modeled by random field theory. Notably, probability distributions and the 
correlation at adjacent zones can completely describe rock parameters as random variables at 
any location in a rock layer (Lü et al., 2018). 

Covariance (Coefficients of variation): This is a relatively stable measure of variability, and 
an essential statistical tool evaluates how much the mean values of two variables change 
together (Cai, 2011). The sign of its value shows they tend to vary together (positive sign) or 
inversely move (negative one). Let Cov[X, Y] be covariance of two random variables X and Y. 
It is analogous to the variance and reads:  

 [ , ] [( )( )] E( ) E( ) E( )     X YCov X Y E X Y XY X Y  (1.1) 

From the known data, we can use the familiar equation as follow: 

 
1

1
[ , ] ( )( ) 


   n

i X i Yi
Cov X Y X Y

n  (1.2) 

where X, Y are the mean values of X, Y, respectively; n: number of periods. 

In the random fields, these equations can be rewritten as:  

   ( ', *) [ ( '), ( *)] ( ') (t') ( *) (t *)       X XX XC t t Cov x t x t t t  (1.3) 
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 E ( ') ( *) (t') (t*)  X X X Xt t  

where X(t’), X(t*) stand for the mean of vector X at the different positions t’, t*, respectively. 

Some examples of covariance for geotechnical properties and in situ tests can be from some 
authors (e.g., (Briaud and Tucker, 1984; Guharay and Baidya, 2017)). Readers can find some 
types of covariance functions in the Appendix. 

Correlation coefficient: The random variables could be considered as independent ones, such 
as in most case studies in literature or correlated together, or both (i.e., some are correlated, 
others are none). When pair variates X and Y are said correlated, the likelihood of a certain 
value of Y must depend on X's value. For example, for geotechnical materials, the friction 
angle and cohesion are often seen as correlated. The main aim of the correlation coefficient 

,X Y  is to present a dimensionless measure of the degree of correlation between random 

variables.  

 ,

[ , ]
X Y

X Y

Cov X Y
 


 

(1.4) 

where X, Y are the standard deviations of X, Y, respectively.  

Similarly, in the random field, this equation becomes as: 
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(1.5) 

In which X(t)  is the standard deviation of X at the position t.  

Correlation function (or autocorrelation coefficient function): indicates the spatial correlation 
of the relevant design material properties (e.g., Young modulus) at distinct places (Tian et al., 
2016). 

Correlation length: (or scale of fluctuation) is a characteristic parameter acting in the definition 
of the autocorrelation coefficient function. The (spatial) correlation length  (or l as in 
Appendix A1-3), indicates the fluctuation range of the parameter, i.e., it illustrates the 
variability of material properties in horizontal-/vertical- axes (Shen, 2012). In the context of 
random field theory, this length plays the most vital role in measuring variations in space. It 
can be separated into two points by a distance greater than  are mainly uncorrelated. The 
smaller the correlation length, the faster fluctuation of soil parameter is; otherwise, the 
parameter is relatively consistent over a wide range. Mathematically, θ is defined here as the 
area under the correlation function (Vanmarcke, 1983). 
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( ) 2 ( )      
 


  d d

 
(1.6) 

Note that not all correlation functions will satisfy the criterion (Eq. 1.6), and for such random 
processes, θ =∞. An example of a process with infinite correlation length is a fractal process. 
Moreover, the correlation length is actually only meaningful for strictly non-negative 
correlation functions (Fenton and Griffiths, 2008). This length can be determined from either 
experiment, design codes, or other relevant projects.  

The consideration of spatial variability in the reliability analysis can be conducted by using a 
discretization technique that transforms the random field (i.e., infinite dimension problem) into 
the random variables (i.e., finite dimension problem). This problem can be solved similarly as 
in the previous case, i.e., the uncertainty problem. Explicitly, an application of an Expansion 
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Optimal Linear Estimation (EOLE), a popular discretization technique for random fields, will 
be presented in the last chapter of this thesis to deal with correlated random fields. 

1.1.3. Reliability analysis concepts 

The simplest understanding of the reliability concept could be a probability of a required 
function of a system. In other words, the reliability of a system can be understood as the 
probability of non-failing in meeting demands for a predefined time interval (Mahmoudi, 
2018). Indeed, one has been developing many different reliability methods to take the 
uncertainties into account in real engineering structural properties. For example, (Baecher and 
Christian, 2003) showed several primary methodologies to deal with practical reliability 
analyses. Recently, many researchers, such as (Simpson, 2011; Marelli and Sudret, 2014; Day, 
2017), found numerous robust tools for the computation of reliability in geotechnical design.  

In reliability problems, the uncertain input variables, called random variables, and their space 
is separated into the failure and safe domains by the so-called limit state function LSF (or limit 
state surface, LSS). The limit state function g(x) defines a failure criterion that is a function of 
all random variables x. Note that x could be independent as well as dependent variables. 
Besides, x could be identically distributed samples generated according to the probability 
density function (PDF) in sampling methods. The concept of LSF is generic and can be 
transferred to a large family of problems. Currently, among various performance functions 
exist, the well-known ones in the context of underground structures are usually related to tunnel 
convergence, the support capacity, plastic radius, as brief in Table 1-1 below. 

Table 1-1: Limit state functions commonly used in literature 
Limit state Limit state function (LSF) Variable definitions 

Support 
capacity 

( ) 0  xlim lq  
lim  : threshold of support capacity  

( )xlq : maximum equivalent support stress at equilibrium 

Degree of 
wall support lim 0( ) / R 0  xequ  

lim : threshold of normalized wall displacement (deformation) 

0( ) / Rxequ : normalized wall displaced at equilibrium  

The extent of 
rock 

plasticization 
pl,lim 0( ) / R 0 xplR R  

pl,limR : threshold of the normalized radius of the plastic zone 

0( ) / RxplR : normalized radius of the plastic zone at 

equilibrium w.r.t tunnel radius R0 
 

The quantification of uncertainty propagation to assess the probability of failure (or exceedance 
probability, PF) is the main goal of structural reliability analysis. Theoretically, the probability 
is computed by integrating the joint probability density functions (PDF) of the random 
variables over the failure region as follows: 

 
( ) 0

( ( ) 0) ( )


    x
x xf g

P P g f dx
 (1.7) 

where f(x) is the joint probability density function (PDF) of the relevant demands and resistance 
parameters x=[x1, x2,…, xd]T. The function of performance denotes g(x)=g(x1, x2, .., xd), and 
the LSS defines as g(x)=0. It can be illustrated with the case of two normally distributed 
parameters, as in Figure 1-2. 
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Figure 1-2: Probability of failure for a system consisting of (a) one and (b) two variables 

In many complex structures, the uncertainty of the system response or system performance can 
be estimated by using specific techniques that can approximate the actual probability of failure 
value. In this way, many scientific researchers investigated and proposed various reliability 
analysis methods within different approaches. However, they could be categorized into three 
main methods according to some recent overviews (Hu and Mahadevan, 2016a; Huang et al., 
2016, 2017), which are captured in Figure 1-3 below. This classification will be detailed in the 
next sections, especially the well-known Kriging-based method, which is chosen as the 
principal method throughout this thesis. 

 
Figure 1-3: Categories of structural reliability analysis methods 

 

1.1.4. Time-dependent reliability analysis  

In many contexts related to geotechnical engineering, the time-dependent behavior of structure 
induces the variation of exceedance probability as a function of time. That means, in these 
contexts, the reliability analysis must be addressed to determine the time-dependent failure 
probability. Accordingly, the first-pass method's essential role in assessing the reliability of the 
structure under time-variant operating conditions has attracted much attention. (Zhang et al., 
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2017). The LSF is now written in the form g(x,t), which is a function of x (i.e., a random 
variable vector) and t (time instance). 

The time-dependent failure probability (also called the cumulative failure probability) (Pf) with 
the time of interest  [0, T] reads: 

   (0, ) g( , ) 0, 0,   xfP T P t t T
 

(1.8)
 

Due to the presence of the time factor, the computation of the probability as in the left-hand 
term in Eq. (1.8) is often known as a difficult task. The difficulty mainly lies in the monotonic 
/nonmonotonic behavior of the structure, which includes a time-dependence. For the 
nonmonotonic case, the maximum failure probability is not easy to find since it often requires 
either considering the full loading-history or applying the total probability theorem. This case, 
therefore, has been considerably increased the cost of the calculation. Fortunately, in most 
cases of underground structures, the structural responses (such as stresses, deformations as well 
as displacements) mostly vary in monotonic trends. That makes the time-dependent reliability 
analysis can be performed only at the time-interval border, and the problem becomes the time-
invariant reliability. 

1.2. Different reliability analysis methods 

1.2.1. Local reliability methods 

The local reliability methods refer to using the local approximate of actual LSF in computing 
the probability of failure. These methods often use the norm of “design point (DP)”, “most 
probable failure point,” and the “reliability index”.  For example, the first-, and second-order 
reliability method (FORM and SORM) are famous in analytical approaches to estimate the LSF 
around the design point. These methods require handling the gradient of the LSF; thus, it is not 
recommended to apply for high-nonlinear and non-differentiable functions. 

1.2.1.1. Mean Value First-Order Second Moment (MVFOSM) Method 

This method is often called as mean value (MV) method or First-Order Second Moment 
method (FOSM) originally found by (Cornell, 1969), which is the simplest and least expensive 
reliability method formed on the approximation of the first-order Taylor series (Huang et al., 
2017). The mean g  and variance 2 g  of the performance function, reliability index  , and 

the failure probability are calculated by: 

 ( ) g xg
  (1.9) 
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(1.11) 

 ( ) fP
 
 (1.12) 

Herein, x stands for the mean of vector x, Cov(xi, xj) is the covariance of xi, xj, and ( )   

denotes the standard normal cumulative density function (CDF). The method is satisfactorily 
exact only when g(x)  is almost linear, and variable x is approximately Gaussian. Moreover, it 
often fails to consistent with various equivalent formulations of the identical problem (Huang 
et al., 2017). 



   35 

 

1.2.1.2. First Order Reliability Method (FORM) 

The essence of FORM is to linearly approximate the response function g(x) at the design point 
(denotes x*). This point is on the limit-state surface (LSF) g(x)=0 and locates nearest to the 
origin, as indicated in Figure 1-4 (Silva, 2007; Langford, 2013). One can consider the linear 
Taylor series expansion around the design point as: 

  ( ) ( *) ( *) *   x x x x xTg g g
  (1.13) 

where g(x*)=0 because x* is on the LSF.  

Commonly, the gradient vector is replaced by its negative and normalized version, called the 
alpha-vector: 
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 
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g
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Combination of these two equations, notably all vectors are column vectors, yields: 

    ( ) ( *) * ( *) *           x x x x x x xT T Tg g g
  (1.15) 

One often rotates and/or transforms the random variable vector from the physical space (x-
space or original space) into the standard normal space (U-space). Then, the design point (DP) 
can be obtained by using the two conditions of the optimization problem: minimize ||U|| and 
must be subjected to g(U)=0. Once obtaining the DP, the distance from the DP to the origin is 
denoted as Hasofer-Lind (HL) reliability index HL, that is, HL‖U*‖. Low and Tang (Low 
and Tang, 1997a; 1997b; 2004; 2007) illustrated an alternative interpretation of the HL index 
and the FORM on the basis of an increase in the size of the ellipsoid in the physical space 
without any rotations or transformations. For the case of correlated or uncorrelated normal 
variables, the formulation of the HL index HL reads: 

    1min 


  

x
x μ C x μ

T

HL F   (1.16) 

Or, equivalently 
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(1.17) 

where  are the mean values and standard deviation, respectively. C and R denote the 
covariance matrix and correlation matrix, respectively. F stands for the failure domain.  

Thus, the FORM is capable of approximating the LSF linearly and provides the failure 
probability as follows: 

 ) FORM
f HLP (-

  (1.18) 

where Φ(·) denotes the standard normal CDF. Note that U* is not known at the outset and has 
to be found by iteration. Particularly, when the origin of U-space is already located in the failure 
zone (F), the failure probability  is computed as: 

 1 ) )   FORM
f HL HLP (- (

 (1.19) 
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Figure 1-4: Design point (or MPP) in (a) X-space and (b) U-space 

Notably, to transforms the random variable vector from other type distribution functions to 
equivalent standardized normal distribution (U-space), one often applies either Rosenblatt or 
Nataf transforms (Schulze, 2006). 

 
Figure 1-5: Transformation to Standard Normal distribution (Schulze, 2006) 

Besides FORM, one can find a similar method, so-called inverse-FORM, where the different 
critical points are to argmin{g(U)} and subject to =0 (or Pf=Pf0); one can refer to (Youn et 
al., 2003; Sudret, 2007) for more details. 

1.2.1.3. Second-Order Reliability Method (SORM) 

The SORM approximates the failure function by its quadratic form. It provides a more accurate 
method than the FORM because the expansion of the non-linear LSF also involves the second-
order derivatives of g(x). SORM analysis also needs both the reliability index  and the design 
point as inputs. That means prior FORM analysis must be required (Low, 2014). 

Because response functions cannot be explicitly expressed in most cases of geotechnical 
applications, the partial derivatives must be computed numerically utilizing central differences. 
The linear estimation of the partial differential coefficient is found by changing each variable 
by a small amount, while the remaining variables are held at their mean values (Langford, 
2013).  

Notably, FORM and SORM methods strongly depend on the mean values of the input 
variables, where the partial differential coefficients of the safety margin are assessed 
(invariance problem). Hence these methods are exact only for linear functions, and the error of 
the approximation could be significant for applying the high nonlinearity of response functions 
(Shen, 2012). 

1.2.1.4. Response Surface Method (RSM) 

The RSM is a functional relationship between a dependent output and many related input 
variables. When the performance function is often implicitly expressed in complicated 
geotechnical problems, the RSM can be used as a simple yet effective and accurate technique 
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to solve various widespread reliability problems. Box and Wilson (1954) first described this 
method; then, its extensive applications for reliability analysis can be listed in civil engineering 
fields as (Low and Tang, 1997a; Low and Tang, 2004; Mollon et al., 2009a, 2009b; Lü and 
Low, 2011a; Shen, 2012; Low, 2014; Hamrouni et al., 2017). The fundamental concept of RSM 

aims to fit the actual LSF g(x) by a closed-form polynomial function, ( )xg , by using both 
deterministic analyses and an iterative algorithm (Lü and Low, 2011a). Among types of 
functions, the quadratic polynomial function is usually utilized within U-space as: 

 
0 1 1 1

( ) ( ) ( )
  

       U U V U a
n n n

i i ij i ji i j
g g a a u a u u

  
(1.20) 

where U is the vector of basic random variables ui in U-space and a=[a0, ai, aii, aij]T is the 
coefficient vector being determined by using the sampling points (DoE). The matrix V(U) 
represents [1, ui, ui

2, uiuj].  

A procedure of using RSM for reliability analysis with five main steps in the proposal by (Lü 
and Low, 2011a). (1) Evaluation the function g(U) at sampling points by a deterministic model; 
(2) Determination vector a by solving the set of linear equations related to sampling points; (3) 
Using FORM to get a tentative design point and index ; (4) Repeat three first steps until the 
index converges; (5) Computing probability of failure by using FORM and/or SORM. 

Note that, for the correlated variables (with a correlation matrix R), one can use the Cholesky 
factorization to decompose the matrix R into a triangular matrix L. Let n = LU, the reliability 
index expression reads, base on Low and Tang algorithm (Low and Tang, 2007), as follow: 

 
1 1min min ( ) minR LL U U  

  
  T T T T

x F x F x F
n n n n

  
(1.21) 

Once obtaining vector n by performing the five mentioned steps, the original vector x (in X-
space) of d random variables xi (i=1, 2 ..., d) can be obtained from the inverse distribution 
equation as follow: 

  1 ( )i ix F n 
  (1.22) 

Although the RSM can be seen as one of the most efficient approaches (Jiang and Huang, 2016; 
Li et al., 2016), it needs a prior assumption on the order and type of polynomials that would be 
misleading if the true performance response is a multimodal function with several peaks and 
troughs (Liu and Cheng, 2016). To overcome the assumption, one often uses other methods, 
such as surrogate models. 

1.2.1.5. Point Estimate Method (PEM) 

The PEM proposed by (Rosenblueth, 1981) is a numerical procedure that uses Gaussian 
quadrature to approximate the fundamental statistical moments of design parameters based on 
other parameters. The basic concept of PEM is to use discrete equivalent distributions (or 
probability mass functions (PMFs) consisting of a few discrete points) to replace the continuous 
probability distributions (PDFs) for each input variable. Next, one assesses at each point to 
estimate the values of the mean and standard deviation of the material response parameter. By 
using only the first two fundamental statistical moments, the method can be applied without 
clarifying the form of the distribution (Langford and Diederichs, 2013).  

Notably, this method can be easily applied using the Excavation & Support Design Software, 
so-called Phase2, a 2D Elastoplastic finite element stress analysis program for underground or 
surface excavations in rock soil. 
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1.2.2. Sampling reliability methods 

1.2.2.1. Monte Carlo Simulation (MCS) 

MCS (also called “direct MCS”, “crude MCS”, or “classical MCS”) is a popular way to 
estimate the exceedance probability based on the number of the negative value of performance 
function over the total number of trials. Unlike the local reliability methods, MCS is an utterly 
robust and universal method, so it could be used to verify other reliability methods for 
estimating the failure probability of structures (Arab and Ghasemi, 2015). This simulation has 
many unique properties that make both positive effects and also the opposite. In other words, 
based on the capability of computing the probability for complex and highly non-linear 
systems, it is a widely used method that commonly applies to all the benchmark problems. 
Despite being robust and accurate, it is usually time-consuming because of the requirement of 
a large number of calls for the computation. In particular, it takes a paramount time when using 
it with finite element/finite difference methods.  

With the MCS method, the failure probability is computed numerically by simulating a 
sequence of NMC independent realizations: 
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(1.23) 

where NMC counts the random samples being generated for estimation of probability by the 
MCS.  

Note that, besides the strong capability of this method, the minimum number of realization NMC 
is found as follows: 
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(1.24) 

where z/2 is a quantile of the normal distribution, 1- is the confidence level (e.g., 95%),  
stands for the relative error of the estimated probability of failure, ˆ

fP , (e.g., 0.10%). In another 

approach, the coefficient of variation (Cov) of the estimator failure probability is applied, 
instead of using Eq. (1.24):  
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(1.25) 

With a predefined Cov (says 0.05), one can identify NMC from Eq. (1.25), then computing the 
failure probability using Eq. (1.23) according to the acceptable level, according to Cov. The 
Cov can be used as a convergence criterion to adaptively increase the Monte Carlo sample size 
until some desired Cov is reached (Marelli et al., 2019). For a prescribed Cov, the smaller the 
probability of failure, the larger the sample size is needed in the MCS, which means dealing 
with rare events, MCS has low efficiency. 

1.2.2.2. Subset Simulation (SS) 

Subset Simulation is one of the advanced sampling methods and currently received great care 
from researchers to deal with rare events. This method presents an adaptive stochastic 
simulation, which consists of solving a series of simpler reliability problems. The SS appeared 
by (Au and Beck, 2001) is also called 'variance reduction techniques' and generates samples 
that correspond to specified levels of failure probabilities progressively. The core concept starts 
from a small probability of failure can be stated as a product of larger conditional probabilities. 
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Let F stand for the target failure region in the space of the variables and let F1  F2  …  Fm 
= F be a selected sequence of m nested failure regions. Thus the conditional probability is 
identified as: 

 1 m 1 1 1
2

( ) ( ) ( | ) P(F ) ... ( ) ( | )  


    
m

m m m i i
i

P F P F P F F P F P F F  (1.26) 

Equation ((1.26) shows that by computing the larger probabilities P(F1), P(Fi|Fi-1) (i=2, ..., m) 
and then producing them, we can determine the small probability (i.e., P(F)).  

The procedure of this method is clear with few steps. Firstly, the initial probability P(F1) is 
concluded by direct MCS. In the next step, the conditional PDF is determined numerically 
using a Markov Chain Monte Carlo procedure. Besides, the SS makes use of a robust 
Metropolis-Hastings algorithm, which can efficiently generate random samples with any 
probability distribution. 

In subset simulation, the size of the nested sets is usually chosen regarding the conditional 
probabilities equal to 0.1 (i.e., 90% of the samples).  In other words, it is discarded and needs 
to be recomputed from the remaining 10% that serve as seeds. This work often leads in general 
to less than ten nested sets. Having too few nested sets would lead to a similar inefficiency as 
for direct MCS. However, it is argued that having many more nested sets would lead to an 
increasing number of samples, which again decreases the efficiency of subset simulation (Tran 
et al., 2020). 

1.2.2.3. Latin Hypercube Sampling (LHS) 

When considering M independently and identically distributed (idd.) samples, LHS's concept 
is that the range of each variable input parameter is divided into M equiprobable strata, and one 
value is randomly selected from each range (Helton and Davis, 2003). The LHS technique's 
leading profit is that it offers a boosted sampling number and quicker run-times with a smaller 
number of interactions. This method can be used to generate the initial design of experiment 
(DoE) of the approximation methods by metamodeling, which will be revisited later. 

The LHS of a random vector x=(x1, x2. . . , xd), denoted (x(1), x (2). . . , x (M)), gives a sample 
mean () reads: 

 
1

1


  M

ii
Y

M  (1.27) 

According (Stein, 1987), the output Y = y(x) by using LHS has a smaller variance compared 
to the sample mean of the MCS. Figure 1-6 below is a particular example of two approaches 
to create a sample of size n=10, from two variables x = [x1, x2] where both x1 and x2 vary in the 
range of [0,1]; x1 follows uniform distribution while x2 has a normal distribution. This figure 
shows that LHS's result is more broadly scattered and does not show the clustering effects 
found in MCS (Iooss et al., 2010). 
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Figure 1-6: Two approaches to creating a sample of size n = 10 

(a) MCS scheme, (b) LHS scheme 

1.2.2.4. Other Sampling methods 

Besides Monte Carlo simulation, Subset simulation, Latin hypercube sampling, some other 
well-known simulation methods also have gained much attention. The first example is the 
Importance Sampling (IS), as referred to (Bichon et al., 2007; Pradlwarter et al., 2007; Ramsey 
, 2007; Sudret, 2007; Dubourg et al., 2011; Dubourg and Sudret, 2014; Papaioannou et al., 
2016; Bittar et al., 2017; Lee and Kim, 2017). Then, the Directional Simulation (DS) that the 
readers can refer to (Bjerager, 1988; Fenrich and Alonso, 2018; Moarefzadeh and Sudret, 2018) 
for more details.  

1.2.3. Global reliability methods 

1.2.3.1. Brief introduction of surrogate models 

Although the powerful approaches of local reliability methods and sampling methods and are 
impressive, they remain some disadvantages. The local methods here often fail in situations 
such as the limit state function (LSF) is highly nonlinear or non-smooth, or the LSF is 
multimodal (i.e., multiple design points) (Huang et al., 2017a). Therefore, in such situations, 
they are difficult to be accurately performed the LSF, even though the RSM can perform, but 
it may not provide encouraging results.  Moreover, sampling methods usually require a huge 
number of performance function evaluations, making them unfeasible if the probabilistic 
performance is costly to estimate. The sampling methods with a low value of the failure 
probability cannot be used in all problems. 

In engineering, the same program must repeatedly execute response functions due to a ton of 
random samples to optimize a set of input parameters. This leads to the most satisfying values 
of the output arguments. Thus, more advanced probabilistic approaches are required, requiring 
fewer calls to the mechanical model. That requires a so-called meta-model method for using 
the second level of modeling, then summarizing what has been learned from the simulations 
and inferring the original computer model's response. This method can cope with the 
disadvantages of simulation and especially provide structural reliability analysis in complex 
problems. The technique also could resolve the high non-linearity and time-consuming 
response of an original model (e.g., a traditional mechanical model) by a metamodel (i.e., a 
functional approximation or an analytical equation); therefore, significantly cutting down the 
size of computational calls such as in the classical MCS method. Kriging and kernel regression 
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(i.e., radial basis functions, and support vector regression, etc. ) have proven significantly 
efficient in this context (Vazquez, 2015). 

The metamodels are first developed as “surrogates” of the expensive simulation process to 
enhance the global computation efficiency. They are practical and convergent tools to assist a 
broad range of interests in modern engineering design (Wang and Shan, 2007; Weinmeister et 
al., 2019). The principle of meta-modeling (or surrogate modeling) consists of proposing a 
mathematical function, which replaces the often expensive numerical model representing the 
behavior of the system or structure. The metamodel's main idea is to fasten the calculation and 
enhance the accuracy of the analysis, especially in more complex and specific problems (e.g., 
high nonlinear, the tiny value of the failure probability, etc.). A metamodel is calibrated from 
a set of points, called experimental design, for which the numerical model has been evaluated. 
Table 1-2 below shows some recommendations for some common metamodels' right choice 
based on their characteristics. 

Table 1-2: Recommendations for model choice and use (Simpson et al., 2001)  

 

1.2.3.2. Active learning and Kriging-based methods 

Kriging model (or Gaussian Process model), an exact interpolative metamodeling technique, 
has increasingly received attention and interest in the last decade (Hu and Du, 2015; Zhu and 
Du, 2016; Xiao et al., 2018; Jiang et al., 2019). It is used as an alternate model (“surrogate 
model”) to replace the expensive performance function. Note that if any sampling method (e.g., 
as aforementioned) can find the failure probability, the surrogate one, which is even more 
efficient in most complex cases, also can be applied.  

 
Figure 1-7: The principle of the Kriging approach (Hawchar, 2017) 

Kriging metamodel (or Kriging predictor) is the geostatistical method of prediction by using 
the Best Linear Unbiased Predictor-BLUP (Oliver and Webster, 2015). This model, as an 
essential surrogate model, provides better fitting accuracy than other surrogate models 
(Kaymaz, 2005; Gaspar et al., 2014; Shi et al., 2015). Indeed, this method is more and more 
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attractive due to its numerical accuracy by adding new training samples for each improving 
iterations (Montgomery, 2017). This model appears in uncertainty propagation (Romero et al., 
2004) and reliability (Kaymaz, 2005; Bichon et al., 2008) studies, and also widespread in 
optimization. The technique is also known as the active-learning based Kriging method, and 
its performance function g(x) must satisfy all training points (as in Figure 1-7).  

Kriging, developed by Krige (Krige, 1951), was firstly applied in the 1960s for statistical 
modeling of geospatial data (Matheron, 1963). Later, it was applied to deal with structural 
reliability analysis and to grow up surrogate models (Kaymaz, 2005).   

A training data set ={x(1), …, x(M)} consists of total M realizations of the input random vector 
x, and corresponding responses of the model output g(x) are gathered in a vector as y = [g(x(1)), 
…,g(x(M))]T. The M value, the size of initial training points, can be small (e.g., M=12 or 20). 
Following (Santner et al., 2003; Kaymaz, 2005), the Kriging surrogate model reads:  

 ( ) ( ) ( ) ( ) ( ) ( ) 
p

T
i i

i

g g = + z k + zx x k x β x β x x
  

(1.28) 

where p]T is a regression coefficient vector; k(x) represent explanatory polynomials, 
with its constants, are selected as the basis functions ki (x) (i = 1,⋯, p). In Eq. (1.28) the first 
term k(x)T is the mean value of the Gaussian process (i.e., this is the deterministic part and 
represents the average trend of the process). While the second term, z(x), is the residual error 

(or a stochastic process) with zero-mean stationary Gaussian process and variance
2
z . The 

covariance function of two random points is defined as: 

    2z ),z( ) ,i j i jC (x x x xz R
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In which, 
2
z and ( , )R    are the variance and autocorrelation function with specified correlation 

parameter , respectively; d stands for the size of design variables, , ,   l l
i j lx x  are the l-th 

component of xi, xj and , respectively. The correlation function (R) contains the assumptions 
about the approximation function, and hence the choice of an appropriate correlation function 
is an essential task of Kriging metamodeling. The following squared exponential auto-
correlation (Gaussian) function of  the hyperparameter vector θ  is used in our work: 
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where xi is the i-th component of vector x. 

Due to this approximation metamodel, the performance function can be predicted for a 
realization x of the normally distributed random variables:  

  2( ) ( ), ( ) x x x
g g

g 
  (1.31) 

Thus, the dependency of x and its i-th realization is described as: 

  ( )x x,x i
ir ( )= R

 
( 1,..., )i M

 (1.32) 

Then the vector represents cross-correlation between the prediction point x and each training 
point of DoE (M groups), reads: 

 T
1 2[ ( ), ( ),..., ( )]r x x x xM( )= r r r  (1.33) 
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Due to the stationary character of the Gaussian process, for each dimension, the correlation 
function depends only on the relative positions of two inputs characterized by a scale parameter 
i (i = 1, …, d). It is first required to obtain the optimal values of this hyperparameter   by the 
Maximum Likelihood Estimation technique as follows: 

  
1

2argmin det


 R M
z

  
(1.34) 

It means that in the general multi-dimensional problem, the correlation function is defined from 
a set of scale parameters  of which each component represents the characteristic length scale 
of each input dimension. Contrary to this last case (known as the anisotropic case), one can use 
a single scan parameter  for all the input dimensions (called an isotropic case). Some widely 
used correlation functions in the literature are the exponential, squared exponential, and 
Second-order Markov functions (see (Li et al., 2015)).  

The Kriging model can be identified by its mean and variance functions as follows 

  

1

2 2 1 1 1

( ) ( ) ( ) ( )

( ) 1 ( ) ( ) ( ) ( ) ( )



 



  



  

x k x β+r x R y-Kβ

x r x R r x u x K R K u x

T T

g

T T T
zg

 
(1.35) 

where: 
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In Eqs. ((1.35) and (1.36)) the vector y gathers the response of the structure (i.e., the exact 
results of the performance function) evaluated at M  training points of DoE defined in the matrix 
S. Besides, R is the matrix of correlation between each pair of points of DoE while K and r(x) 
are the regression matrix and the vector of cross-correlation between the prediction point x and 
each training point of DoE: 
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By building a Kriging metamodel, the probability of failure can be found by using one of the 
well-known direct sampling methods, such as the MCS as in Eq (1.23). 

Table 1-3 below summarizes some general steps to conduct a Kriging-based reliability analysis. 
Following this iterative procedure, the DoE (or the matrix S) will be enriched by adding one or 
a set of new training points for each iteration according to a so-called learning function. 

Table 1-3: General steps of  AK-based methods in reliability analysis 

1 Generate initial DoE (i.e., initial training points) so-called matrix S.  

2 
Determine the vector y (i.e., solve the deterministic problem to assess the exact 
response function for the training points of the initial DoE) 

3 Generate NMCS random samples for the interpolation by MCS. 

4 Construct a Kriging model from S and y (by using a Kriging toolbox). 
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5 
Interpolate g(x(i)) (i=1, ..., NMCS) from the built Kriging model and calculate the 
failure probability Pf (e.g., using Eq. (1.23)). 

6 Verify the stopping-criterion, then go to step 9; otherwise, go to step 7. 

7 
Identify one or a set of new training points x* using a learning function and update 
the DoE S. 

8 
Solve the deterministic problem to perform the exact function of the new training 
points x* and update y. Then, go to step 4. 

9 
Calculate the coefficient of variation (Cov) of the failure probability  
(using Eq. (1.25)). 

10 If 0.05
fPCov , obtain Pf; otherwise, go to step 3 and increase NMCS. 

1.2.3.3. Efficient learning functions used in AK-based methods 

The Active learning and Kriging-based methods concept is to make a relatively small DOE and 
sequentially add a new point (or more points) step by step to the DOE. Then the raised Kriging 
surrogate model progressively approaches the real performance function (Tong et al., 2019). 
Many researchers pointed out that the bases of the methods are at selecting a learning function 
and choosing a new training point corresponding to this function. Following this, several 
common recent learning functions will be presented in this section. 

In practice, AK-based methods can be utilized by MATLAB toolboxes such as MPerK (Santner 
et al., 2003), DACE (Lophaven et al., 2002), CODES (Lacaze and Missoum, 2015), UQLab 
(Lataniotis et al., 2015). Other toolboxes of these methods can be found in different platforms 
as in R package: GeoR (Ribeiro and Diggle 2001), GSTAT (Pebesma 2004), RandomFields 
(Schlather 2012), and DiceKriging (Roustant et al., 2012). Additionally, one can use a 
commercial product, so-called Statgraphics Centurion 19, for statistical analysis, data 
visualization and predictive analytics (http://www.statgraphics.com), that already includes 
Kriging feature. 

1.2.3.2.1. U-criterion (AK-MCS) 

This criterion was proposed by Echard (Echard et al., 2011), by combining the AK-based 
method and Monte Carlo Simulation (so-called AK-MCS). A candidate sample set  is 
appeared in the AK-MCS to represent the whole simulation domain for a result x* to update 
the Kriging model (Zhang et al., 2019): 

  (1) (N)* argmin U( ,...,U( )x x x           (i)x    
 (1.38) 

Herein, N is a sizable integer number (e.g., N=106), and the learning function U is defined as 
(Echard et al., 2011): 
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Note that the ordinary regression model is often sufficient even for strongly nonlinear functions 
(Bichon et al., 2011). The information then is exclusively carried by the autocorrelation 
function. The AK-MCS is the crucial method we use in almost all our case studies because of 
its utilities. The technique offers both the best estimate at an untired point and an approximation 
of the prediction variance (i.e., the mean squared error (MSE) in DACE toolbox). Thus, the 
prediction uncertainty can also be estimated by this variance and number as well as the location 
of training points (Huang et al., 2017a). 
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The coefficient of variation of the failure probability, Cov(Pf) defined as in Eq. (1.25)(1.25), 
being lower than 5%, is often used as the convergence criterion of this method.  

1.2.3.2.2 EFF function (EGRA)  

Expected Feasibility Function (EFF) learning function, using in the Efficient Global Reliability 
Analysis (EGRA) algorithm, gives a suggestion of how well the exact performance value at 
point x should fulfill the constraint function   .xg z  In other words, EFF can find the points 

over the region z  , and defined as: 
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Herein  ˆ xg is the predicted response value at point x,   ˆ xf g which is the probability 

density function (PDF). Let suppose z+ and z- denote for z   respectively, Eq.(1.40)  can be 
rewritten as (Echard et al., 2011): 
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where z is a constant;   is proportional to the predicted standard deviation. In the case of 

reliability, set 0,z  ˆ )2 (xg  . Thus, the expected values at the points being closed to zero 

(i.e., significant uncertainty) will get values of high expected feasibility. EGRA selects the 
position with the most massive expected value as the new adding sample, and the stopping 
condition is max (EFF(x)) ≤ 0.001.  

The main difference between EGRA and AK-MCS approaches lies in that EGRA estimates the 
LSF in the whole space; at the same time, AK-MCS addresses itself to the accuracy of the sign 
of the LSF values among an MCS population (Huang et al., 2017a). 

1.2.3.2.3. The learning function H 

The function H (Lv et al., 2015) can be applied to obtain the uncertainty of g(x) based on the 

information entropy theory, which can measure the uncertainty. Let ( )xg    and ( )xg   denote 

for ˆ )2 (xg ; the function H can be defined as: 
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(1.42) 

The lower information entropy, the more certain the predicted response is. Thus, the candidate 
point that makes maximum H will be picked as a new adding sample. The above equation can 
be derived as an analytical form by: 
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The new training point corresponding to argmax{H(x)} is then selected while the convergence 
is attained when max{H(x)} 0.5 as proposed by (Lv et al. 2015).  

1.2.3.2.4. Other learning functions 

Recently, many learning functions have been appeared and frequently used in AK-based 
methods. First, the Expected Risk Function (ERF) (Yang et al., 2015) is to identify the risk that 
the sign of a point is not an exact prediction. Second, Least Improvement Function (LIF) is 
introduced by (Sun et al., 2017), which takes not only the statistical formation provided by the 
Kriging model into account but also the joint PDF of random variables. Third, (Gaspar et al., 
2017) proposed the trust region method for the active learning sampling process. Indeed, over 
the last two years, numerous researchers have published their proposed functions. For 
examples, (Wang and Shafieezadeh, 2019a) proposed an error rate-based adaptive Kriging for 
reliability analysis (REAK); the reliability-based expected improvement function (REIF) by 
(Zhang et al., 2019); an efficient error-based stopping criterion (ESC) for kriging-based 
reliability analysis methods by (Wang and Shafieezadeh, 2019b). Moreover, a new point-
selected learning function, called HPF by (Tong et al., 2019), is applied to the mechanical 
reliability analysis (involving time-consuming and nonlinear response). Especially for the 
time-variant hybrid reliability problem under random and interval uncertainties, the time-
variant failure probability's upper limit is vastly interested. To adequately estimate it, the 
adaptive Kriging combined with design point-based importance sampling and meta-model 
based one are proposed by (Ling and Lu, 2020), etc. 

The different problems can be encountered with the diversity of Kriging-based methods or 
others as Table 1-4 below (Lelièvre et al., 2017) and Figure A1-2 in appendix A1. 

Table 1-4: Association of methods and types of problems 

 

1.2.3.3. Polynomial chaos expansions (PCEs) 

PCEs are a particular form of polynomial trend function that uses polynomials that are 
orthogonal w.r.t the probability density function (PDF) of the model parameters (Xinfeng Gao 
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et al., 2016).  In the context of uncertainty, quantification, PCEs, introduced by (Ghanem and 
Spanos, 1991), have proven to be well-established tools. For example, its applications in 
uncertainty propagation (Xiu and Karniadakis, 2002), sensitivity analysis (Le Gratiet et al., 
2017), and, to a lesser degree, structural reliability (Sudret and Kiureghian, 2002).  

On geotechnical engineering problems, sparse PCEs are often used to reduce the total 
computational costs and allow for efficient estimation of failure probabilities (Schobi and 
Sudret, 2017). In which the polynomial functions can be applied as surrogate models to 
estimate the response of complex systems.  

Although PCEs are often regarded as an efficient surrogate modeling technique due to their 
global convergence behavior, it has been employed only seldom in reliability analysis (see, 
e.g.,  (Notin et al., 2010)). This situation could result in their lack of accuracy in the model 
response distribution tails, which are essential in this field (Marelli and Sudret, 2018). 
Moreover, most active-learning approaches with surrogates require several local error 
estimations to adaptively enrich a small set of model evaluations near the LSF. Yet, PCEs 
cannot offer a variance error such as AK-based methods.  

Let consider a finite variance model Y=(X) representing the response of some quantity of 

interest Y to the random input X  M, modeled by a joint PDF fX. Thus, the functional inner 

product defined by: 

  , ( ) ( ) ( ) ( ) ( )
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X X X
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g h g x h x f x dx g h
 

(1.44) 

Herein X represents the input domain. By independent input variables assumption, that is 

1

( ) ( )


X X

M

i i
i

f x f x , one can denote (X) as the following generalized PCEs (see, e.g., 

(Ghanem and Spanos, 1991; Xiu and Karniadakis, 2002)) 
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(1.45) 

Where y is a real coefficient vector and  is a multi-index that points out the degree of the 

multivariate polynomial   in each of the input variables Xi: 
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M
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(1.46) 

Herein ( )
 i

i is a polynomial of degree αi that belongs to the orthogonal polynomials family 

(polynomials and basis), as in Table 1-5 below regarding the marginal PDF fXi.  
Table 1-5: Classical Orthogonal Polynomials Distribution (Sudret, 2012) 

 

The definitions of the DoE and the polynomial’s degrees can be tricky (Blatman and Sudret, 
2010). Moreover, accuracy evaluation requires cross-validation. Thus, in geotechnical 
engineering, polynomial chaos expansions are often combined with KARM, for example 
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(Schöbi and Sudret, 2014; Xinfeng Gao et al., 2016; Weinmeister et al., 2019) or connected 
with Bootstrap as in (Marelli and Sudret, 2018). 

1.2.3.4. Other surrogate models 

Some well-known metamodels can be listed as the artificial neural networks (ANN) 
(Papadrakakis et al., 1998), Radial basis functions (RBF) (Krishnamurthy, 2005), and extended 
radial basis functions (ERBF) (Mullur and Messac, 2005). In contrast to the traditional response 
surface methodology (RSM) only approximating a least-squares distance to the data points, the 
mentioned methods offer an interpolation surface that passes through all training data points. 
These methods do not assume a unique shape for the approximation (c.f., polynomials in RSM); 
alternately, they characteristically consist of a group of functions, each incorporated with 
individual points in the design space (Miro, 2016). 

Recently, new complex techniques for global reliability methods are investigated in many 
different approaches. Firstly, the combining Proper orthogonal decomposition (POD) method, 
also recognized as Karhunen-Loève decomposition (Karhunen, 1946), with radial basis 
functions (shortly, POD-RBF) developed by (Buljak, 2010). Secondly, this method's extension 
is called POD-ERBF by using an extended version of RBFs (instead of the original RBFs) 
(Mullur and Messac, 2005). More recently, a hybrid RNN-GPOD surrogate model for real-
time settlement predictions in mechanized tunneling is also taken into account by (Cao et al., 
2016), combining Gappy proper orthogonal decomposition (GPOD) and recurrent neural 
networks (RNN). 

1.2.3.5. Stop criteria in Meta-modelling 

It has been shown that the stopping criterion based on exceedance of the max (or min) value of 
the chosen learning function concerning an allowable amount can be too conservative. For 
example, in (Gaspar et al., 2015), by using the AK-MCS-IS method, the authors showed that 
the failure probability prediction could be stabilized much sooner than the stopping criterion 
defined by min{U(x)}>2 is satisfied. Following the two authors, the additional samples in DoE 
can have any more significant contribution after the stabilization of the exceedance probability 
even if their U values are smaller than 2.0. More comprehensive discussions on the limitation 
of the EGRA and AK-MCS can be found in the work of (Hu and Mahadevan, 2016a). Follow 
these authors, the variance of the probability prediction consists of two parts: the first part 
comes from the responses of MCS samples. In contrast, the second part comes from the mutual 
effects of these individual responses. Thus, the EFF and U learning functions focus only on 
reducing the different variances in the first part, and their convergence criteria are not defined 
from the aspect of reliability analysis.  

From the previously mentioned discussions, it can be stated that the AK-based models can have 
sufficient accuracy in terms of failure probability prediction, and hence a stopping criterion 
based on a defined stabilization condition of the probability is preferred. In our study, we apply 
a proposed rule by (Gaspar et al., 2015) as follows:   

  
( ) (1)

(1)
, 2,..., 


  

i
f f

f

P P
i N

P
          

(1.47) 

where (1)
fP is the reference probability of failure using to detect the stabilization, and ( )i

fP  

(i=2,…, N) is the probability in the i-th iteration. The allowable tolerance =0.015 and N=100 
are suggested in (Gaspar et al., 2015) for closed-form (analytical) solutions. Besides, these 
authors proposed that this stopping criterion should be interpreted as an additional criterion to 
the original proposal by (Echard et al., 2011) (i.e., min{U(x)}>2 in case of the AK-MCS 
method).  
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A quite similar stopping criterion, called ks-fold cross-validation, was proposed in (Xiao et al., 
2018). Concerning the rule in Eq. (1.47) these last authors used the failure probability of the 
current iteration (i.e., the probability estimated from all training samples) as the reference 
exceedance probability (1)

fP . Further, the probability ( )i
fP  (i=2,…, N) are the probability of 

exceeding calculated from the previous (N-1) iterations using the surrogate model that is built 
with the ith subset left out of the current iteration. The value of  =0.01-0.02 was proposed in 
(Xiao et al., 2018), while a smaller amount could be selected for more accurate results.           

1.3. Reliability analysis of underground structures: state-of-the-art 

Reliability evaluation can evaluate the combined effects of uncertainties in the input parameters 
and provide a supplement to conventional structural analysis (Gharouni-Nik et al., 2014). 
Generally, the ability to tolerate the existing loads of the liner plays a vital role in tunnel 
excavation. Thus, tunnels must be considered with the applicable structural system to afford 
these loads. The principles of probability and mathematics for engineering reliability which is 
now a valuable tool for approximating the appropriate response of systems. This section 
concentrates on the basics of the reliability in geotechnical engineering to deal with 
uncertainties, especially with underground structures like tunnels constructed in the rock-mass. 

1.3.1. Application of general reliability analysis problems 

Recently, reliability analysis has been received much attention from researchers, especially the 
progress towards practical applications of such methods. However, almost all the specifications 
and studies concern and are for geotechnical structures in soil problems. Rock engineering 
principles seem to be neglect in Eurocode 7 (EC7), as highlighted by (Harrison, 2014). This 
reason could be from the fact that the discontinuous, heterogeneous, and anisotropic nature of 
the rock mass requires a robust deal of empiricismto be involved (Lamas et al., 2014).  

The closed-form or semi-closed-form solutions were widely applied to verify various 
probabilistic methods or surrogate models. Herein, Monte-Carlo simulation (MCS) can be 
listed as the most application without computational effort, and the MCS results are usually 
considered as the typical benchmark for comparing other methods, e.g., (Lu et al., 2011; Lü 
and Low, 2011b; Idris et al., 2016). The FORM and SORM also increasingly received practical 
attention after a new proposed spreadsheet-based algorithm by (Low and Tang, 1997a; Low 
and Tang, 2004; Low and Tang, 2007) for both independent standard Gaussian and dependent 
non-normal variables, such as many types of research by (Li and Low, 2010; Goh and Zhang, 
2012; Wang et al., 2013). 

During the last decades, many practical procedures for the application of probabilistic stability 
analyses of underground structures have been provided. One can find the application of 
FORM/SORM in underground structural analysis by (Cai and Elishakoff, 1994; Laso et al., 
1995; Celestino et al., 2006; Shin et al., 2009). In which almost all problems used classical 
reliability techniques and relied on a ground-support interaction diagram. Mollon presented a 
probabilistic analysis and design of circular cross-section tunnels against the stability of the 
working face by using RSM (Mollon et al., 2009b). Then, Li and Low (2010) followed by (Lu 
et al., 2011; Lü and Low, 2011a), applied into circular tunnel structures using RSM and SORM.  

Some researchers concentrated on the probabilistic selection of appropriate rock quality in 
tunnel surrounding area. Oreste (2005) performed a probabilistic calculation and used some 
design tools for tunnel supports. His probabilistic approach has sufficient data on the quality 
of the rock mass around the tunnel. That leads to a better understanding of the risks, more 
efficient geomechanical zoning; finally, a more reliable estimation of the costs.  
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Probabilistic investigations on structural design phenomena have been paid much interest in 
recent decades. For example, Oste (Oreste, 2005) evaluated the geomechanical rock quality's 
uncertainty to the design of preliminary tunnel supports. (Celestino et al., 2006) evaluated the 
failure probability by using MCS according to load and resistance factor design principles for 
the failure modes. Follow these authors, the distribution of tunnel strength capacity was 
obtained and compared to the load by varying tunnel support parameters. (Langford and 
Diederichs, 2013) given a modified PEM for the reliability-based analysis, and then applied it 
to account for Hoek-Brown parameters' variability when designing the tunnel lining. (Lü et al., 
2013) proposed a new approach for assessing the system reliability of rock tunnels with three 
failure modes (i.e., inadequate support capacity, excessive tunnel convergence, and insufficient 
rock bolt length). Note that the reliability of specific components of the tunnel has been studied 
separately toward nondeterministic conditions. For example, (Lü et al., 2013) considered rock 
bolts in the analysis, and (Yang et al., 2007) mainly focused on shotcrete in their reliability 
analysis. Nevertheless, the question of the reliability of the entire tunnel support system 
concerning all assembled components is still unresolved in the literature. Briefly, in the past, 
numerous studies have dealt with the issues of uncertainty of ground conditions and the 
assessment of rock quality in the tunnel face linking to mechanical properties or geotechnical 
investigations.  

For the-state-of-the-art of Active learning and Kriging-based methods (AK-based methods), 
one can refer to the summary by (Lelièvre et al., 2018) as in Appendix A.1. While (Li et al., 
2016) utilized the uniform design and support vector machine (SVM) to develop a hybrid 
methodology for probabilistic tunnel stability analysis.  

1.3.2. Spatial variability problems 

In geotechnical applications, spatial variability can be considered as the most significant source 
of uncertainty (Shokri et al., 2019). Thus the characterization of geotechnical variability is the 
most critical element (Phoon and Retief, 2016). Because of the inherent existence of 
inhomogeneity and discontinuity, the local material strength and the mechanical response in 
rocks are profoundly affected by spatial variability (Gao et al., 2018).  

In geological materials, spatial variability rises under its formation by natural processes acting 
over an incredibly long time, such as millions of years. It endows Geo-material with some 
unique statistical features not typically observed in structural material assembled under 
rigorous quality control. This variability is often characterized by the spatial correlation length, 
which describes the distance over which the input parameters are identical or correlated. The 
closer distance (i.e., adjacent locations),  the more likely similar parameters are. To characterize 
the spatial variability through the field, one frequently applies a correlation function such as 
Markovian or Gaussian. This function shows the connection between the spatial correlation 
length and the distance separating two points.  

The spatial variability can be completely defined by a PDF (i.e., mean and standard deviation), 
and an autocorrelation function (ACF) with a corresponding autocorrelation distance (i.e., the 
scale of fluctuation). Generally, at a specific location, rock properties are closer to adjacent 
locations than those at distant sites. In geotechnical practice, it is difficult to get the real ACF 
for rock-based on-site investigation data limitation. Yet, since the different CAFs produce 
insignificant differences in results. Among theoretical ACFs, the squared exponential function 
is the most well-known ones in the literature (Li et al., 2015; Jiang and Huang, 2016); it is also 
utilized in our study as follow 

  
2 2

1 2 1 2
1 1 2 2

| | | |
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where (x1, y1) and (x2, y2) are the spatial coordinates of two points (2-D domain); 𝜃ℎ and 𝜃v are 
correlation lengths, respectively denote the horizontal-, and the vertical- correlation distance 
of soil properties. Notably, the relation between the scale of fluctuation ( , )  i i h v  and the 

correlation length can be expressed as ( , )    i i i h v (El Haj et al., 2019). 

Table A1-4 in the Appendix shows the review of the literature relating to spatial variability 
problems in the recent decade in the broad context of geotechnical engineering. Indeed, when 
material properties vary spatially, analyses are often carried out with the help of finite element 
models (FEM). Thus, in the table, we also mention the list of FEM software that researchers 
have applied. If the effect of spatial variability was discussed in many problems such as the 
slope stability, foundation, and dam construction, the contribution in the tunnel structures 
seems very limited with just only several recent works, see for example (Huang et al., 2017a; 
Lü et al., 2018; Hu and Wang, 2019). From these studies, the authors showed that the failure 
probability could be markedly overestimated if the spatial variability is neglected. In addition, 
the vertical scale of fluctuation has a much significant effect than the horizontal level of impact 
on the probabilistic results of tunnel convergence.   

1.3.3. The long-term behavior problems 

So far, tunnel analysis and tunnel support design have mainly been carried out based on 
hypotheses of the time-independent behavior of the massif. Typically, the excavation process 
is assumed to be immediate, yet the linings are supposed to be a quick process installing 
sometime after or during the full excavation. These statements could cause an underestimation 
of the attained results since an extensive range of rocks presents a considerable time-dependent 
reaction, even in many cases that can participate to more than 70% of the total convergence 
(Sulem et al., 1987). Several kinds of research in the field (Arnau et al., 2012; Barla et al., 
2012; Sharifzadeh et al., 2013; Vu et al., 2013; Bui et al., 2014; Manh et al., 2015; Long Zhang 
et al., 2016) shown that the delay exemplifies a crucial influence on either the final tunnel 
convergence or the stability of the liners.  

From the deterministic point of view, the consideration of the time-dependent effect on the 
analysis and design of the tunnel can be conducted by adopting an appropriate time-dependent 
mechanical behavior law of rock mass. Many constitutive models, such as linear viscoelastic, 
non-linear viscoelastic, and Elasto-Viscoplastic law, were presented in the literature. They aim 
to simulate accurately the results observed in the laboratory (usually through the uniaxial and/or 
triaxial creep tests) or the measurement of tunnel convergence conducted in-situ. More and 
more sophisticated models that allow accounting for not only the Elasto-Visco-plastic 
phenomenon but also the anisotropic effect were presented in the literature. If these models fit 
quite well with different observations, the determination of many parameters involved in the 
models presents a considerable challenge regarding the limited available experimental results. 
This challenge will be emphasized in the context of reliability analysis when the quantification 
of uncertainty of the parameters is challenging, even impossible. Consequently, a simple model 
of rocks involving a lower number of parameters seems preferred for the time-dependent 
reliability analysis.   

The simplest models that could consider the time-dependent effect on the mechanical behavior 
of rock mass are the linear viscoelastic laws developed from some well-known rheological 
models. There are several popular viscoelastic models built by combining series or parallels of 
Maxwell's model and Kelvin's model. A brief synthesis of some commonly used rheological 
models to characterize the linear viscoelastic behavior of rock mass will be presented in the 
next section. The advantage of using these models is the possibility to deduce the analytical 
solutions of deep tunnels excavated in rheological rocks, which allows them to quickly 
investigate the parametric study and/or validate the developed numerical simulation. This work 
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is also crucial for the reliability analysis problem when one would like to confirm a new method 
by comparing it with the referent solution of the direct MCS using the analytical solution. It is 
the case of the present research. In the next chapter, an analytical solution of the deep tunnel 
excavated in the viscoelastic Burgers rock is firstly presented, while the direct MCS is carried 
out in the next step to investigate the time-dependent failure probability of underground 
structure. These results are then utilized to validate a new metamodel that helps to improve the 
efficiency of the well-known AK-MCS. The validation allows us to apply this new metamodel 
to study the tunnel in the more appropriated time-dependent constitutive law, such as the non-
linear viscoelastic model of the rock mass. Note that, in this context, the analytical solution is 
no longer available, and the utilization of the numerical simulation, which is usually 
expensively time-consuming, is necessary.  

From the knowledge of the present author, the consideration of time effect on the reliability 
analysis of tunnel in rock mass has not yet been conducted in the literature. The difficulty of 
this kind of problem is multiple. Firstly, as mentioned above, the quantification of parameters’ 
uncertainty is difficult due to the limited experimental results. Secondly, the duration of the 
creep-test in the laboratory (some hours to several months) or the measurement in situ (several 
months or even several years) seems to be very short as compared to the life service of the 
tunnel (designed sometime for hundred years). Thus, the quantification of uncertainty of the 
time-dependent mechanical properties of rock mass from these measurements will be used to 
extrapolate the result at the very long-term and contribute to (an even more significant) 
uncertainty. However, the quantification of this kind of uncertainty (i.e., for the extrapolation) 
is an open question and will not be discussed in the present research.  

1.4. Brief syntheses of some constitutive models of rocks 

A summary of some commonly used linear- and non-linear-viscoelastic rocks constructed from 
rheological models is presented in this section. In general, viscoelastic deformation is 
characterized by a non-linear stress-strain response that travels along a different path upon 
unloading. Nevertheless, given enough time after the loadings removing, the stress-strain curve 
approaches the origin (Aboudi et al., 2013). Note that the well-known linear-viscoelastic, so-
called Burgers model, which will be used in the next chapter, belongs to this class of materials. 
Then, another famous non-linear viscoelastic one, which will be used as the fourth- and last- 
chapter model, is also tacked. 

The time-dependent constitutive law here can be understood as a stress-strain-time relationship, 
defined by loading a specimen with constant stress (creep) or strain (relaxation or isometric), 
illustrated as the curves below (ASTM Standard D2990-09, 2011): 



   53 

 

 
Figure 1-8: Constant stress-strain-time coordinates (ASTM Standard D2990-09, 2011) 

1.4.1. Constitutive models of linear viscoelastic rocks 

In practice, viscoelastic constitutive models are regularly utilized to ascertain the strains and 
stresses in the rock mass and to find suitable supports. Viscoelasticity is a time-dependent 
behavior, characterizing materials illustrating both an elastic and a viscous behavior when 
deformation is imposed (Carret, 2018). The elastic deformation explains the short-term 
response to stress, while the viscous one defines the long term response. In contrast to the 
elastic case, the viscoelastic material response depends on the instantaneous value of the stress 
as well as its entire history. Besides, viscoelastic behavior presents sensitivity to the speed of 
the stress. The smaller the amplitude of the response, the higher the speed of the stress is. Such 
an elastic behavior, viscoelastic behavior, is said to be linear when the response is proportional 
and additive to the stress. This note can be highlighted from creep or relaxation tests for 
different values of the stress (Salençon, 2009). In our study, rheological characteristics are 
identical in all directions, so-called isotropic materials, and the constitutive equations focus 
only on primary and/or secondary creep. With the hypothesis of small transformations, the 
constitutive equations of a general linear viscoelastic solid could be shown as follows (Wang 
et al., 2015): 
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where x is the position vector; v
ijs  and v

ije are the stress and strain deviator tensors, respectively 

(the superscript ‘v’ stands for viscoelastic) and are defined as (Song et al., 2018a): 
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(1.50) 

Herein v
ij  and v

ij are the stress and strain tensors, ij is the unit tensor; and G(t) and K(t) 

represent the shear and bulk relaxation moduli, respectively. Through viscoelastic processes, 
the relaxation can be integrated for both the short term and long term (Nedjar and Roy, 2013). 
Based on analogies to Spring-and-Dashpot models, there are four commonly used physical 
viscoelastic models, namely: (a) Maxwell model, (b) Kelvin model, (c) Boltzmann model 
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(Kelvin-Voigt), and (d) Burgers model. The strains versus time behavior for these models are 
illustrated as in Figure 1-9. 

The primary forms of stress-strain-time relationship for these models under uniaxial loading 
are synthesized based on some formulas in recent articles, e.g., (Mogilevskaya and Lecampion, 
2018) and (Paraskevopoulou and Diederichs, 2018) as follow: 

Table 1-6: Linear viscoelastic models with the primary forms of stress-strain relationship 

No. Medium Forms of stress-strain relationship  

(a) Maxwell 

M
M

ME

   
 

 
 

( )
3M M

t
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(b) Kelvin 
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(c) 
Boltzmann 
(Kelvin-Voigt) 
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(d) Burgers 

M M K M K M K
M

M K K M K KE E E E E E

           
    

      
                                        

( ) 1 exp
3 3

K

M K M

E t t
t

E

 
 

  
      

    

(1.54) 

The overdot indicates the time derivative;  stands for the viscosity of the dashpot element 
(;   E denotes the Young modulus of the spring and (E. 
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Figure 1-9: Strain versus time behavior for four viscoelastic models (Dowling, 2012) 

Notably, in the linear viscoelastic region, the well-known principle called Boltzmann 
superposition principle (or integral) explaining the response of a material to separate loading 
histories is vital in forecasting the creep behavior of plastic materials in a variety of test 
conditions. This principle is that the reaction of a material to a provided load does not depend 
on the material's response to any pressure already existing in the material. In other words, the 
creep strain at any time is the sum of the deformations due to each change in stress, σ, that 
has occurred, where each σ is considered to act continuously as applied stress, starting from 
the time it happens to any later time (Dowling, 2012).  

1.4.2. Constitutive models of viscoplastic rocks 

The non-linear viscoplasticity model, like linear viscoelasticity, still considers the strains to be 
infinitesimal. Nevertheless, with the non-linear case, doubling the loading no longer results in 
a doubling of the response. As a result, the constitutive model is non-linear, and the Boltzmann 
superposition integral is no longer applicable. In many cases, the stress level at which the 
material becomes non-linear appears to decrease along with increasing time (Aboudi et al., 
2013). The long-time predictions may require the use of non-linear viscoelastic constitutive 
equations, even for very low-stress levels. In this section, we revisit a short overview of some 
common law used for rocks (i.e., Power’s law, Lemaitre’s model, so on) 
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The power law is based on the original expression suggested by (Obert, 1965). The relationship 
between strain, stress, and time can be shown as 
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ε σ
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(1.55) 

where εa is the axial strain at time t, σ is equivalent stress ( 1 3  ), n is an index of the power 

function between stress and strain, m denotes the index of power function between strain and 
time (creep coefficient), and k is constant at the reference time t1 and is related to the modulus 
of the material. 

Other forms of Power’s law can be found in the literature; for example, Bailey and Norton 
(Betten, 2008) form: 
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Herein the parameters A, A’, m, and m’ remain as the material constants that are generally 
independent of stress and can be determined in a uniaxial creep test; n and n’ are stress 
exponents.  

Among various possibilities, in our thesis (especially in chapter 3 and chapter 4), we choose 
Lemaitre’s model to describe the time-dependent behavior of host rock. In fact, most of the 
authors dealing with the time-dependent behavior of COx claystone proposed various models 
based on the elasto-visco-plasticity concept (Seyedi et al., 2017; Stavropoulou et al., 2020). 
Even if many sophisticated models have been taken into account the unique features of COx 
rock behavior (see, for example, (Armand et al., 2017c; Mánica et al., 2017; Seyedi et al., 2017; 
Souley et al., 2020; Stavropoulou et al., 2020) for more details), the non-linear viscoelastic 
model of Lemaitre is chosen for its simplicity and limited numbers of constitutive parameters.  

By neglecting the thermo-mechanical (or thermo-hydro-mechanical) coupling effect, the total 

strain tensor totε reads: 

 ε  tot e v   (1.57) 

where εe  and εv  indicate the elastic and viscous strain tensors, respectively. The viscous strain 
rate ( εv ) is expressed thanks to Lemaitre’s law: 
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(1.59) 
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(1.60) 

In these equations σ  and σ  are the stress tensor and its corresponding deviatoric part, 
respectively, and I indicate the second-order identity tensor. The over-dot denotes the time 
derivative while tr( )σ  designates the trace of the stress tensor. Also,  and eq mean the 
cumulate viscous strain (i.e., the time-dependent distortion strain) and the equivalent stress (or 
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the Von-Mises stress), respectively. The positive triple (K, n, m) is the set of mechanical 
parameters characterizing the long-term behavior of the material following the Lemaitre model. 

Put = n/m, the cumulate viscous strain is explicitly expressed as:  
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Equivalently, the more compact form is written as: 

     B C
eqA t  (1.62) 
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Besides, the positive triple is then inferred based on the parameters A, B, C as follows: 
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Note that creep in the viscoelastic model is generally assumed proportional to the deviatoric 
stresses, while hydrostatic pressures alone will not produce creep effects. Thus, creep 
effectively reduces the shear modulus and Young’s modulus of a material, while the bulk 
modulus is not affected by it (Fjar et al., 2008). 

1.5. Summary 

This chapter revisited some central concepts of reliability analysis, from the sources of 
uncertainty to their inclusions, and its applications for underground structures in design 
problems. Afterwards, the head of uncertainties can be categorized as aleatory and epistemic. 
Aleatory uncertainty is listed as temporal and spatial. In comparison, parameters and models 
belong to epistemic uncertainty cases.  

Quantitatively, the underground structure's stability analysis is conducted by measuring the 
failure probability thanks to using an appropriate probabilistic approach. The most famous 
method is the Monte Carlo Simulation (MCS), which could provide an accurate estimate of the 
probability due to many trials. This approach has been primarily considered the benchmark to 
validate the other probabilistic methods (e.g., FORM/SORM or RSM), demonstrating their 
feasibility and effectiveness in different projects. However, since the sampling methods like 
the MCS require a massive number of structure response evaluations, they seem unfeasible in 
the case of rock formations due to complex behavior that can only be solved by numerical tools.  

Recently, many advanced probabilistic approaches have been proposed in the literature to 
overcome these disadvantages. Generally, these approaches aim at establishing a metamodel 
(or surrogate model), which estimates the implicit LSF by a mathematical function. The 
reliability analysis is then conducted on the built metamodels (e.g., Kriging, RBF, ANN, SVM, 
Polynomial Chaos, etc.). 

From this bibliographic survey, the Kriging metamodeling technique will be chosen for the 
reliability analysis in the next chapters thanks to its flexibility in interpolating the sample points 
and high accuracy, notably for nonlinear problems. Although this metamodeling's approved 
performance in many structural design projects, it is surprising that it is rarely applied in 
geotechnics, particularly in the rock engineering field. Here, it is essential to emphasize that 
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almost all studies in the literature considered the uncertainty and/or variability of host rock's 
short-term mechanical properties on the deep underground structure's stability. 
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CHAPTER 2. RELIABILITY ANALYSIS OF DEEP TUNNELS 

EXCAVATED IN THE LINEAR VISCOELASTIC ROCKS 

2.1. Introduction 

In this chapter, the time-dependent reliability analysis of tunnels excavated in the linear 
viscoelastic rock will be investigated based on analytical approaches. Our analytical solutions 
are utilized here as a first assessment of the design parameters, offering guidance in the 
conceptual stage of the design process and a validation step (before tackling numerically). 
Precisely, in the early stage, we estimate the time-dependent exceedance probability of tunnel 
based on the direct MCS, which is conducted by using a new closed-form solution, presented 
in (Do et al., 2019). Since a common constitutive model employed in rock engineering, the 
Burgers rock is chosen among linear viscoelastic models mentioned in section 1.4.1. While, in 
the second stage, an extension of the well-known AK-MCS metamodeling with a novel 
learning function is proposed, a so-called modified AK-MCS. Then, this modified function's 
validation work is investigated by comparing it with the results obtained in the first step. This 
work is especially important because it allows us to apply this technique in the next sections in 
the specific study- cases with much more complex problems (i.e., the viscoplastic behavior of 
rock mass, tri-linear elastic of the compressible material such in chapter 3; and additional 
complicate task with consideration of the spatial variability in chapter 4). 

2.2. Closed-form solution of double-lined tunnels in linear viscoelastic rock 

Theoretically, in linear-viscoelastic rocks, one can consider the time-dependent behavior by 
numerous analytical approaches (Fahimifar et al., 2010; Nomikos et al., 2011; Wang et al., 
2013, 2014; Song et al., 2018b). More specifically, these rocks are often modeled with the 
combination of Hookean elastic springs and Newtonian viscous dashpots, such as in Table 1-6 
and Figure 1-9 (Chapter 1). Especially, in the literature, many closed-form solutions of deep 
tunnels in the viscoelastic Burgers model, which allows considering the transient and secondary 
steady-state, are proposed. For instance, regarding (Fahimifar et al., 2010), these authors 
investigated the effect of the tunnel face advancement and the stress history before tunnel 
construction. Nevertheless, their analytical solution was developed under the initial assumption 
that the behavior of the rock had no effect on the variation of the rock support pressure. 
Progressively, (Nomikos et al., 2011) have derived a closed-form expression from accounting 
for the stress state before excavation of the tunnel and the time elapsed between excavation as 
well as the installation of available support.  It should be noted that, in many practical projects, 
the tunnel is usually driven in complex geological conditions and the tunnel cross-section has 
a large size. Thus, a sequential excavation and installation of more than one-liner play a vital 
role in preventing collapse (Miura et al., 2003; Mason and Abelman, 2009; Sharifzadeh et al., 
2012). In other words, the time-dependent behavior of tunnels has crucial effects due to the 
sequential construction process. Numerous contributions have been proposed to address the 
problems of installing sequential supports, for example, (Wang et al., 2013, 2014); however, 
their proposals are still limited for tunnels excavated mainly in generalized Kelvin viscoelastic 
rock masses.    

2.2.1. Viscoelastic of rock mass with double-liners tunnel 

A deep double-lined tunnel excavated in a homogenous, isotropic, and incompressible 
viscoelastic rock mass subjected to hydrostatic far-field stress 0

hp  will be investigated in this 

section. The assumption of incompressible material allows us to obtain analytical solutions 
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rapidly. Notably, as shown in Figure 2-1, the two liners can be installed at separate instants t1 
and t2. Furthermore, the first lining is assumed to be firmly bound to the rock mass as well as 
to the second.  

The tunnel excavation can be sequential and represented by a variety of radii over time as 
follows: 

 
0

0

( ) 0
( ) ifini

fin

R g t t t
R t

R t t

  
    

(2.1) 

where: iniR , finR are the initial and final excavated tunnel radius at the instant 0t  and 0t t , 

respectively. The function ( )g t  indicates the real cross-section of the excavation process and is 

defined according to the radial excavation’s rate ( ) rg t v t   with the parameter vr reads: 

 0( ) /r fin iniv R R t 
 

(2.2) 

 
Figure 2-1: The sequential excavation of the double-lined tunnel and the installation of two linings 

The effect of the tunnel face advancement on the interested tunnel section is taken into account. 
Precisely, a fictitious internal pressure applied to the tunnel’s perimeter is mainly considered. 
The decreasing pressure starts from the initial stress state 0

hp to zero as follows (see also Wang 

et al. 2014): 

  0 0( ) 1 ( ) ,hp t p t 
 

(2.3) 

Herein the dimensionless parameter (0 1)    can take the following expression: 

 2
1( ) 1 exp . ,

( ) l

m
t m v t

R t


 
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   
(2.4) 

In this equation, one assumed that the constant rate lv  (i.e., advancement rate) is sufficiently 

minor to ignore the dynamic effects. The two coefficients 10 1m  and  2 0m  characterized 
the tunnel face advancement curve over time can be calibrated from either measurement of 
tunnel convergence in the actual field or simulations with FEM.  For instance, (Wang et al., 

2014), 1 0.7m  and 2 1.58m   are obtained from FEM simulations. More specifically, in Figure 
2-2, the curves of the parameter   are shown with various excavation rates by using the 
mentioned values of m1 and m2. The figure illustrates the fact that the faster the excavation rate, 
the higher the deconfinement rate on the surface of the tunnel. 
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Figure 2-2: Influence of the excavation rate on the deconfinement rate 

As mentioned previously, the first- and second-liner are installed at two different instants 1t t  

and 2t t  respectively. The correspondingly supported pressures 1( )p t  2 ( )p t at the outer 

face of these liners read:  
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2.2.2. Constitutive mechanical behavior law of materials 

The time-dependent behavior of rock masses can be explained by the viscoelastic Burgers 
model, which exhibits the rheological behavior of incompressible rock mass under deviatoric 
loadings (see Figure 1-9.d). In which, the four-component Burgers model consisted of the 
connection in series of the Maxwell- and the Kelvin-element. Under instantly applied stress, 
the initial reaction is determined by the spring of the Maxwell element (marked by parameter 
GM) while the Kelvin element (GK and K) and the dashpot of Maxwell element (M) control 
the transient creep and secondary steady-state creep, respectively (Jaeger et al., 2007; Nomikos 
et al., 2011). Under deviatoric loadings, the behavior of incompressible rock mass can be 
described by an expression:  

 ( , ) 2 ( )* ( , )ij ijs r t G t de r t
 

(2.7) 

In which the deviatoric tensors of stress and strain are computed as: 
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(2.8) 

The asterisk (*) in Eq. (2.7) introduces the well-known convolution integral being defined as: 
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By considering the following boundary conditions on the tunnel’s surface and at the far-field:  
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It can be deduced the expressions of radial and hoop stresses in the rock mass (Wang et al. 
2013): 
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Correspondingly, the radial displacement in the rock mass reads: 
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where: 
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With ( )G s  is the Laplace transform of the shear relaxation modulus ( )G t .  

The expression ( )H t for the Burgers viscoelastic model is determined as (Wang et al., 2014):    
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For lined tunnels, the isotropic elastic behavior is chosen so that the radial displacement (urL), 
the radial- and tangential-stresses (rL, L) considering the supports’ pressures on their 
boundaries can be easily deduced.  Let t1, t2 are the installed time of the first and second lining, 
respectively. One can obtain the desired equations for the first lining at instant time t (t  t1):    
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Similarly, for the second liner, the radial displacement and stresses at instant t (t  t2)  
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Herein 1R  (i.e., finR ) and 2R indicate the exterior- and interior-radius of the first liner; 3R  

means the inner radius of the second liner (as in Figure 2-1). The relation of shear and bulk 
moduli of each tunnel support and Young’s modulus, as well as Poisson ratio, reads: 
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2.2.3. Development of the closed-form solution 

This section briefly represents the process to deduce the closed-form solution of the interesting 
problem, while more details can be found in (Do et al., 2019). 

The pressures of each liner are acquired from the compatibility conditions of displacement at 
the interface between the rock mass and the first liner (p1) and at the interface of two support 
liners  (p2). Clarify, the continuity of displacements condition between the first liner and the 
rock mass is expressed as: 

 1 1 1 1 1 1( , ) ( , ) ( , ), ( )r r rLu R t u R t u R t t t    (2.22) 

Similarly, the compatibility of the displacement at the interface of two liners imposes: 
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These equations (Eqs. (2.22) and (2.23)) can be rewritten with the form of the standard integral 
equation (see (Do et al., 2019) for this transformation) as follow: 
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The solution of this equation can provide the supporting pressure of the first liner as (for the 
sake of simplicity, see the detailed developments in (Do et al., 2019)): 
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as well as the supporting pressure of the second liner:  
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Once obtaining supporting pressure  1p t , the radial displacement (rock mass) can be 

identified by using the Eq. (2.12); more specifically, this displacement is indicated according 
to time periods as follows:  
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For 0t t  (i.e., the excavation stage), by substituting 1( ) 0p t   and Eq.(2.14) into Eq.(2.12), the 
displacement reads: 

 
20

1 1 1

1 1 1
( , ) ( )( ) exp ( ) ( ) ,

2


  
  

          

h
K

r ini r
M K K M

p G
u r t t R v t t D t G t

r G
 

(2.29) 

where:  
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For 0 1t t t  , (i.e., after the excavation and before the first liner's installation), the 

displacement is now derived by: 
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where:  

 
0 0

2
2 1( ) ( )exp 1 . xp exp

t t
lK K

t t
K fin K

m vG G
D t d m e d

R

     
 

     
               
 

 
(2.33) 

 
0 0

2
2 1( ) ( ) 1 . xp

t t
l

t t
fin

m v
G t d m e d

R


   

  
         
 

 

(2.34) 

For 1 2t t t   (i.e.,  after the first liner's installation and before the second liner's installation) 
the displacement reads:  
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where:  
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For 2t t (i.e., finishing the second liner’s installation), after some manipulations with using 

the support pressure acting on the rock 12( )p t  (as in Eq. (2.26)), the displacement is deduced: 



   65 

 

  2 20 0
4 0 12 1 0 2

2 2 20 0
3 2 4 1 0 2

2
3 2

1 1
( , ) ( ) ( ) exp ( ) exp ( )

2

1 1
exp ( ) exp ( ) ( ) ( )

1
( )

h h
h K K

r fin fin
M K K K K

h h
K K

fin fin fin
K K K K M M

fin
M

p pG G
u r t p t p t R t D t R t D t

r G

p pG G
R t D t R t D t G t R G t

R G t


   

     



    
              

   
        

   

  2
4

1
( )fin

M

R G t




  

(2.38) 

where:  
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2.3. Validation of the closed-form solution  

2.3.1. Input parameters for deterministic cases  

The previous closed-form solutions are now compared with several existing analytical 
solutions in the literature and the F.E.M simulation's numerical results. For the mathematical 
applications, similar to (Nomikos et al., 2011), the viscoelastic Burgers rock parameters ( KG ,

K , MG , M ) are used and summarized as in Table 2-7 below. While the remaining 

parameters, namely the elastic properties of two liners ( 1LE , 2LE , 1 2,L L  ) are also chosen in 

this table. The hydrostatic stress at far-field ( 0
hp ) values at 6.8 MPa. Besides, the tunnel radius 

and the thickness of liners are selected respectively to: 0( )iniR m , 4.5( )finR m , 1 0.12( )l m

, 2 0.2( )l m (with the correspondingly, 2 4.38( )R m , 3 4.18( )R m ).  
Table 2-7:  Properties of Burgers rock and the two liners 

Parameters  
GM 

(GPa) 

GK 

(GPa) 
M  

(GPa.s) 

K  
(GPa.s) 

EL1 

(GPa) 

 
L1  

EL2 

(GPa) 
L2  

Value 3.447 0.3447 94.137 10  
72.068 10  16.547  0.2 39.1 0.2 

2.3.2. Case of tunnels in the viscoelastic Burgers rock supported by an elastic liner  

Initially, it needs a specific example of a deep tunnel being dug in the viscoelastic Burgers rock 
and supported by a single elastic lining for the validation of our proposed analytical solution. 
We choose the referent analytical solution introduced in (Nomikos et al., 2011), where the time 
elapsed between excavation and installation of the support, as well as the effect of support 
deformation on the time-variant response, were investigated. We keep the hypothesis adopted 
from Nomikos paper, that is, the excavation of the tunnel is instantaneous, or the tunnel face 
advancement and the stress history before tunnel construction is not counted. The Nomikos 
solution can be adopted as a specific case of our advanced solution (by taking the parameter 

1 0m   in Eq. (2.4)). Furthermore, our solution, mainly used for calculating the support 

pressure 1( )p t and radial displacement 1( , )ru R t ), highly agrees with (Nomikos et al. 2011), as 

shown in Figure 2-3 below by applying a constant of Ks,, a stiffness of liner used in (Nomikos 
et al. 2011) as follows: 
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Notably, in these studies, the lining is installed at t=t1=30 (days) after the tunnel excavation. 

 
Figure 2-3: Validation of our solution to (Nomikos et al., 2011) 

 (a) Radial displacement, (b) Supporting pressure 

2.3.3. Case of tunnels in the viscoelastic general Kelvin rock supported by double liners  

The closed-form solution here could be considered as an extension of the prior contributions 
of (Wang et al. 2013) and (Wang et al. 2014) whose general solution was investigated for n-
liners tunnel excavated in the generalized viscoelastic Kelvin rock masses. Obviously, the 
Burgers material of this work behaves like a generalized Kelvin material, and our solution 
converges towards the solution of (Wang et al. 2013; Wang et al. 2014) by using an infinite 

dashpot for the Maxwell element (i.e., M ). Figure 2-4 shows good agreements between 
our study and the solution of (Wang et al. 2014) (the two liners are put at two different instants 
t1= 10(days) and t2=30(days) respectively with t0=1(day)).  
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Figure 2-4: Comparison of the solution to Wang’s ones of (Wang et al., 2014) 

On the cavity: (a) Radial displacement, (b) Radial stress, (c) Hoop stress 
Radial support pressure: (d) on the first liner, (e) on the second liners 

2.3.4. Comparison to the numerical solutions  

This section consists of comparing our closed-form solution with numerical approaches 
attained from the finite element method (FEM) implemented on the Code_Aster (Code_Aster® 
software). Figure 2-5 illustrates the geometry and boundary and the grid of the modeling with 
one-quarter of the tunnel with a total dimension of 45.0(m) based on the symmetry problem. 
Notably, the initial conditions (namely, the boundary conditions and the sequential excavation 
and installation of liners) are kept as in the mentioned analytical simulation. That means on the 
top-and right- boundaries. We impose the hydrostatic stress 6.8(MPa) while on the bottom- and 
left- ones, the fixed normal displacement is applied. The quasi-instantaneous excavation is 
investigated with the initial time t0=5(minutes) while the two linings are put at t1=3(hours) and 
t2=2(days), respectively.   
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Figure 2-5: Problem statement with numerical solutions 

(a) Geometry and boundary conditions (b) Mesh of the vicinity of the tunnel  

The tunnel radial displacements in the vicinity and in the rock mass are time-variant functions 
(as in Figure 2-6 below). These figures show good agreements between the two approaches. 
One remark also the concordance of stress state calculated in the two liners as highlighted in 
Figure 2-7. Clearly, the creep behavior of time-dependent Burgers rock causes compressive 
radial stress (r) as well as tangential stress () in both the linings. The figures show that 
considering the liners' interior to the exterior surface, radial stresses significantly raise while 
the tangential ones slightly decline. Notably, the maximum equivalent stress (q=|-r|) on 
every lining is located on its inner surface. In these investigations, our proposed analytical 
solution differs from numerical ones by less than 3.5%. 

 
Figure 2-6: Validation of our solution to numerical solutions with radial displacements 

(a) versus time (on the cavity), (b) versus distance (in the surrounding rock mass of tunnel) 
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Figure 2-7: Validation of our solution to numerical solutions with stresses versus distances 

On the first liner: (a) Radial stress, (b) Tangential stress 
On the second liner: (c) Radial stress, (d) Tangential stress 

2.3.5. Parametric studies 

The influence of various parameters on the tunnel’s reactions can be investigated by using 
parametric studies. These parameters can be a face advancement rate of the tunnel, (or tunnel 
speed) an installation time, and thickness of liners as well as the viscoelastic Burgers rock 
properties (i.e., the first four parameters in Table 2-7). For this purpose, the interested 
parameter is varied during the investigation, while all other ones assume to be constant. 

In the first part, the tunnel's face advancement rate, the installation time, and the thickness of 
liners are firstly taken in to account for its effects on the tunnel behavior. These parametric 
studies are studied along with using the mean values of the four viscoelastic rock properties. 
Figure 2-8a strongly illustrates a faster excavation (i.e., a higher speed vl) conducts to a more 
evident tunnel convergence over time. This result is expected when the high rate stimulates a 
fast decrease of the initial pressure and thus a more critical radial displacement at the tunnel 
surface. Also, the high excavation rates can increase the equivalent stress in the second liner; 
yet it can reduce in the first lining (Figure 2-8b, c). However, the effect of the excavation speed 
on the behavior of coatings is not clear, particularly at the moderate rate of tunnel advancement 
about vl =1(m/day) and for initial liners installation time. For illustration, when the excavation 
rate varies from 0.75(m/day) to 4.5(m/day) and with t1=1(day) and t2=5(days), the maximum 
equivalent stress in the first liner is found with vl=0.75(m/day) (as in Figure 2-8a-center) while 
the minimum equivalent stress in the second one is obtained with vl=1.5(m/day) (as in Figure 
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2-8a-right). Thus, the complex evolutions of the stresses in the linings are highlighted. Notably, 
the liners must withstand at the identical time the increased radial displacement over time of 
the rock mass and the initial residual stress state on the tunnel surface.  

The installation of liners is proven that the earlier time can reduce the convergence of tunnel 
(Figure 2-9a) by using, without loss of generality, the excavation rate vl=0.75(m/day) and the 
considered time t=100(years). It is especially more critical with the earlier putting of the first 
liner generally makes a higher value of equivalent stress. Notably, installing the second liner 
as early as possible reduces the stress in the first liner but results in higher compressive stress 
in the second lining.  

For considering the thickness of the liners, Figure 2-9b shows a common trend of the tunnel 
convergence (i.e., radial displacement) and equivalent stress being reduced if a greater depth 
of each lining is applied. Note that the compressive stresses are analyzed at the inner surface 
(i.e., the maximum values in the isotropic and homogeneous cases). 

 

 

 
Figure 2-8: Sensitive analysis for the radial displacement and stresses on the liners (1) 

(a) excavation rate vl, (b) coupled analysis: vl and t1, (c) coupled analysis: vl and t2 

* The time considered in case studies of (b) and (c) is 100 years. 
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Figure 2-9: Sensitive analysis for the radial displacement and stresses on the liners (2) 

(a) coupled analysis: t1 and t2, (b) coupled analysis for liner thickness: l1 and l2 

* The time considered in these case studies is 100 years.  

In the second part, the impact of the four viscoelastic Burgers rock properties on the behavior 
of the tunnel is assessed. Figure 2-10a shows that the effect of the dashpot of Maxwell element 
(M) only obviously appears in the long-term. Specifically, the higher value of M  denotes a 
reduction of the tunnel convergence and the equivalent stress in the linings. Figure 2-10b 
illustrates the effect of dashpot of the Kelvin element (K). Subsequently, a higher viscosity 
coefficient (K) can slightly reduce the convergence of the tunnel but raise the equivalent stress 
in the second liner. Figure 2-10c demonstrates that the influence of the spring of the Maxwell 
element (GM) on the tunnel convergence. This is undoubtedly significant, but the equivalent 
stress of the first liner is negligible. Particularly, a greater value of this coefficient gives rise to 
the compressive stress in the second lining. Finally, Figure 2-10d proves that the Kelvin 
element (GK) effect is the most significant among the other Burgers rock parameters. 
Undoubtedly, the convergence and the equivalent stresses in the liners can be radically reduced 
with the higher coefficient (GK).     
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Figure 2-10: Sensitive analysis for the radial displacement and stresses on the liners (3) 

for viscoelastic input variables: (a) M, (b) K, (c) GM, (d) GK 

2.4. Reliability analysis by the direct MCS  

2.4.1. Chosen performance functions 

The uncertainty of the four viscoelastic Burgers rock properties (the random vector X = [GM, 
M, GK, K]) is mainly taken into account for the reliability analysis. In other words, the other 
uncertainty sources (i.e., the tunnel geometry, hydrostatic stress) are not considered. By means 
of the reliability analysis, the effects of different parameters (i.e., the advancement rate, the 
time of installation, and the thickness of the liners) on the exceedance probability of the tunnel 
are investigated. 

The analysis is considered with two failure modes being presumably related: the tunnel 
convergence exceeds an allowable value and the collapse of liners when the stress state 
overpasses have been tolerated. Especially, the radial deformation on the boundary of the 
tunnel is assumed to be limited to a maximum value lim. Therefore, the response function of 
the first failure mode, GTunnel, reads:      

 1

lim
1

( , )
( , ) ,

X
X   R

Tunnel

u t
G t

R  
(2.42) 

Additionally, the LSF of the second mode for each liner GL1, GL2 are expressed in the form:  
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 1 lim1 1 1 1 1( ) ( , ), with ( , ) ( , ) ( , )X, X X X X     L L L L rLG t q t q t t t
 (2.43) 

 2 lim2 2 2 2 2( ) ( , ), with ( , ) ( , ) ( , )X, X X X X     L L L L rLG t q t q t t t
 (2.44) 

In these Eqs. ((2.43) and (2.44)) the two parameters lim1 lim2,    respectively demonstrate the 
acceptable stresses of both linings.  

The value for each parameter will be systematically applied in our reliability analysis if the 
supplementary information is not given herein. The four viscoelastic Burgers rock properties 
are identical to those in the section mentioned above (see the name and its mean values in  
Table 2-8). In our current analysis, the uncertainty of these properties regards the mean values 
with an assumption of Gaussian distribution. Precisely, the parameters are entirely identified 
by adopting the identical coefficient of variation (COV) equals 0.25 (i.e., its standard deviations 
are assumed to be 25% of its mean values). Besides, the thickness and the installation time of 
two liners are chosen respectively l1=46(cm), l2=20(cm), t0=1(day), t1=2(days), t2=5(days), and 
the excavation rate vl=0.75(m/day). The other parameters, such as the radius of the tunnel, 
elastic properties of both linings, and the initially applied stresses, are also listed in Table 2-8. 
It is noteworthy that over the time considered, a monotonic increase in tunnel convergence and 
the compressive equivalent stresses in the two liners is confirmed in the previous part. 
Consequently, according to the selected criteria of failure mode, the time-variant reliability 
analysis can be investigated similarly to the time-independent problem. In other words, any 
time-independent probabilistic method can easily be applied here to estimate the exceedance 
probability for a chosen life of the tunnel. Thus, on the basis of the developed closed-form 
solution, the direct MCS will be conducted to measure the probability of exceedance of the 
structure. After that, MCS's obtained results will be used as the reference solutions to 
investigate the accuracy of the new Kriging metamodeling techniques. 

2.4.2. Reliability analysis by using MCS 

Like the previous parametric study (i.e., section 2.3.5), now we consider the effects of the face 
advancement rate, installation time as well as the thickness of both linings into reliability 
analysis problems. For estimating the probability of exceedance, the additional parameters such 
as the thresholds (i.e., acceptable values) of the convergence and the equivalent stress need to 
be given. There some arbitrary values are chosen for illustration. Precisely, the allowable 

convergence of tunnel, the stresses in the first- and the second liner respectively are lim 1.5%  , 

lim1=40(MPa) and lim2=50(MPa). In some particular parametric studies, these parameters 

lim lim1 lim2, ,    are also considered as variants. 
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Firstly, we take the evaluation of the tunnel deformation exceeds the allowable value lim 1.5%   
into account. 

 

Figure 2-11 and Figure 2-12 below show the exceedance probability respectively over time and 
at t=100 (years). Evidently, the monotonous behavior of tunnel deformation over time results 
in the same trend as the obtained curve of the probability of exceeding as expected. 

 

Figure 2-11 illustrates that the probability grows rapidly in the early years before reaching a 
lower rate. Depending on the speed of the tunnel excavation, the installation time, and the 
thickness of the linings, one can notice the strong variation in the exceedance probability at 
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each moment. Especially, according to rapid tunnel excavation, 

 

Figure 2-11a presents a higher probability of exceedance that leads to greater convergence of 
tunnel, as indicated in the previous parametric study. Clearly, this probability can be reduced 
by increasing the thickness or initial installation of the liners (as 

 

Figure 2-11b, c, d). Moreover, Figure 2-12 shows the expansion cases of a wider range of the 
excavation rates, installation time, and thickness of liners. The last figure allows us either 
confirm the observation in 
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Figure 2-11 and study the exceedance probability of tunnel w.r.t the selected threshold. 
Following that, Figure 2-12c proves that the higher lim is, the lower the probability can be. 

 

 
Figure 2-11: Time-dependent exceedance probability of the tunnel convergence  

(a)  excavation rate vl, (b) installation time of liners t1, t2 
(c) the first liner’s thickness l1, (d) the second liner thickness l2 
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Figure 2-12: Exceedance probability of the tunnel convergence at 100 years 

(a)  installation time t1, t2, (b) thickness of two liner l1, l2, (c) vl and lim 

Secondly, we consider the exceedance probability of the stresses on the liners (as in Figure 2-
13 to Figure 2-15). These figures obviously show an increasing probability of exceedance 
overtime and a consistency with the previous parametric analyses. In particular, a crucial 
excavation tunnel speed leads to a higher exceedance probability in the second lining (Figure 
2-13b). Conversely, Figure 2-13a represents a higher probability in the first lining with a lower 
advancement rate. Besides, for the case of t1=t0=1(day) (i.e., the first liner is put immediately 
after the excavation), (Figure 2-13c), the exceedance probability reaches the peak at the 
excavation rate vl=1(m/day) instead of vl=0.5(m/day). In engineering practice, the second lining 
is usually installed to ensure the long-term stability of the tunnel. At the same time, the first 
one is placed as soon as the completion of the tunnel excavation to seal the rock. However, 
with a selected excavation rate, sooner installation of each lining could raise the exceedance 
probability (Figure 2-13g, h). Figure 2-13g presents the exceedance probability on the first 
lining may be low if the second support installation time is as short as possible. Nevertheless, 
this situation induces a higher probability of exceedance on the second lining (Figure 2-13h).  
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Figure 2-13: Exceedance probability at 100 years by considering vl, t1, t2 

(a, c, e, g) on the first liner, (b, d, f, h) on the second liner 
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The impact of the thicknesses of liners is now investigated by retaining the selected tunnel 
advancement rate as well as the installation times (i.e., vl=0.75(m/day), t1=2(days), and 
t2=5(days)). According to the results shown in Figure 2-14 and Figure 2-15, a slight variation 
in the liners' thickness about a few centimeters can create a surprising change in each lining's 
exceedance probability. More specifically, an increase of about 3(cm) in the thickness of each 
liner can reduce the exceedance probability in the first liner (Figure 2-14b) as well as in the 
second element (Figure 2-15b). This strong decrease in the probability is consistent with a 
remarkable reduction in compressive stresses in both elements in terms of thicknesses, as 
illustrated in the previous parametric studies (Figure 2-9b, c). Lastly, considering the smaller 
allowable values of compressive stress in each liner, a greater probability of exceeding the 
maximum allowable stress can be determined, as expected, if the liner thicknesses are 
maintained  (Figure 2-14c, d, and Figure 2-15c, d). This means that the thickness of each liner 
must be increased to achieve the same probability of exceeding the initial limited value of 
compressive stress in each liner. There may be different combinations of varying liner 
thicknesses, yet the optimized values can be obtained when the other constraints (e.g., chosen 
technology and cost-effectiveness) are provided.  

 

                                                                
Figure 2-14: Exceedance probability (on the first liner)  

(a) Versus time by considering l1, (b) Versus time by considering l2, 
(c)(d): by considering (l1, l2) at 100 years with lim1=40MPa, 35MPa 
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Figure 2-15: Exceedance probability (on the second liner)  

(a) Versus time by considering l1, (b) Versus time by considering l2, 
(c)(d): by considering (l1, l2) at 100 years with lim2=50MPa, 45MPa 

2.5. Modified AK-MCS metamodeling based on the distance constraint U 

learning function 

In this work, the modified AK-MCS will be proposed for the reliability analysis of deep tunnels 
excavated in the squeezing rocks. This modification of the well-known U learning function in 
the initial AK-MCS (Echard et al., 2011) aims improving more efficiency. The potential gain 
of energy is considerable for the practical engineering application, especially for the complex 
structure system such as the stability of drift constructed in the Callovo-Oxfordian claystone 
(COx) for the deep disposal of radioactive waste. In this framework, the problem of long-term 
stability analysis accounting for the time-dependent mechanical behavior of rock mass is of 
most importance, in which solving the deterministic problem is expensively time-consuming 
by using numerical simulation software.  

As mentioned in Chapter 1, the capability to choose the most suitable new training samples to 
improve the stabilization of the exceedance probability with a smaller size of DoE (NDoE) 
characterizes the learning function's efficiency. According to (Hu and Mahadevan, 2016a), a 
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new training point is chosen, such that it reduces most significantly the uncertainty of the 
exceedance probability instead of choosing the lowest U value (in AK-MCS) or the highest 
EFF value (in EGRA). A new learning function called Global Sensitivity Analysis enhanced 
Surrogate (GSAS) was presented by (Hu and Mahadevan, 2016a). The efficiency of this 
method was demonstrated. However, following these authors, the GSAS method may increase 
the computational overhead required by the algorithm selecting the training points.  

Besides, it was highlighted in many contributions (Basudhar and Missoum, 2008; Xiao et al., 
2018; Zhao et al., 2019) that the best candidate point to enrich the DoE should be both close to 
the limit-state surface (LSF) and far away from the training samples of existing DoE by 
verifying a distance constraint. Regarding (Zhao et al., 2019), the following distance constraint 
dmin>D was proposed in which the limit distance parameter D varies during the add-sample 
process, whilst dmin is the minimum space from the candidate point to training points of DoE.    

In what it follows, the modified U learning function is proposed, so-called Modi-U, which 
considers the distance constraint. Then, the validation of this modified AK-MCS on the 
reliability analysis of structures will be demonstrated through a simple academic problem (e.g., 
a two-dimensional series system with four branches), and for the case of deep tunnel excavated 
in the linear viscoelastic rock.  

2.5.1. Distance constraint U learning function  

The modified U learning function proposed in this work aims to gather a new suitable training 
point that verifies both the conditions: near to the LSF and far away from the training points of 
existing DoE. More precisely, the chosen new training point x* corresponds to the lowest value 
of the vector U(x) of the NMCS random samples, which verifies the following distance 
constraint: 

 , 1,2,...,  x* xi DoED i N
 (2.45) 

The limit distance parameter, i.e., D in Eq. (2.45), can vary after each iteration and is defined: 

  
  

int

( )

1,
min max , 1,2,...,


 i
j

i N
D j d

 
(2.46) 

The lowest U value (min{U(x)}) may not be chosen as the new training point if it does not 
satisfy the distance constraint in Eq.(2.45). Instead, as the principal idea, this modified U 
learning function aims to find, among the points closest to the limit state, the new training point 
that is far enough away from the existing training points of the current DoE by checking the 
distance constraint in Eq.(2.45). Following that, the minimum value among the highest 
hyperparameter (i.e., among the maximum of vector ) calculated from the initial to the current 
iteration is chosen as the flexible limit distance parameter D. One can state that as a function 
of the increased iterative number, this limit distance parameter D decreases. A higher value of 
D at the first iterations allows us to seek the new training point in the more significant input 
variables’ space instead of using the local value obtained from argmin{U(x)} which may have 
minor effects on the variation of the Kriging metamodel and hence the exceedance probability.   

Note that the distance constraint is also applied for the case that a subset of new training points 
is taken for each iteration (i.e., the distance between these added points must also verify this 
condition). In addition to this modified U learning function, the stopping criterion is written in 
Eq. (1.47) is considered in this work. Our numerical applications in the next subsections 
showed that a value  =0.01 and N =6 is enough to obtain the convergence of exceedance 
probability. Herein, for all numerical applications, the number of random samples for the direct 
MCS (used as the referent results) and for the interpolation from the constructed metamodels 
is taken at 106 (NMCS). 
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2.5.2. Application to a series system with four branches 

As the first example, the efficiency of the modified AK-MCS is investigated by considering 
the following well-known academic performance function (also called a series system with 
four branches (see (Waarts, 2000; Echard et al., 2011; Vahedi et al., 2018; Jiang et al., 2019)): 
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where x1 and x2 are two independent random variables. 

In order to study the effect of the chosen initial DoE on the evolution of exceedance probability 
during the iteration process, the initial training points are generated in two different ways: 
random by Gaussian distribution and quasi-uniform, such as Latin Hypercube Sampling (LHS). 
Similarly, as in the study of (Echard et al., 2011), in this academic example, an initial DoE of 
twelve training samples is taken. 

With the Gaussian first DoE generation, we present in Figure 2-16 and Figure 2-17 the results 
of the evolution of exceedance probability Pf (i.e., probability of G(x1,x2) <0) in which the 
classical AK-MCS and EGRA methods are conducted. These results agree well with the 
previous discussions of (Echard et al., 2011). Indeed, as illustrated in Figure 2-17, before 
attaining the convergence of Pf; the evolution of exceedance probability during iteration 
develops at different levels (four levels). Moreover, the number of repetitions at each level is 
quite essential, and it seems risky to apply in this case, the stopping criterion defined in Eq. 
(1.47). A small number of N may induce a lower exceedance probability evaluated at an early 
level. With respect to the position of the new learning points relative to the limit state during 
the iteration (Figure 2-17), it appears that they were adjusted entirely locally as the added 
samples follow each branch of the four-branch system. Besides, fairly large new training 
points, which are not close to the LSF, were selected after the convergence of probability.     

A remarkable difference can be observed for the case that the initial training points of DoE are 
generated quasi-uniform by the LHS method (Figure 2-18). Regarding the evolution of 
exceedance probability during iteration by the AK-MCS method, the number of levels, as well 
as the number of iterations in each level, reduces importantly with respect to the previous case 
of randomly initial DoE. Concerning the result obtained from the EGRA method, a notable 
dispersion of the exceedance probability can be stated before the convergence, and no level 
was developed in this considered case. From the results highlighted in (Figure 2-18), it is 
evident that the number of iterations to attain the convergence reduces in this second case by 
using the quasi-uniform initial DoE. The comparison of the classical AK-MCS and EGRA 
methods does not highlight an essential difference in terms of iteration number to convergence. 
The difference seems more pronounced regarding the position of added training points 
concerning the limit state. While these samples always follow each branch of the four branches 
system in the EGRA method, the new training points selected by AK-MCS are quite random 
around four-branches during iteration.     

We now examine the efficiency of the modified AK-MCS method by using the distance 
constraint U learning function. For this purpose, the results obtained from this last method are 
compared with those of the classical AK-MCS method. These results were conducted on the 
quasi-uniform initial DoE by accounting for its advantages, as observed previously. Thanks for 
using the distance constraint, no level of probability Pf during the iteration was generated before 
convergence in the modified AK-MCS method (Figure 2-18). This can be clarified by the fact 
that the chosen new training samples in each iteration are far enough with respect to the training 
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points of the existing DoE, which have more effect on the variation of the probability. Note 
that this academic problem shows that the limit distance parameter D remains constant during 
iteration (D equals 0.3536). The disappearance of the local convergence of exceedance 
probability in each level (the case was noted in the original AK-MCS method) allows applying 
the stopping criterion (see Eq. (1.47)) in our modified AK-MCS method. For example, by 
taking =0.01 and N =6, the probability of exceedance measured by the modified AK-MCS 
method is similar to the one provided by the classical AK-MCS method, but the convergence 
is much more sooner in the former method. Concerning the position of the new training points 
of DoE during iteration concerning the limit state, we observed that they were selected around 
the four branches system, similar to the classical AK-MCS method (Figure 2-18b).   

Finally, Table 2-8 below illustrates the reliability results of the academic four-branches system 
problem: comparison of EGRA, classical (U), and modified AK-MCS (Modi-U) methods with 
the direct MCS as well as the final number of iterations for each method. Note that Ncall 
corresponds to the number of calls to the response function, which is equal to the sum of the 
number of initial training points and the number of iterations to attain the convergence. The 
comparison with the referent method (MCS method) confirms the accuracy of these 
metamodeling techniques. 

 
Figure 2-16: A series four branches system: Evolution of the exceedance probability 

Table 2-8:  The average results of example a series of four branches system 

Method Type Distribution of 
initial DoE 

Ncall Pf (%) Pf(%) 

Direct MCS 

EGRA 

Classical AK-MCS 

EGRA 

Classical AK-MCS 

Modified AK-MCS 

- 

Normal 

Normal 

Quasi-uniform LHS 

Quasi-uniform LHS 

Quasi-uniform LHS 

106 

119 

109 

93 

98 

48 

0.443  

0.443  

0.443  

0.443  

0.443  

0.444  

- 

- 

- 

- 

- 

0.23 
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Figure 2-17: A series four branches system: The approximation LSF results for different methods 
(a) Ncall = 35, (b) Ncall = 60, (c) Ncall = 80, (d) convergence of both U and EFF functions 

  

Figure 2-18: A series four branches system with Quasi-uniform DoE: Comparison of different methods 
(a) Evolution of the exceedance probability, (b) The approximation LSF results 

 
  

(b) (a) 

(d) (c) 

(b) (a) 
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2.5.3. Application to reliability analysis of tunnel excavated in the linear viscoelastic rock 

In this section, the results of the previous MCS reliability analysis of tunnels excavated in the 
Burgers rock can be used as a reference to prove the efficiency of our modified AK-MCS 
method. For this aim, we adopt the same hypothesis of the previous reliability analysis by 
considering only the uncertainty of four parameters of the Burgers rocks on the exceedance 
probability of tunnel. However, to simplify the presentation, we only utilize the failure mode 
of the second liner when the stress state in this support element exceeds the permissible stress 
of the constitutive materials. The corresponding performance function of this failure mode is 
defined in Eq.(2.48).  

All the necessary parameters included in the present reliability analysis with the AK-MCS are 
taken similarly to ones in the previous subsection (2.3.1 and 2.4.1). That means the four Burgers 
rock properties are considered as random variables with a standard deviation 25% of the mean 
value (i.e., COV, coefficient of variation is equal to 0.25). The thickness and the installation 
time of first-, second-lining are chosen respectively l1=46(cm), l2=20(cm), t0=1(day), 
t1=2(days), t2=5(days), while the excavation rate is vl=0.75(m/day). The allowable stress on the 
second liner lim2 =50(MPa) is chosen. Note that, for the reliability analysis by metamodeling, 
an initial DoE with 24 training points generated quasi-uniform by the LHS method is used.  

Figure 2-19a shows the evolution of the exceedance probability of the stress on the second liner 
depending on the number of iterations. These results calculated from three metamodels (i.e., 
EGRA (EFF), classical (U), and modified AK-MCS (Modi-U) methods) represent in effect the 
probability measured at t=100(years). Like the previous study cases, before attaining the 
convergence, the Pf probability estimated from the EGRA and classical AK-MCS methods 
develops in two levels. Contrary, by using the distance constraint in the modified AK-MCS 
method, the apparition of these two levels was not observed. Subsequently, the utilization of a 
dynamic distance parameter D, which is higher in the initial iterations and reduces during the 
DoE enrichment process (Figure 2-19b), contributes a significant effect to avoid the apparition 
of the local convergence of exceedance probability. A much smaller number of iterations to 
attain the global convergence of the Pf probability in the modified AK-MCS method with 
respect to one of the two other methods confirm an improvement of our proposed Kriging 
metamodel.  

Meanwhile, the accuracy of the three metamodels is also demonstrated in Table 2-9 below.  
This table shows the reliability results of the tunnel excavated in the viscoelastic Burgers rock 
with a comparison of EGRA, classical (U), modified AK-MCS (Modi-U) methods, and the 
direct MCS. Note that the exceedance probability is also measured at t=100 years. 

Table 2-9:  The average results of the tunnel excavated in the viscoelastic Burgers rock 

Method Type Distribution of initial 
DoE 

Ncall Pf (%) Pf(%) 

Direct MCS 

EGRA 

Classical AK-MCS 

Modified AK-MCS 

- 

Quasi-uniform LHS 

Quasi-uniform LHS 

Quasi-uniform LHS 

106 

142 

122 

70 

0.377 

0.379 

0.377 

0.375 

- 

0.53 

- 

-0.53 

Finally, Figure 2-20 illustrates the effect of the number of new training points in a subset to be 
added in each iteration in the DoE on the convergence of the exceedance probability by the 
modified AK-MCS method (Modi-U). This investigation is especially interesting for the many 
projects in which the evaluation of the performance function needs to be conducted through 
the numerical simulation with the possibility of realizing many calculations at the same time 
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(i.e., parallel computations). The results illustrated in Figure 2-20 admit that, in general, an 
increase in the number of new training points in each iteration will reduce the total number of 
iterations at convergence (with the same adopted stopping criterion). However, this last number 
can reach an asymptotic value when this number of new training points in the added subset of 
DoE becomes higher. In this study case, a subset of four new training points in each iteration 
can be an appropriate choice. Indeed, although the number of calls to the response function 
increases significantly in this last case due to the higher number of additional training points 
selected, the actual time required for the numerical simulation decreases. The reduction here is 
that the number of iteration to achieve convergence of exceedance probability is lower. 

(a) 

 

(b) 

 
Figure 2-19: The tunnel excavated problem: Comparison of different methods 

(a) Evolution of the exceedance probability, (b) Evolution of the constraint distance parameter D 
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Figure 2-20: The tunnel excavated problem: Effects of the selected new-training-point number (Modi-U) 

2.6. Concluding Remarks  

In this chapter, the reliability analysis of deep tunnels excavated in complex geological 
conditions was conducted. In this context, a sequential excavation and installation of more than 
one-liner are necessary to avoid collapse and ensure the safety of structures in both the short- 
and long-term. To achieve this aim, we proposed in the first stage, a closed-form solution of 
double-lined tunnels in linear viscoelastic Burgers rock through which the direct Monte Carlo 
Simulation was then carried out in the next step. The numerical investigation highlighted the 
critical effects of the different parameters, notably the uncertainty of the rheological parameters 
of the Burgers rock on the long-term exceedance probability of tunnel. The MCS investigations 
are helpful when they can be served as a primary tool for the selection of suitable surrogate-
based reliability methods, which can be more appropriate in the analysis of complex 
underground structure system. 

The main challenge of the surrogate-based reliability analysis, like on the way to develop an 
adequate metamodel, is to approximate the LSF without wastes of samples and function calls. 
Among the various surrogates proposed in the literature, we chose the active learning Kriging 
metamodel technique. Because this technique not only provides the best estimate value at an 
untired point but also gives an estimation of the prediction variance. This variance presents the 
prediction uncertainty, which depends on the number and location of the training data points. 
This metamodel can be established iteratively through an enrichment process of the DoE. The 
discussions in the literature showed that the best candidate points to enrich the DoE should not 
only be close to the LSF but also be far away from the training samples of existing DoE. This 
challenge is a crucial motivation for us to propose a novel approach: a modified AK-MCS 
(Modi-U). The novelty of this proposed method lies in consideration of the constraint distance, 
representing by a parameter D, which can vary during the enrichment process, on the selection 
of the new training point of DoE. With this condition, the points chosen from the minimum of 
vector U in the classical AK-MCS may not be added to the DoE. The validation and significant 
improvement of this modified AK-MCS were demonstrated in two examples: an academic 
problem and the case of a tunnel excavated in the linear viscoelastic Burgers rock. Our 
investigations also highlighted the advantage of using a subset of new training points to enrich 
the DoE since it can lower the number of iterations to attain the convergence of exceedance 
probability. That is so useful for our studies in the next chapters in which the evaluation of the 
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performance function must be performed numerically in an open-source code (e.g., 
Code_Aster) with available parallel calculations.  
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CHAPTER 3. KRIGING-BASED RELIABILITY ANALYSIS OF THE 

STABILITY OF A DEEP DRIFT SUPPORT FOR NUCLEAR WASTE 

DISPOSAL IN THE COX CLAYSTONE  

3.1. Introduction 

As demonstrated in the previous chapter, the accuracy of the modified AK-MCS allows us to 
apply this metamodeling technique to study the long-term stability of deep drift support in the 
French concept of nuclear waste disposal. In France, ), is in charge of studying the disposal of 
high-level and intermediate-level long-lived waste (HLW and ILW-LL) in a deep geological 
repository (Cigéo project). In this context, the stability of the concrete support of the 
underground structure during the operational period for about 100 years is crucial to ensure the 
functionality of the mechanical system within the tunnel.  

Thanks to its favorable characteristics (incredibly low hydraulic conductivity, small molecular 
diffusion, and significant retention capacity for radionuclide), COx rock is taken into account 
as a potential geological formation for a deep geological repository (also disposal of radioactive 
waste) in France, if the Cigéo project is licensed (see Figure 3-1 below). Specifically, to study 
the feasibility of constructing and operating the Cigéo project, since 2000, Andra has been 
conducting an Underground Research Laboratory (URL) in Bure (at nearly 300 km East of 
Paris) of the Meuse and Haute Marne (M/HM) departments (Armand et al., 2017a; Armand et 
al., 2017b). To deeply understand the behavior of this argillaceous rock, intensive research 
programs have been performed combining laboratory tests, in-field observations, and 
numerical simulations. In parallel to many programs of laboratory tests (uniaxial/triaxial, 
mono/multi-stage creep and relaxation), in-situ observations have been undertaken for 
characterizing mechanical and hydromechanical short-, and long-term behavior of COx rock 
(Armand et al., 2013; 2014; Vu et al., 2020b; Conil et al., 2020). Thanks to exhaustive 
laboratory tests and in-situ experiments in the URL, the essential fundamental aspects of the 
hydro-mechanical behavior of COx have been provided (see, for instance, the work of (Armand 
et al. 2017a)).  

 
Figure 3-1: Possible architecture of the Industrial Centre for Geological Disposal (Cigéo). 
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Besides, the understanding of drifts' behavior with different excavation/support methods is the 
primary necessity for the support optimization design. At the M/HM URL, the drift network 
(as in Figure 3-2 (Armand et al., 2017b; Delay, 2019)) is constructed at two depths (at -490 m, 
the main level of the URL, for almost studies, and -445m for an experimental drift). At the -
490 m, the anisotropic in-situ stress states have been deeply observed, and among the principal 
stresses’ values, the major is the horizontal one; the vertical and the minor horizontal stresses 
are identical (Wileveau et al., 2007). The vertical component σv and the minor horizontal 
component σh (oriented 065°±10°) are approximately vh12.5MPa. At the same time, the 
major horizontal component σH (oriented 155°±10°) is larger than the others 30% (i.e., 
H1.3v 1.3h) (Wileveau et al., 2007). Regarding in-situ measurements, drifts' convergence 
data plays a vital role in the orientation excavated following the major and minor horizontal 
stresses. These convergences (monotonic functions of time) are differently pronounced for 
most substances. For example, vertical convergence is much more four times than the 
horizontal one with the drifts parallel to h, (see Fig. 3-2) (Armand et al., 2013). Notably, the 
parallel drifts are often developed following the major in-situ stresses and are separated enough 
to be considered independent concerning their hydromechanical behavior.  

The excavation of galleries at the main level (490 m depth) of the URL has been carried out 
essentially in the direction of the major and minor horizontal principal stresses. Continuous 
monitoring around drifts within MHM URL during and after the excavation showed anisotropic 
hydromechanical responses in term of excavation induced damage zone (Armand et al., 2014), 
convergence (Armand et al., 2013), and pore pressure distribution (Vu et al., 2020b). Numerous 
different numerical models have been developed to explain these phenomena (Pardoen and 
Collin, 2017; Trivellato et al., 2018; Souley et al., 2020; Manica et al., 2021a, b; Yu et al., 
2021). The time-dependent behavior of rock mass around drifts is also evidenced by following 
the evolution of the convergence of drifts’ wall and the displacement within the ground 
(Armand et al., 2013). 

 
Figure 3-2: Meuse/Haute-Marne Underground Research Laboratory layout (Delay, 2019) 

In reality, the time-dependent response of the ILW-LL cell can be governed by the thermo-
hydro-mechanical coupling. Indeed, the heat released from ILW-LL packages emplaced within 
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the alveolus makes the temperature rise in the host rock and the structural elements ( 65°C in 
the concrete structure), which can induce the thermomechanical stress and the thermal 
pressurization phenomenon (Vu et al., 2015; Seyedi et al., 2017; Conil et al., 2020; Vu et al., 
2020a; Bumbieler et al., 2021; Plúa et al., 2021a, b). Moreover, the time-dependent behavior 
of ILW-LL drift is also controlled by the drainage from the intact rock to the wall, the 
desaturation of the rock close to the wall due to the ventilation during the exploitation phase, 
shrinkage/swelling of COx claystone due to the desaturation/resaturation (Wang et al., 2020, 
a, b). Nevertheless, it has been shown in different contributions (Camusso et al., 2020; Alonso 
et al., 2021) that the creep behavior of host rock has a preponderant role on the stress state of 
the concrete liner, while the effects of the heat loading and the pore water pressure change are 
marginal.  

Therefore, this study focuses only on the uncertainty effect of the creep behavior of the host 
rock on the probability of exceedance of critical stress in the concrete liner of the ILW-LL drift. 
Both laboratory tests at the sample scale and the convergence measurement in the Andra 
Underground Research Laboratory (URL) show that the time-dependent response of COx 
claystone exhibits a significant initial strain rate that decreases with time (Armand et al., 2013, 
2017). Advances numerical models have been proposed to reproduce the observation of short 
and long-term behavior of COx rock (e.g., non-local anisotropic elasto-viscoplasticity (Manica 
et al., 2021a; b), second gradient anisotropic elastoplasticity (Pardoen and Collin, 2017), double 
phase-field elastoplastic damage model (Yu et al., 2021)  elastoplastic combining with 
weakness plan model (Souley et al., 2020)). Characterized by various parameters (e.g., larger 
than 20), whose physical meaning and calibration are not simple to be evaluated, these 
sophisticated models are not feasible for the reliability analysis.  

Moreover, the lining monitoring confirms the significant effects of the compressible material, 
which can be used to separate the concrete lining from the COx claystone (i.e., the material 
acts as the outer liner in the drift support system). The material can be made up of compressible 
grout, a compressible substitute for pea gravel, or a compressible layer on the backside of the 
precast segment lining (Billig et al., 2007). The main reason for using this material is that the 
essential characteristic of a high void ratio (with the compression rates up to 50% of the initial 
volume under stress lower than 3 MPa are possible (Billig et al., 2007)) allows this 
compressible outer liner to absorb the convergence over-time of the host rock and considerably 
reduce the radial stress transmitted to the inner liner (Armand et al., 2013; Delay, 2019). In 
recent times, this benefit provided by this compressible material has been widely tested in the 
configuration of vast drift excavation in combination with innovative construction methods 
(Bosgiraud et al., 2017; Stasiak et al., 2017; Ly, 2018; Zghondi et al., 2018; Delay, 2019).  

As particular study cases, our objectives focus on studying the effect of the uncertainty of COx 
rock properties and the consideration of the compressible material on the long-term stability of 
the concrete liner of the circular drift. Although complex coupling mechanisms (such as 
coupled thermo-hydro-mechanical models and damage mechanisms) can govern the time-
dependent response of underground nuclear waste disposal structures, our current study focuses 
only on the pure mechanical behavior of the drift. Additionally, it is also assumed that drift’s 
axis aligns with the major horizontal stress. The classical viscoplastic model of Lemaitre is 
chosen to describe the long-term behavior of host rock. This simple model's choice can be 
explained by its capacity to catch the essentials of time-dependent behavior of COx rock by a 
limited number of parameters to be calibrated, which significantly facilitates the uncertainty 
quantification process from the creep tests in the laboratory. The last simplification concerns 
the behavior of the compressible material of the outer liner, whose non-linear response is 
modeled as a tri-linear elastic law as a function of the volumetric deformation.  
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Precisely, to gain our objectives, the modified-Kriging-based approach is chosen to assess the 
exceedance probability of the final drift support during a period of one hundred years. In the 
following, the open-source Code_Aster in the 2D plane strain condition is used for the direct 
evaluations of the performance function (i.e., numerical simulation of the deterministic 
problem). This task can start from quantifying the uncertainty propagation of the random input 
variables (i.e., the short- and long-term mechanical properties of COx) on the exceedance 
probability (Pf) of the final lining of the drift. Throughout the numerical investigations, the 
compressible layer's role and the uncertainty of COx rock properties on the long-term stability 
of the final drift lining are highlighted.  

3.2. Description of the studied problem  

3.2.1. Assumptions and preconditions 

Although there has been considerable development of three-dimensional (3D) analysis 
software packages using FEM or Finite Difference algorithms, 2D analysis is still needed as 
the main engineering tool for practical analysis of tunnel behavior and tunnel support 
performance in design (Vlachopoulos and Diederichs, 2014). In which the convergence is 
usually monitored by boundary displacement or internal pressure relaxation (convergence-
confinement method-CCM). Because the latter allows us to appreciate the nature of the 
interaction between the rock-mass and the support and the effect of the variation of the rock 
properties on the support, we decide to use it through the thesis. CCM, also called the stress 
relief method, is commonly applied for preliminary circular tunnels’ assessment of squeezing 
potential and support requirements in a variety of stress states and geological conditions. A 
critical key so-called rate of convergence-confinement or deconfinement rate (plays an 
essential role in this method. Notably, its values applied in each phase are taken from Andra 
(see Figure 3-4a). This model is often related to the tunnel face progression, and this could be 
shown as in Figure 3-3 (El Matarawi, 2016). The readers can figure it out more in many recent 
articles, such as (Alejano, 2010; El Matarawi, 2016; Paraskevopoulou and Diederichs, 2018). 

 
Figure 3-3: Convergence-confinement model w.r.t. the tunnel face progression (El Matarawi, 2016) 

The lined tunnel excavation in the rheological rock with the implementation of CCM requires 
some crucial assumptions, as below: 

(1) The tunnel (drift) is of circular section and horizontal axis.  
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(2) This tunnel is a deeply buried tunnel (H>10*R) so that no linear variation of the 
stresses as a function of depth must be considered. 

(3) The rock is isotropic, homogeneous. 
(4) It is a 2D plane strain mechanical problem and isotropic initial stress state (0=x=y)  
(5) The excavation speed is low enough (no dynamic stresses). 
(6) It considers quasi-static equilibrium (i.e., not in terms of acceleration). 

Moreover, supplementary assumptions are also necessary to address our problems in a more 
practical and feasible to Andra’s project, as follows: 

(1) The work is limited to COx claystone, with its rheology suitably described by 
viscoplasticity. 

(2) The tunnel is excavated following the major horizontal stress in the COx.  
(3) Only individual drift behavior is taken into account (i.e., parallel drifts are separated 

enough to ignore their hydro-/mechanical interactions). 
(4) The analyses are limited to available experimental data. 
(5) The quantification of uncertainties is limited to the variation in rock properties. 
(6) Normal (Gaussian) distribution is used for the random variables  
(7) The installation time of double liners is corresponding to the confinement rate =0.85, 

and they are assumed to be installed immediately after excavation. 

3.2.2. Problem statements 

Our main considered problem consists of investigating the long-term stability of the drifts' final 
lining excavated in the major horizontal stress of the COx rock. To clarify step-by-step, it must 
first model the problem; for instance, Figure 3-4 and Figure 3-5 below illustrate the one-quarter 
of the adopted 2D plane strain model of drift and is taken the symmetric conditions into 
account. 

To simulate the mechanical behavior of the circular drift with a 5.05m radius, a total dimension 
of 55m is considered following each direction that is sufficiently large to avoid boundary 
effects. Correspondingly to the symmetric boundaries, the normal displacement is fixed while 
isotropic far-field stress of 0=12.5MPa, (i.e., the identical stress on vertical (v) and minor 
horizontal (h) axis at a distance away from the excavation) is imposed. The considered drift 
is supported by a concrete lining C60/75 (with the thickness l2), which is separated from the 
rock mass by a compressible layer (with the thickness l1). This layer must absorb almost the 
convergence, which increases as a function of time due to the actual behavior of the COx 
claystone and reduce the radial stress transmitted to the concrete lining, which is supposed to 
be linear elastic. 

The assumptions mentioned above and modeling of tunnel excavation with CCM can be 
classified into four main phases, as in Figure 3-5a. Phase 1: initialization of the constraints in 
situ (=0), computation of the nodal reactions on the level of the cavity (wall of the 
excavation). Phase 2: Deconfinement rock mass to simulate the progressive excavation and the 
distance of the tunnel face (=0). Phase 3: Installation of two liners at the same time. In this 
context, the deconfinement rate here values at =0.85. In general, it can be separated the instant 
time of various liners with the different rate Phase 4: End of the deconfinement with . 

To investigate the long-term stability of the concrete lining, we use reliability analysis with the 
modified Kriging-based method combined Monte Carlo simulation (AK-MCS), detailed in 
Chapter 2. The performance function described the equivalent stress reaching the allowable 
pressure of the constitutive material (as in Eq. (2.48)) is recalled as the limit state definition 
(i.e., the safety and failure state in the concrete liner of drift). Then it will be applied in 
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reliability analysis with the modified AK-MCS with the exceedance probability (Pf) taken from 
Eq. (1.23).  

 
Figure 3-4: Geometry of the studied disposal tunnel 

 
Figure 3-5: Problem statement with numerical solutions 

(a) Geometry and boundary conditions (b) Mesh of the vicinity of the tunnel  

3.3. Constitutive behavior model of materials and uncertainty quantification 

of COx rock properties  

In our study, three different constitutive models are addressed (a viscoplastic model for the 
geological rock mass, a non-linear elastic model for the compressible liner, and linear elastic 
for the concrete support liner). For the sake of simplicity, this study is also restricted to the 
purely mechanical response of drift by ignoring the other phenomena such as damage 
mechanism and/or coupled (thermo-) hydro-mechanical loadings. The classical viscoplastic 
model of Lemaitre is chosen to characterize the long-term behavior of host rock. The choice of 
this simple model can be explained by its capacity to catch the essentials of time-dependent 
behavior of COx rock by a small number of required input parameters to be calibrated (see in 
section 1.4.2, Chapter 1), which significantly facilitates the uncertainty quantification process 
from the creep tests in the laboratory. The last simplification concerns the behavior of the 
compressible material of the outer liner, whose nonlinear response is modeled as a tri-linear 
elastic law as a function of the volumetric deformation. Since the behavior of the final tunnel 
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liner is linearly elastic, we just mention here the constitutive models for rock mass and for the 
compressible zone.  

3.3.1. Time-dependent behavior of COx by the non-linear viscoplastic model of Lemaitre    

To model the time-dependent behavior of COx claystone, one often uses constitutive models 
on the basis of elasto-visco-plasticity concept (Seyedi et al., 2017). Especially, the viscous 
model of Lemaitre is widely chosen to describe the long-term response of host rock. In general, 
these elasto-visco-plastic models can give the global behavior of the rock mass around drifts. 
However, to better explain the observed phenomena in-situ, more sophisticated models take 
the anisotropy effect in the plastic criterion and/or the damage mechanism, such as strain 
localization, into account. The interested readers can refer to (Seyedi et al., 2017), and different 
references cited therein for more details.  

In our study, Lemaitre's viscoplastic model (see section 1.4.2) is chosen to present the time-
dependent mechanical behavior of the COx rock around the drift.  Most of the authors dealing 
with the time-dependent behavior of COx claystone have proposed various (elasto-) 
viscoplastic models (Seyedi et al., 2017; Stavropoulou et al., 2020). Even if other sophisticated 
models could be considered for specific features of COx rock behavior (see, for example, 
(Armand et al., 2017c; Mánica et al., 2017; Seyedi et al., 2017; Souley et al., 2020; 
Stavropoulou et al., 2020)), the viscoplastic model of Lemaitre is sufficiently accurate for long 
term design purposes and with a limited number of constitutive parameters. Based on the 
number of parameters to be calibrated in this model is so small, it can greatly facilitate the 
uncertainty quantification process and ensures the accuracy of the obtained results of these 
parameters.  

3.3.2. Tri-linear elastic model of the compressible material 

Using the compressible material as the outer liner to reduce the overstressing of the inner 
concrete lining of tunnel excavated in the squeezing rock has been largely considered in many 
research projects both in laboratory and tunnel construction programs (Lombardi, 1981; 
Strohhäusl, 1996; Schneider et al., 2005; Billig et al., 2007; Cucino et al., 2012; Ly, 2018; 
Gasbarrone et al., 2019). 

At the M/HM URL, different types of compressible material have been tested, and the feedback 
from the experiment programs reveals their immense benefit. Thanks to the high 
compressibility (up to more than 50% of its initial volume as Figure 3-6a (Billig et al., 2007)), 
the compressible materials can drastically reduce the transmitted stress to the final liner of drift.  
From the experiments, the compressible material's stress-strain curve (Billig et al., 2007) can 
be captured in three stages. Following that, the curve illustrates an elastic behavior when the 
volumetric deformation of the compressible material is small. Then a plastic behavior 
representing by a strain hardening can be observed whilst the last stage characterizes the 
stiffening of the material after the depletion of its porosity.  

Some attempts to model the mechanical behavior of the high porous compressible materials 
have been conducted. For example, in (Souley et al., 2017) an elastoplastic constitutive model 
was proposed. In this model, the Drucker-Prager’s criterion and a strain hardening modeled by 
an exponential function with respect to the plastic distortion are used. In addition, in this model, 
the yield function, the hardening, and the densification mechanism are explicitly related to the 
pore collapse mechanism (e.g., volumetric plastic strain due to the hydrostatic failure). 

In this work, for the sake of simplicity, a tri-linear-elastic behavior was adopted for the 
compressible support layer (Figure 3-6b). This simplification is acceptable when in all our 
analyses of drift, the compressive stress state in this compressible liner presents a monotonic 
evolution. It is important to note that, under the monotonic loading condition, the stress-strain 
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curve provided by our tri-linear-elastic model can fit quite well the experimental results of  
Billig (Billig et al., 2007).  

As a function of the volumetric deformation, this model is characterizing by three values of 
elastic modulus (Ec1, Ec2, Ec3) and is expressed in the form:  
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In Eq.(3.1) two parameters 1 2, v v  are the limits at the first/second stages and the second/third 
stages of the tri-linear elastic model, respectively. Notably, corresponding to the contrast of the 
mechanical property of the second stage with respect to the other stages, which are calibrated 

from the compressive tests of the compressible grout in (Billig et al., 2007), the parameter 2v  
represents the compressible potential of the first support layer of drift to adsorb the high time-

dependent convergence of host rock. Moreover, , d
v e  are the volumetric and deviatoric part 

of the strain tensor, while the Bulk and shear moduli are calculated from the corresponding 
Young modulus and Poisson’s ratio of each stage: 

  
/ (1 2 ), ( 1,2,3)

/ 2(1 )




  

 
ci ci c

ci ci c

K E i

G E
 (3.2) 

The Poisson's ratio of the compressible material is so small that it is taken equal to zero (c=0), 
i.e., ignore the impact of Poisson’s ratio on the overall responses. This tri-linear elastic model 
has been implemented on the Code_Aster (Code_Aster® software) for this work. 

 

(a)                                                                 (b) 

Figure 3-6: Stress-strain curve of compressible material 
(a) under the compressive test (Billig et al., 2007), (b) our proposed tri-linear elastic model  

3.3.3. Uncertainty quantification of the mechanical properties of COx rock 

The results obtained from the tests in the laboratory and the in-situ measurements show a 
complex medium both in short -, and long-time of COx claystone.  

The claystone's short-term mechanical behavior is considered a linear behavior under low 
deviatoric stresses and investigated by means of uniaxial and triaxial compression tests. For 
low confining pressures, the failure of the samples is brittle and can be idealized by the 
formation of a shear band inclined with respect to the sample axis. Under high confining 
pressure, mechanical behavior is ductile (Souley et al., 2009). Both at the sample and in-situ 
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scales, sophisticated phenomenological models combining advanced numerical modeling 
(non-local model, second gradient regularization, phase-field, so on) have been developed to 
reproduce the observation of short and long-term behavior of COx rock (Pardoen and Collin, 
2017; Souley et al, 2020; Manica et al., 2021a; Manica et al., 2021b). Ordinarily, these models 
are characterized by various parameters (e.g., larger than 20), whose physical meaning and 
calibration are not simple. Consequently, the use of these models in a reliability analysis cannot 
be feasible. 

The long-term one was studied by uniaxial creep and relaxation tests. For example, the results 
from the creep tests in the laboratory pointed out that the creep rate varies slowly and linearly 
with stress at low stresses, but it increases and deviates from the linear form under high loading 
(Chun-Liang Zhang et al., 2010; Armand et al., 2013; Chun-Liang Zhang, 2018). Furthermore, 
the lack of measurable creep thresholds at the laboratory means that the creep of COx in their 
initial anisotropic stress state seems unlikely to be from a physical point of view. Also, 
depending on the mineralogical composition, the creep is slowed down with respect to the high 
carbon content.  

The noteworthy uncertainty of the COx mechanical properties can relate to the scarcity of high-
quality data (epistemic uncertainty) and the inherent variability of the mineralogical 
composition of the host rock (the aleatory uncertainty).  

This chapter focuses only on the epistemic uncertainty, while the consideration of the other 
uncertainty source (the aleatory uncertainty) contributes to another critical issue of Chapter 5. 
In our study, we take the second-moment statistics for Young’s modulus according to the 
natural samples with UA geological unit in the contribution of Armand (Armand et al., 2017c), 
that is, the mean and the standard deviation worth of 6.0 GPa and 3.5 GPa, respectively. These 
statistical values of the short-term mechanical properties of COx are synthesized from the 
measurements conducted on natural samples obtained from the same depth at the main level of 
the M / HM URL (i.e., these samples have identical mineralogical composition). Note that the 
influence of the Poisson’s ratio of rock mass on the behavior of drift is quite moderate with 
respect to the other parameters. Thus its mean value =0.29 is used in this work as a 
deterministic parameter by ignoring its uncertainty. Regarding the epistemic uncertainty of the 
long-term mechanical properties of COx, this topic has not yet been discussed in the literature. 
So far, a universal constitutive model to characterize the time-dependent behavior of COx 
accurately does not exist, and the number of creep tests carried out on the samples of the same 
level and with the same condition seems very limited from the statistical point of view.  

As the first attempt to quantify the epistemic uncertainty of the long-term mechanical properties 
of COx claystone, we use the data of seven tri-axial creep tests corresponding to seven applied 
deviatoric stresses performed on the samples taken from the same geological horizon (Armand 
et al., 2017c; Seyedi et al., 2017). The information about the confining pressure and deviatoric 
stress of each triaxial creep test is summarized in Table 3-10, while for more details of these 
tests, the interest readers can refer to (Armand et al., 2017c). The calibration of the viscoplastic 
parameters of Lemaitre’s model is conducted by using the compact form expressed in Eqs. 
(1.62) and the Best Linear Unbiased Estimator calibration algorithm (BLUE). Following these 
equations, the inverse analysis to determine the three parameters A, B, C can be carried out by 
fitting the data of at least two creep tests under two different applied deviatoric stresses. Since 
there are two creep tests using the same deviatoric stress (see Table 3-10), thus totally, the 
statistical analysis of the obtained results of three parameters A, B, C is conducted with 88 
samples generated from at least two tests. Following the histograms in Figure 3-7, a normal 
distribution is adopted for these parameters characterizing the viscoplastic Lemaitre’s model 
whilst their corresponding mean and standard deviation are summarized in Table 3-11. As a 
function of the applied deviatoric stress and time, the exponential parameters (i.e., the 
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parameters B and C), which characterizes the non-linearity of COx rock, present the mean value 
about 2.05 and 0.17 correspondingly. Parameter A presents the most considerable uncertainty 
representing by the highest value of COV (about 87.5%). Our analysis also exhibits the 
correlation between these three parameters (see Table 3-12). More precisely, a quite significant 
anti-correlation between the coefficients A and B characterizing by a negative value -0.72 is 
stated. The other correlations (for example, between A and C or between B and C) seem weaker, 
which are, however, taken into account in our reliability analysis. Besides, with regard to Eq. 
(1.59), we can describe the cumulated viscous strain (as in Figure 3-9, by using the triaxial 
compressive tests describing the creep process as in Figure 3-8. These tests show different 
levels of applied axial and lateral stresses (i.e., different q/qpeak levels), as shown in Figure 3-
8. The qpeak values were approximated from the triaxial compressive test results. Three q/qpeak 
levels (50%, 75%, and 90%) were applied and kept for three months. The cumulated viscous 
strain's evolution during the creep process is also illustrated in Figure 3-9. Obviously, the 
deviatoric loading level has an important influence on the amplitude of the axial strain. Note 
that in all creep tests that are carried out, the claystone is always deformed under pressure. 

   
Figure 3-7: Calibrated coefficients of Lemaitre’s model from 88 samples with the histograms 

 

 
(a)                                                           (b) 

Figure 3-8: Axial (a) and lateral (b) strain changes in claystone samples under different deviatoric stress 
levels during triaxial creep testing 
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Figure 3-9: Cumulated viscous strain changes in claystone samples under different deviatoric stress levels 

during triaxial creep testing 
Table 3-10: Confining pressure and deviatoric stress of seven tri-axial creep tests performed on COx rock 

No. Samples 1 2 3 4 5 6 7 
Confining pressure 

(MPa) 
2 2 2 2 12 12 12 

Deviatoric stress 
(MPa) 

11.5 
 

17.25 
 

20.7 
 

20.7 
 

18.5 
 

27.75 
 

33.3 
 

 

Table 3-11: Statistical values of the Lemaitre’s coefficients calibrated from seven creep tests on COx rock 

 Coefficient A Coefficient B Coefficient C 

Mean 4.88   10-6 2.048 0.171 

Standard deviation (std) 4.27  10-6 0.389 0.013 

COV (std/mean) 87.5% 19% 7.6% 
 

Table 3-12: Correlation matrix between the calibrated coefficients of Lemaitre’s model 

 Distribution Coefficient A Coefficient B Coefficient C 

Coefficient A Normal 1 -0.72 0.35 

Coefficient B Normal -0.72 1 -0.24 

Coefficient C Normal 0.35 -0.24 1 

As an example, in Figure 3-10, a tri-axial creep test is presented with the applied deviatoric 
stress 27.75(MPa) and confining pressure 12(MPa), while in Figure 3-10 are gathered all the 
simulated tri-axial creep tests. These results are simulated from the mean values and 1000 
random sets of the three parameters A, B, C of Lemaitre’s model. The comparison of the 
numerical result using the mean values of A, B, C, and the experimental data measured up to 
about 90 days (Figure 3-10a) illustrates the correct tendency. However, due to the uncertainty 
of the long-term mechanical properties, the viscous deformation in COx rock may be higher 
than ten times the ones measured with the mean values (Figure 3-10). Notice that the calibration 
and the corresponding statistical analysis of the long-term mechanical properties of COx rock 
are conducted with the creep tests performed for about three months. Consequently, an 
extrapolation of the viscous deformation to 100 years(Figure 3-10b) must also present another 
source of uncertainty that may underestimate or overestimate the reliability analysis's 
corresponding results.  
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(a)                                                           (b) 

Figure 3-10: Comparison of the viscous distortion of a creep test  
(a) 90 days, (b) extrapolation to 100 years. 

 

(a)      (b) 

Figure 3-11: Surfaces and curves of viscous distortions versus time and deviatoric stress in the creep tests 
(a) with the approximation using the mean values (surface), (b) with boundary surfaces (1000 samples) 

3.4. Discussions on deterministic problems 

This section analyzes the relationship between the maximum equivalent stress in the concrete 
liner and some affected parameters in the context of the deterministic problem. The concerned 
parameters can be listed as the thickness of two liners, the deconfinement rates in the CCM, 
the limitation of deformation of CMC as well as the mechanical properties of the host rock. 
The deterministic results are important to understand the drift responses before accounting for 
the uncertainty of the last parameters (i.e., the mechanical properties of Cox claystone). Our 
studies focus only on the maximum of the concrete liner's equivalent stresses, hereafter called 
the interested stresses. For the sake of clarity, we mention here that the equivalent stress present 
in fact the von Mises stress (the stress related to the distortion energy, as well as the deviatoric 
strain), which is expressed in the general 3D case as: 

        2 2 2 2 2 21
6

2
                    eq xx yy yy zz zz xx xy yz xz  (3.3) 

which can also be written as a function of the principal stresses: 

      2 2 2

1 2 2 3 3 1

1

2
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In the 2D case, it can be reduced to: 

 2 2 23        eq xx xx yy yy xy  (3.5) 

To illustrate the influence of the mentioned aspects on the stresses, we need to fix some 
parameters to consider the aspect interest. In other words, except for the variation of the 
parameter in parametric-study of interest, other parameters of our numerical applications, the 
thicknesses (l1) and mechanical properties of the tri-linear elastic compressible material (Ec1, 

Ec2, Ec3, 1v , 2v 1 ), as in Table 3-4, and the features of the concrete liner C60/75 (l2 =0.5m, 

E2=39.1 GPa, 2 0.2  ), the deconfinement rate (=0.85), coefficients A, B, C get its mean 
values from Table 3-2, Young modulus (Erocks=6 GPa) are fixed.  

Table 3-13: Materials properties of the compressible layer 

l1 (m) Ec1 (MPa) Ec2 (MPa) Ec3 (MPa) 
1v  2v  1  

0.2 100 3 100 0.015 0.515 0.0 

Our numerical results show that the equivalent stress in the concrete liner is highest at the inner 
radius (i.e., at R=R3), as shown in Fig 3-12.a below. This expected result is consistent with 
different adopted assumptions, notably the hypothesis of isotropic hydrostatic stress at far-field 
and isotropic homogeneous material of components in the considered problem.    

 

 
Figure 3-12: Equivalent stress in the concrete liner (a) and volumetric deformation in the outer 

compressible liner (b) at 100 years. 

 

 

(a)                          (b)                                          (c) 
Figure 3-13: Example of displacements in a specific study case at 100 years in the rock mass 

(a) along to X-axis, (b) along to Y-axis, (c) along to radial axis 
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Figure 3-13 above shows the displacements around the tunnel in a specific study case along 
with three types of the axis being interested. Convergence is about 8.3cm was noted on the 
tunnel wall. This displacement induces a high volumic deformation of about 0.41, which is 
uniform in the compressible liner.  

3.4.1. Influence of the thickness of the liners  

As the first numerical investigations, we study the time-dependent evolutions of the maximum 
equivalent stress on the concrete liner with respect to the thickness of two liners. In Figure 
3-14, the maximum equivalent stresses quickly increase at the very beginning of the period 
(i.e., in a few days) and become stable beyond the duration of about ten years. Figures show 
that this stress is strongly dependent on the second thickness, l2, (Figure 3-14b or Figure 3-15b), 
and moderately depends on the first one, l1, (Figure 3-14a or Figure 3-15a). Here, the interested 
stresses vary from 43MPa to approximately 18MPa at 100 years when l2 ranges from 20cm to 
50cm, while at the same considered time, they reduce from 21.8MPa to about 18MPa when l1 
change from 10cm to 20cm.  

 
(a)                                                                (b) 

Figure 3-14: Equivalent stresses on 2nd liner versus time 
(a) Variation of 1st thickness (fixed l2=0.5m), (b) Variation of 2nd thickness (fixed l1=0.2m) 

 
(a)                                                                (b) 

Figure 3-15: Equivalent stresses on 2nd liner at 100 years versus the thickness 
(a) 1st liner, (b) 2nd liner 

On the contrary, in these cases, the compressible layer's volumetric deformation depends much 
more on the thickness l1 than l2 (see Figure 3-16). They do not reach the third elastic stage (i.e., 

the volumetric deformations are still lower than the limit  2v ). Its compressible potential does 

not benefit when the volumetric deformations are very far from the limit 2v . 
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(a)                                                                (b) 
Figure 3-16: Volumetric deformations on 1st liner versus time 

(a) Variation of 1st thickness (fixed l2=0.5m), (b) Variation of 2nd thickness (fixed l1=0.2m) 

3.4.2. Influence of the deconfinement rate 

The effect of the deconfinement rate variation on the maximum equivalent stresses in the 
concrete liner is also tested. In Figure 3-17a, the interested stresses slightly turn down from 
nearly 18.9MPa to about 18 MPa when the deconfinement rate changes in the range of 0.7 to 
1.0. Similar to the previous case, the interested stresses become stable after ten years. The 
results captured in Figure 3-17 prove that the deconfinement rate does not affect the stress in 
the case that the mean values of COx rock properties are used as input data. 

 

(a)                                       (b)                                           (c) 
Figure 3-17: Effects of the deconfinement rate with using Set-mean for four input variables 

(a)(b) to Equivalent stress on 2nd liner without/with the variety of time, (c) to deformations of 1st liner 

Another case study is then conducted by adopting a random set of the input parameters (noted 
as set-1) with Aset1=8.415e-6; B set1=2.647; C set1=0.192; and Young Modulus: E set1=4.253GPa.  
These values correspond to about 1.7, 1.3, 1.1, 0.7 times with respect to their mean value. In 

these simulations, the limit 2 0.4 v . Figure 3-18 illustrates that the deconfinement rate can 
now effect much more pronounced on the maximum equivalent stress of the concrete liner. 
More details can be seen in Figure 3-18a; these stresses rapidly reduce from more than 63MPa 
to lower than 29 MPa when the rate exceeds 0.85  . Although in all five cases of the 
considered deconfinement rate ([0.7, 0.775, 0.85, 0.925, 1.0]), the volumetric deformations in 
Figure 3-18c are not much different, the stresses in Figure 3-18b is really dissimilar, especially 
for two last cases compare to three first ones. This phenomenon (as the deformation in the first 

three cases) has reached the third branch with 2 0.4  v v . To deeply understand it more, let 

consider these effects as the next section (variation of the limitation 2v ). 
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(a)                                       (b)                                           (c) 
Figure 3-18: Effects of the deconfinement rate with using Set-1 for four input variables 

(a)(b) to Equivalent stress on 2nd liner without/with the variety of time, (c) to deformations of 1st liner 

3.4.3. Influence of the compressibility of the compressible liner  

The following discussions will focus on the impact of the compressibility (v2) of the 
compressible liner (CMC), i.e., the limit value of volumic deformation between the second and 
the third elastic stage (as in Figure 3-6b). Firstly, we use the mean values of the input 

parameters of COx rock properties. The effects are not obvious, except the cases 0.1 v  even 
for the variation of the thickness l2 (as in Figure 3-19a). The relations of the volumetric-stresses 
and the deformations (in case of l2=0.5m) are shown in Figure 3-19b. In which no difference 

occurs with most values of 2v  (except a case study 1 2 0.015  v v ).  

 

(a)                                                                (b) 
Figure 3-19: Effects of the limitation of the CMC deformation on interested stresses with using Set-mean 

(a) with a variation of the thickness l2 , (b) to the relation of strain-stress on CMC  

Unlike the first case, in many events with other combinations, the compressibility of the CMC 
has an extremely significant effect on the distribution of stress state on the concrete liner. In 
other words, the compressive stress in this inner liner rapidly increases when the volumetric 

strain in the covered compressible liner v exceeds the limit value 2v  (i.e., the elastic behavior 
of this outer support element is in the 3-rd stage). Now, to strongly clarify the observed 

phenomenon, we take the second limitation 2v  varies from 0.015 to 0.515, with the spacing of 
unity, and the input parameters are taken from the set-1 (mentioned in 3.4.2). Figure 3-20a 

shows that the effect of 2v  changes significantly in the range from 0.315 to 0.415 (with all 
three cases of the thickness l2). For the typical case of concrete liner thickness (l2=0.5m), Figure 

3-20b illustrates the difference between the four first lines (e.g., 2v ranges from 0.015 to 0.315) 
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where the volumetric stresses on the CMC are closer to 7 MPa, while the last 2 cases ( 2v

=0.415, 2v = 0.515) are only about 3MPa due to the fact that vdoes not reach 2v . In parallel 
with these deformations, the interested stress in the concrete liner ( Figure 3-21a), has a huge 

gap between the latter cases ( 2 0.415 v ) and the others, while, in Figure 3-21b, the 
deformations of CMC are figured out with the function of time.  

 

(a)                                                                (b) 
Figure 3-20: Effects of the limitation of the CMC deformation on interested stresses with using Set-1 

(a) with the variation of the thickness l2, (b) to the relation of strain-stress on CMC  

 

(a)                                                                (b) 
Figure 3-21: Effects of the limitation of the CMC deformation on interested stresses 
(a) with the variation of time, (b) to the deformations on CMC with the variety of time 

(a) on the interested stresses, (b) on the deformations on 1st liner 

3.4.4. Influence of the mechanical properties of COx rock    

The following discussions will focus on the general view of four mechanical parameters' effects 
on the maximum equivalent stresses in the concrete liner. The previous investigations exhibit 
a significant difference in the behavior of concrete liner of drift by using different mechanical 
properties of COx rock, respecting its mean values, and utilizing the Set-1. Here, the broader 
view of these properties’ effects can be stated in Figure 3-22, where the variation of the 
interested stresses associated with each parameter of COx rock is illustrated. These results are 
extracted from the direct evaluations of the performance function taken from a reliability 
analysis performed in the next part. These simulations were conducted on about 500 MCS sets 
following the Normal distribution of rock properties. In which, we fixed values of concrete 
liner thickness (l2=0.5 m) to confirm the complexity of the considered problem. Due to the non-
linear behavior of host rock with the eventual correlation of its long-term properties, an evident 
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tendency is difficult to be captured from these results. Following that, with a higher value of 
one of the long-term mechanical parameters (i.e., either coefficient A or B or C), the maximum 
equivalent stress in the concrete element tends to increase (see Figure 3-22 a, b, c). This 
phenomenon seems to be consistent because the increase of one of these parameters yields a 
highly viscous deformation, according to the Lemaitre model expressed in Eq. (1.58). If it is 
evident for a constant applied deviatoric stress, it is not the present underground structure. In 
this last context, the interaction in a non-linear manner between the convergence of the viscous-
rock and the reaction from the support system generates a redistribution of stress state 
representing by a variation of the deviatoric stress at a specific point of rock mass in time. This 
redistribution depends strongly not only on the short and long-term mechanical properties of 
host rock but also on the time-dependent reaction loading of the support system, which in turn 
depends on the rigidity of the liners. Concerning the effect of the short-term mechanical 
properties of COx rock (i.e., Young’s modulus), the results from Figure 3-22d present lower 
equivalent stress in the concrete element when Young’s modulus is much higher than its mean 
value of 6.0 GPa. Maximum equivalent stress in the concrete-liner can especially reach a value 
of 76 MPa (Figure 3-22), which largely exceeds the compressive resistance of the C60/75. Note 
that, in the typical civil engineering application by the deterministic (or semi-probabilistic) 
approach, a resistance about 60% of the concrete mark is mostly accepted in the serviceability 
limit state design of the concrete elements as proposed in European Code (EC2). Below this 
limit, one considers that the risk of crack under compressive loading will not happen in the 
structure.  

 

(a)                                                                (b) 

 

(c)                                                                (d)  
Figure 3-22: Maximum equivalent stress on concrete liner versus the parameter interest 

(a) Coefficient A, (b) Coefficient B, (c) Coefficient C, (d) Modulus Young E 
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The following analyses aim at providing the impact of each input material parameters by taking 
place two-cases for each sub-case-study. The first case (so-called Case-1) is accompanied by 
one coefficient that varies, and others will be set at its mean values. While the second one (so-
called Case-2) also allows only one parameter changes, yet others will be taken from the Set-

1, as in section 3.4.2 above, and fixed 2v = 0.4. The values of a variable interest in each study 
can be applied from the formation illustrated as in Table 3-14 below, in which the minimum 
and maximum values are based on 95% CI (Confidence interval), their average (mean) and 
standard deviation (STD) obtained from section 4.3.2. 

Table 3-14:  Formation of the variable interest 

No Values Case-1  Case-2  

1 Xmin min(X) min(X) 

2 X1 Xmin+0.3*(Xm-Xmin) Xmin+0.3*(Xm-Xmin) 

3 X2 Xmin+0.6*(Xm-Xmin) Xmin+0.6*(Xm-Xmin) 

4 Xm mean(X) mean(X) 

5 X3 Xm+0.3*(Xmax-Xm) Xm+0.3*(Xmax-Xm) 

6 X4 Xm+0.6*(Xmax-Xm) Xm+0.6*(Xmax-Xm) 

7 X5 - X in the Set-1 

8 Xmax max(X) max(X) 

where X denotes for one variable in each case study, i.e., X can be coefficient A, B, C, or 
Young modulus E. 

3.4.4.1. Influence of the coefficient A  

In this section, the coefficient A tends to affect the maximum equivalent stress in the concrete 
liner proportionally. However, in both cases (using the Set-mean set and the Set-1), there again 
appears two sharp changes (at the beginning for the Set-mean, and at about A=0.8*10-5). The 
clear differences in the two figures (Figure 3-23 and Figure 3-24) show the significant impact 
of coefficient A on the interested stress. Notably, in Figure 3-24, with respect to a higher value 

of coefficient A, the deformations on the compressible zone exceed the limitation 2v and 
induce a pronounced increase of the maximum equivalent stress in the concrete liner. 

 

     (a)                                       (b)                                           (c) 
Figure 3-23: Effects of the coefficient A with the mean values of B, C, E (Case-1) 

(a)(b) to the maximum equivalent stress without/with the time variety, (c) to deformations of 1st liner  
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     (a)                                       (b)                                           (c) 
Figure 3-24: Effects of the coefficient A with B, C, E fixed in the Set-1 and v2 = 0.4 (Case-2) 

(a)(b) to the maximum equivalent stress without/with the time variety, (c) to deformations of 1st liner  

3.4.4.2. Influence of coefficient B 

Similarly, the coefficient B also tends to increase the compressive stress in the drift's final 
support element (i.e., the concrete liner). Notably, in the case of using the Set-1, a rapid change 
happens when B>2.5). The significant impact of coefficient B on the interested stress can be 
stated from two figures (Figure 3-25 and Figure 3-26). Remarkably, in Figure 3-26, with the 
last two values of coefficient B, the deformations on the compressible liner pass over the 

threshold 2v deduce the vast gap in the interested stresses compared to the other cases of 
parameter B. 

 

    (a)                                       (b)                                           (c) 
Figure 3-25: Effects of the coefficient B with the mean values of A, C, E (Case-1) 

(a)(b) to Equivalent stress on 2nd liner without/with the variety of time, (c) to deformations of 1st liner  

 

    (a)                                       (b)                                           (c) 
Figure 3-26: Effects of the coefficient B with A, C, E fixed in the Set-1 and v2 = 0.4 (Case-2) 

(a)(b) to Equivalent stress on 2nd liner without/with the variety of time, (c) to deformations of 1st liner  

3.4.4.3. Influence of coefficient C 

Like the previous case, the coefficient C seems to be linearly proportional to the maximum 
equivalent stress. Again, using the Set-1, a rapid change occurs when C>0.18 (Figure 3-27 and 
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Figure 3-28). Nevertheless, the coefficient C seems to have less impact than coefficient A or B 
on the interested stress. Although in the case of Set-mean (Figure 3-27), the variation of 
coefficient C makes the stresses vary from 17.6 MPa to about 19.1MPa, this range seems 
smaller than the ones obtained from two previous cases (coefficient A, B).  

 

 

    (a)                                       (b)                                           (c) 
Figure 3-27: Effects of the coefficient C with the mean values of A, B, E (Case-1) 

(a)(b) to Equivalent stress on 2nd liner without/with the variety of time, (c) to deformations of 1st liner  

 

    (a)                                       (b)                                           (c) 
Figure 3-28: Effects of the coefficient C with A, B, E fixed in the Set-1 and v2 = 0.4 (Case-2) 

(a)(b) to Equivalent stress on 2nd liner without/with the variety of time, (c) to deformations of 1st liner 
 

3.4.4.4. Influence of the Young Modulus E 

There is little debate that the Young Modulus (E) has a strange impact on interested stress. In 
Figure 3-29, the parameter has a disproportional effect on the stresses (i.e., E increases from 
0.2 to 11.8, along with the variation of ,maxeq reducing from approximately 21.9 MPa to 17.8 

MPa. However, Figure 3-30 presents a low maximum equivalent stress when E is very small; 
then this stress increases to above 65 MPa with the middle range of value E; the next, it 
suddenly falls to under 30 MPa for the highest range of the modulus (three last values). 

 

    (a)                                       (b)                                           (c) 
Figure 3-29: Effects of the Young Modulus E with the mean values of A, B, C (Case-1) 

(a)(b) to Equivalent stress on 2nd liner without/with the variety of time, (c) to deformations of 1st liner 
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    (a)                                       (b)                                           (c) 
Figure 3-30: Effects of the Young Modulus E with A, B, C fixed in the Set-1 and v2 = 0.4 (Case-2) 
(a)(b) to Equivalent stress on 2nd liner without/with the variety of time, (c) to deformations of 1st liner  

3.4.5. Summary of the deterministic problems 

Although the effect of different parameters was highlighted in the deterministic problem, a 
clear trend of the COx rock properties, accounting also for the fact of their correlations (i.e., 
correlation of A, B, C), on the behavior of the final support of drift was not captured. In 
addition, the obtained results do not allow us to quantify the effect of these parameters on the 
stability at the long-term of this structural element. For this last aim, the reliability analysis 
based on the Kriging metamodeling technique will be carried out in the next section. 

3.5. Discussions on reliability analysis problems 

For the sake of clarity, we precise that the probability of exceedance is only measured in the 
concrete liner when the maximum equivalent stress exceeds the preselected threshold lim2. 
This exceedance probability prediction is undertaken for five case-studies by using the 
modified AK-MCS method; this technique was detailed in Chapter 1 and Chapter 2. As 
demonstrated previously, the convergence of exceedance probability can be attained sooner 
(i.e., the number of iterations at convergence is lower) if a set of new training points is used in 
each iteration. Thus, hereafter, for all the numerical investigations of reliability analysis, a set 
of four enriched samples in each iteration during the iterative process is chosen thanks to the 
capability of using parallel calculations in Code_Aster. The initial DoE of 24 training samples 
of the random vector X (i.e., the mechanical properties of COx rock) is generated by the Latin 
Hypercube Sampling (LHS) method. The other necessary parameters for the modified AK-
MCS reliability analysis of drift support, which relate to the convergence condition and to the 
interpolation by Monte Carlo Simulation, are chosen with =0.01, N =6, NMCS=106 (see their 
definitions in Sec. 2.5.1 in chapter 2).       

3.5.1. Effects of the adopted threshold stresses  

The considered concrete liner of drift as adopted in this work has the characteristic compressive 
strength according to the Eurocode-2 (European code for design of concrete structures) fck= 
60MPa (i.e., the concrete class C60/75). Thus, the value of the design compressive strength 
(fcd) is defined as: 

 / 0.9*60/1.5 36 (MPa)   cd cc ck Cf f  (3.6) 

where: cc=0.9 denotes the coefficient taking account of long term effects on the compressive 
strength and of unfavorable impacts resulting from the way the load is applied; C=1.5 is the 
partial factor for materials for ultimate limit states. 
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However, in this case,  the influence of the adopted value of lim2 is also investigated regarding 
the fact that the degradation mechanism of concrete (which is not explicitly taken into account) 
may be significantly varied at the time scale of 100 years.  

Figure 3-31a illustrates a representative evolution of the drift’s final support's exceedance 
probability during the iterative construction of the metamodel. Corresponding to the fixed 
values of the concrete liner’s thickness (l2=0.5m) and the compressible potential of the 

compressible layer ( 2 0.515v  ), 91 iterations (i.e., 388 total number (Ncall) of direct 
evaluations of the performance function) are carried out. The estimated probability, Pf=0.11%, 
is obtained by adopting the allowable stress lim2= fcd=36MPa. An investigation with the other 
values of lim2 as illustrated in Figure 3-31b presents a decrease as expected of the exceedance 
probability in the concrete liner when its compressive strength (threshold) increases. The 
probability could reach to about 95% for the case lim2=16MPa while it is smaller than 1% 
when the allowable stress is higher than 25MPa. The figures show that the number of direct 
evaluations of the performance function (Ncall) is more critical for the smaller exceedance 
probability.      

 

(a)                                                                (b) 
Figure 3-31: Probability of exceedance at 100 years  

(a) versus iteration numbers (lim2=36MPa), (b) versus threshold stresses of 2nd liner 

3.5.2. Influence of the thicknesses of two liners  

By taking the threshold of the compressive stress in concrete lim2=36MPa and the 

compressible potential 2 0.515v   in the first liner of the drift, we now investigate the influence 
of the two-liner thicknesses on the long-term stability of the solid support (Figure 3-32). For 
the variation of the compressible layer thickness (l1) (Figure 3-32a with fixed l2=0.5m), the 
probability of exceedance in the concrete liner at 100 years changes in the range 6. 81% to 
0.11% when the thickness increase from 0.1m to 0.2m. For the remaining case (Figure 3-32b 
with fixed l1=0.2m), the exceedance probability varies from 99.3% (for the case of thickness 
l2=0.2m) to the value of 0.11% (case l2=0.5m). Indeed, it is smaller than 1% when the thickness 
of this final support is higher than 0.35(m). These figures illustrate that the final thickness has 
much more impact than the rest.  
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(a)                                                                (b) 
Figure 3-32: Probability of exceedance at 100 years versus the thickness 

(a) 1st liner (fixed l2=0.5m), (b) 2nd liner (fixed l1=0.2m) 

3.5.3. Influence of the deconfinement rate 

A discussion of this section reveals how the rate of deconfinement could affect the stability of 
the final liner with the same conditions (lim2=36MPa, l2=0.5(m)). Figure 3-33a below shows 
the decrease of Pf and the increasing deconfinement rate, from the peak point at 0.48% (=0.7) 
to 0.02% (=1), i.e., 24 times the tolerance. Thus, the chosen deconfinement rate to install the 
liners can strongly affect the probability of the final drift support's exceedance. 

3.5.4. Influence of the compressibility of the CMC 

As the last numerical investigation, by keeping lim2=36MPa and l2=0.5(m), here, the 
compressible potential of the outer layer can induce a quite significant variation of the 
exceedance probability in the drift’s final support (Figure 3-33b). The concrete liner's long-
term stability is higher, representing a lower probability when the compressible potential in the 
first support layer is more critical. For a particular case of an elastic material (i.e.,

2 1 0.015v v   ) characterizing by an elastic modulus (Ec=100MPa), the exceedance 
probability of the concrete liner of 0.5(m) of thickness at 100 years can attain to 51% instead 

of 0.11% (the case 2 0.515v  ). This result confirms the evident effect and incredibly 
significant benefit of using the compressible material to ensure the stability of drift support. 

 

(a)                                                                (b) 
Figure 3-33: Probability of exceedance versus the deconfinement rate (a), the second limitation of 

deformation of CMC (v2) 
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3.5.5. Summary of the reliability analysis problems 

These obtained results from the reliability analysis highlighted a small probability of 
exceedance of deep drift support by adopting a thickness of 0.2(m) in the compressible layer 
that covers final concrete support of 0.5m of thickness. The predicted failure probability is 
smaller than 1% when the allowable stress is higher than 26MPa. However, based on different 
simplified assumptions, as mentioned in the description section of the studied problem, the 
reliability analysis in this chapter presents the preliminary results on drift's long-term stability 
analysis. We can expect that the exceedance probability of the drift support can be higher than 
the ones obtained in this research when the aleatory uncertainty and other mechanisms (e.g., 
damage, THM-coupling) are counted.  

3.6. Concluding Remarks 

In this chapter, various numerical applications were conducted to analyze the long-term 
stability of the deep drift support by taking the epistemic uncertainty of the mechanical 
properties of the host rock (COx claystone) into account. The support system of drift consists 
of a compressible material whose mechanical behavior is described by a tri-linear elastic 
model, contact directly with the host rock, and a linear elastic concrete liner. The study was 
undertaken in the 2D plane strain problem in the isotropic far-field stresses to model the circular 
drift oriented in the major horizontal stress of the COx layer. The time-dependent mechanical 
behavior of this rock was assumed to be described by the classical viscoplastic model of 
Lemaitre. The epistemic uncertainty of the mechanical properties of COx host rock was 
quantified from data obtained from the experiments in the laboratory, which were performed 
on the samples from the same depth. 

The numerical results of both the deterministic problem and the reliability analysis, which is 
based on the modified AK-MCS method, elucidated the strong dependence of the stability of 
concrete liner on the uncertainty of rock properties and the compressibility of the outer 
compressible layer. The exceedance probability measured at 100 years of this final support of 
drift decreases when its thickness increases and the compressible potential of the outer liner is 
higher. The numerical investigations confirm the tremendous benefit of compressible material 
on the long-term stability of drift support from a purely mechanical point of view. However, 
the results in this preliminary research can be underestimated when the aleatory uncertainty 
related to the spatial variability of COx rock properties, as well as the damage mechanism 
and/or the coupling effect, are neglected. 

  



   114 

 

CHAPTER 4. SPATIAL VARIABILITY OF COX ROCK ON THE 

STABILITY OF DEEP DRIFT SUPPORT 

4.1. Introduction 

In geotechnical engineering applications, mechanical properties are uncertain, and they 
naturally vary in space. Such inherent spatial variability in rocks properties can considerably 
affect the reliability of geotechnical structures (G. Fenton and Griffiths, 2008; Al-bittar and 
Soubra, 2013; Dian Qing Li et al., 2016; Te Xiao et al., 2017) and greatly affect the behavior 
of tunnels during and after construction as well as their long-term responses (Ki Il Song et al., 
2011). For instance, ignoring soil properties' spatial variability often overestimates the 
probability of exceedance (Pf) of a slope (Griffiths and Fenton, 2004). It could be more 
dangerous with high coefficients of variation (COVs) of the random parameters or the low 
factor of safety (FS).  

Uncertainty related to a random variable's spatial variability (aleatory uncertainty) is usually 
represented through the random field concept (see subsection 1.1.2). Mathematically, this 
random field can be expressed in the form of a correlation function (such as Markovian or 
Gaussian’s function) with an essential characteristic parameter, the spatial correlation length. 
For the numerical modeling (i.e., the direct evaluation of the performance function), this 
random field needs to be discretized by an appropriate technique. After the discretization of all 
random fields, the probabilistic assessment can be undertaken as an uncertainty problem 
tackled in the previous chapters. Nevertheless, the significant increase in the number of random 
variables after the discretization of these random fields results in pronounced difficulty in the 
construction of the metamodel since the computational demand increases exponentially as the 
number of variables grows. This problem is also referred to as the curse of dimensionality. 
Solving the great dimensional problem is still an active ongoing research topic in the literature, 
and almost all research efforts are based on the idea of using dimension reduction methods. An 
interesting tool termed high-dimensional model representation (HDMR) has been received a 
lot of attention in the last two decades (Rabitz and Aliş, 1999). This method prescribes a 
systematic mapping procedure between the inputs and outputs to reveal the hierarchy of 
correlations between the input variables. In reality, only relatively low-order correlations of the 
input variables significantly affect each physical system's output. This property permits the 
expression of the HDMR in only a few hierarchical levels to represent the physical system 
accurately. Each hierarchical level of HDMR aims to apply an appropriate projection operator 
to the output function. The latter will be chosen in this study between the two well-known 
HDMRs: the ANOVA (Analysis of variance)-HDMR and Cut-HDMR.   

The main aim of this chapter is, therefore, to investigate the effect of the spatial variability of 
COx rock properties on the stability at the long-term of the deep drift support by using the 
modified AK-MCS method as well as the applicability of the Cut-HDMR in combination with 
the Kriging-based reliability analysis (noted herein as AK-HDMR). This chapter is organized 
as follows. The initial state of the problem with considering spatial variability of the COx rock 
is firstly introduced. An appropriate discretization technique adopted in the case of cross-
correlated random fields is then detailed. The following section consists of presenting some 
results of the reliability analysis of deep drift by the modified AK-MCS by accounting for the 
spatial variability. The comparison of these results (i.e., variability problem) with the ones of 
the previous chapter (i.e., uncertainty problem) is undertaken, and we highlight in parallel the 
limit of the AK-MCS to tackle the problem of high dimension. After a brief presentation of the 
Cut-HDMR method, its combination with the AK-MCS reliability analysis technique to handle 
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COx rock properties' variability is detailed. After several numerical applications, we discuss 
the applicability of this AK-HMDR method. 

4.2. Problem statement and procedure to handle the spatial variability  

4.2.1. Set the initial state of the problem 

In this chapter, as detailed in the previous chapter, almost the adopted hypothesis will be 
retained to describe the problem statement of deep drift constructed in the COx host rock. The 
deep-circular drift excavated in the viscoplastic rocks is supported by a concrete liner (elastic 
behavior) and a tri-linear compressible material layer. The two-dimensional (2D) plane strain 
model to represent the circular drift in the hydrostatic far-field stress is also maintained during 
this work. However, in comparison with the problem tackled in the previous chapter, the spatial 
variability of COx rock properties is accounted for, which means that the surrounding rock 
mass of the tunnel can be heterogeneous. The adopted 2D plane-strain model, counting also for 
the symmetric conditions, seem so to be a strong hypothesis to represent a spatial variability 
problem that needs to be really modeled in three-dimensional (3D). However, regarding the 
very high consuming time and computation demand to simulate a time-dependent behavior of 
deep tunnel in 3D and the fact that our main purpose is to validate the potential applicability of 
the chosen method (i.e., the modified AK-MCS and the AK-HDMR method as presented 
below), the adopted hypothesis may be acceptable to simplify the procedure.        

Following that, the deep drift support's exceedance probability at the period of exploitation of 
100 years will be measured considering the variability in the COx rock properties' space. The 
reliability analysis bases firstly on the modified AK-MCS metamodel, as mentioned in the last 
two chapters. Meanwhile, the spatial variability of four random parameters (coefficients A, B, 
C, and Young modulus E), which present the time-dependent behavior of the COx claystone, 
will be described by four random fields, and there are cross-correlation relationships between 
the first three coefficients. Each random field can be characterized by a proper correlation 
length. Nevertheless, for the methodology verification purpose, and since all the data 
concerning the correlation length of the mechanical properties of COx rock are available, we 
assume that all the random fields have the same correlation length.      

Below, the well-known Expansion Optimal Linear Estimation (EOLE) method proposed by 
(Li and Kiureghian, 1993) will be adapted to discretize the random fields and extended to tackle 
their correlation relationship (i.e., discretization of the cross-correlated random fields). This 
discretization procedure presents a necessary step for the direct evaluation (i.e., solving the 
deterministic problem numerically) by the open-source Code-Aster.   

4.2.2. Discretization of random fields by the EOLE method 

For civil structures, the increasing interest of the research community in the probability analysis 
concerning spatial variability (or space-variant properties) points out the problem of achieving 
a reliable discretization of random fields. A discretization procedure is required to decrease a 
continuous random field to a finite set of random variables. The precision of discretization is a 
crucial point for any subsequent probabilistic investigation of structural response. It is useful 
to optimally formulate a discretization error estimator to quantify the discretization’s precision 
and to require that the approximate random field fill a prescribed target precision. In which the 
number of optimization variables is small, however, it could represent the random field, and 
the objective function must depend on the discretization error estimator and the target precision 
(Allaix and Carbone, 2009). 

In practice, it is not straightforward to sample a Gaussian random field H(x, ) to obtain the 
realization of H. Consequently, the discretization procedure is appeared to approximate the 
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random field H(x, ) by ˆ ( , )xH . The methods of discretization can be divided into three 
groups (Sudret and Kiureghian, 2000), namely: point discretization (Kiureghian and Ke, 1988), 
average discretization (Fenton and Vanmarcke, 1990; Griffiths and Fenton, 2004), and series 
expansion methods (Phoon et al., 2002; Sudret and Kiureghian, 2002; Cho, 2010; Jiang et al., 
2014). In which, the series expansion methods, commonly used in the literature, can be listed 
as Karhunen-Loève expansion (KLE), orthogonal series expansion (OSE), and the expansion 
optimal linear estimation method (EOLE). The crucial point here is that the random target 
functions can be adequately simulated by serial expansion methods using a finite number of 
deterministic functions and random variables-coefficients. These methods are highly 
appreciated for more complex problems. In our problems, the latter is suitable and chosen 
among series expansion one, thanks to its accurate, more practical, and efficient than some 
other series expansion discretization techniques according to (Zhang et al., 2017).  

The EOLE method can be used to approximate the Gaussian stochastic input parameters. On 
the basis of the pointwise regression of the original random field wrt the selected values of the 
field, and compaction of the data by spectral analysis (Li and Kiureghian, 1993); Allaix and 
Carbone, 2010). The subsequent problem takes into account the derivation of an EOLE 
illustration of a random field with two aims: (a) limit the computational effort devoted to the 
application of the resulting representation; and (b) ensuring that the representation meets all 
accuracy standards. By limiting the highest order of the expansion term and the total number 
of random variables used to construct a representation, the first objective can be achieved. In 
contrast, the second goal will be attained by finding the minimum of multiple error estimators. 

The EOLE method has the advantage of allowing the error variance of the corresponding 
discretization scheme to be determined. Thus, one can determine the optimal number of 
eigenmodes for a specified value of error variance. Notice that the discretization of a random 
field by this method conducts an expression that gives the random field’s value at each point 
in the space of the rock mass as a function of N random variables (following the standard 
normal distribution law). This value N equals the number of eigenmodes. For a given value of 
the error variance on the EOLE, the number N is small for high values of autocorrelation 
distances. In which, homogeneity is a special case according to the autocorrelation distances 
gets infinite value. However, N can be an extremely high value when the autocorrelation 
distances are so small (El Haj et al., 2019).  

Mathematically, the EOLE method represents a stochastic field in terms of a linear combination 

of deterministic functions/vectors ( , )xH and a finite set of uncorrelated standard Gaussian 

random variables ( )j where  stands for the random nature. Let us denote by χ the random 

vector {H(x1), ...H(xN)}. By construction, χ is a Gaussian vector whose mean value μ  and 

covariance matrix Σ  is expressed as: 

 ( ) μ xj
j  (4.1) 

  
,

( ), ( ) ( ) ( ) ( , )      Σ x x x x x xj k j k j kj k
Cov H H  (4.2) 

The EOLE of random variable H(x) onto the random vector χ reads: 

 1ˆ( ) ( ) ( ) ( ) ( )      χ χχx x x Σ x Σ χ μT
HH H

 (4.3) 

where: ( ) ( )χΣ xH x is a vector whose components are given by  
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 ( ) ( ) ( ), ( ), ( )        Σ x x x xj
H x j jCov H Cov H H  (4.4) 

Base on non-accumulation of eigenvalues  j , around a non-zero value, one can order them in 

a descending series converging to zero. Let us consider the spectral decomposition of the 

covariance matrix Σ : 

 1,... ,  Σ        j j j j N   (4.5) 

This equation allows one to transform the original vector linearly χ : 

 
1

( ) ( )   


 χ μ
N

j j j
j


 (4.6) 

where  , 1,...,   j j N are independent standard normal variables. Substituting for Eq. 4.6 in 

(4.3) and solving the OLE problem in Eq. (4.5) yields the EOLE representation of the random 
field: 

 ( )
1

( )ˆ( , ) ( , ) ( ) 

 
  



  x x x
N

j T
j H x

j j

H H  

 
(4.7) 

By defining the variance of H(x) is 2( ) x , the error variance for EOLE after basic algebra is: 

  22
( )

1

1ˆ[ ( ) ( )] ( ) 


  x x x
N

T
j H x

j j

Var H H  
 (4.8) 

In Eq. (4.8), the second term is identical to the variance of ˆ ( )xH . Thus, EOLE always 
underestimates the exact variance. However, the error decreases monotonically with N, which 
helps one automatically define the cut-off value of N for a provided tolerance in the variance 
error (). 

4.2.3. Discretization of the cross-correlated random fields 

In engineering practice, the parameters of random fields and their cross-correlation, which are 
often unknown, must be estimated from extensive measurements. Thus, it is a high challenge 
to either precisely approximate random field parameters or correctly simulates cross-correlated 
random field samples (RFSs) since the number of measurements is sparse and limited (due to 
sensor failure, budget limit, etc.) (Zhao and Wang, 2018).  

In our study, the adopted 2D normally distributed random fields are discretized by cross-
correlated in the context of the EOLE method. In which parameter E is independent of others. 
Thus, it can be directly applied to Eq (4.7). The three coefficients A, B, C being in the Lemaitre 
model, as mentioned in chapter 3, have cross-correlations between each pair. The cross-
correlation structure between each pair of simulated fields is simply defined by cross-
correlation coefficients. The method requires all cross-correlated fields on the domain to share 
an identical autocorrelation function. A cross-correlation coefficient easily represents the cross-
correlation structure between each pair of simulated fields. 

Now, by considering the case of three cross-correlated random fields (the coefficients A, B, 
C), the cross-correlation matrix reads: 
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11 12 13 1 11 12 13

21 22 23 2 21 22 23

31 32 33 3 31 32 33

1 0 0
ˆ 1 0 0

1 0 0

  
  
  

           
                      
                   

C C C C C C C

C C C C C C C

C C C C C C C

C

T

AB AC

AB BC

AC BC  

(4.9) 

i.e., 

 
ˆ              

C C CC Φ Λ Φ
T

 
(4.10) 

Where   
CΦ : matrix of the eigenvector of the cross-correlation matrix ˆ 

 C  of three variables 

A, B, C;   
CΛ : matrix of the eigenvalue (diagonal matrix) of the cross-correlation matrix ˆ 

 C  

Superscripts T denotes the transpose of the matrix or vector. 

It is denoted IN as a unity matrix of the order N (after ordering the vectors by decreasing 
eigenvalues). We can define the orthonormal eigenvectors of the correlation matrix ( ΦD ) as 
below: 

 
11 12 13

21 22 23

31 32 33

   
     
    

C C C

C C C

C C C

I I I

Φ I I I

I I I

N N N
D

N N N

N N N  

(4.11) 

and,  1 2 3   C CΛ I      I      ID C
N N Ndiag

 (4.12) 

Then, the cross-correlation block sample matrix is defined as 

    
1/2

3 13 3 3 3
( )

 

       
χ ΛD D D

j NN N N N


 
(4.13) 

i.e., 

 

 
 
 

1 111 12 13

21 22 23 2 1

31 32 33
3

1

11 1 12 2 13 3

21 1 2 2

,

,

2 2

,

3

0 0

( ) 0 0

0 0

( )

( )

( )



  

 

  








 
 







                                          

  

   



AC
C C C

C C C C B

C C C
C C

C C C C C C

C C C C C

χ

N N

D
j N

D
A j
D
B N

N
N

N N N

N N

j
D
C j

I

I

I

I I I

I I

 
 
 

1

3 1

31 1 32 2 33 3
1



 

   







  
                  

A

C B

C C C C C C C

N

N N

N N N
N

I

I I I

 
(4.14) 

Here, each field is created by using a set of independent random variables, and these sets are 
then correlated wrt the assumed cross-correlation matrix between three expanded random fields 
according to the framework presented by Vořechovský (Vořechovský, 2008). Thus, the EOLE 
representation Gaussian random field in Eq. (4.7) can be rewritten as follows: 
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,
( )

1

,
( )

1

,
( )

1

( )ˆ( , ) ( , )

( )ˆ( , ) ( , )

( )ˆ( , ) ( , )







 
   



 
   



 
   










   




  


   








x

x

x

x x

x x

x x

DN
A j T

A A A A j H
j j

DN
B j T

B B B B j H
j j

DN
C j T

C C C C j H
j j

H H

H H

H H













 

(4.15) 

where ,  j j are eigenvalue and eigenvector of each Gaussian auto-correlation matrix (as in 

the case of non-correlated random fields). Notice that the length of the vector T
j and ( )xH are 

equivalent to the number Mgrid of the grid points (e.g., if the random fields are distributed with 
all quadrangle shapes, Mgrid =Mx*My, with Mx and My are the total point numbers in the 
horizontal (x-axis) and vertical one (y-axis), respectively). In our study, Mgrid is the total 
number of all cell-centroids.  

4.2.4. Application to the COx rock properties  

The values of the truncated order of expansion (N) and the correlation length are two main 
factors for the assessment and control the accuracy of the discretization methods. These factors 
significantly affect the point-wise estimator for variance error of the discretization. Indeed, the 
EOLE method always under-represents the true variance of the random field. Thus, the 
accuracy of this method is strongly correlated with both factors. 

We assume that the coefficients A, B, C, and Young modulus E are for Gaussian random fields 
that share the same autocorrelation length function. Table 4-16 below shows the increasing 
expansion order (N) corresponding to the reduction of correlation lengths in both cases 
(isotropic x = y and anisotropic spatial variability x  y, where x and y are correlation lengths 
in x- and y-axis respectively). In each case, we also consider two options for the limitation of 
the error of 5% or 20%, which means the maximum variance error can be accepted in the 
discretization. The current concept here is that whether the higher variance error (i.e., 20%) in 
some cases is possible to use to replace the lower one without the loss in accuracy estimating 
of the drift’s stability.   

It is worth to note that, for the practical simulation, to reduce the EOLE point-wise error 
variance at the boundaries, we extend the random field mesh with a small value, e.g., 3.0 m 
(i.e., the boundary of the random filed domain [-3.0, 58] m, more detail in Appendix A3). 
Besides, each element size must be sufficiently refined (i.e., LRF/ ≤ 1/6 where LRF and  are 
the typical element length of random field mesh and the correlation length, respectively (Sudret 
and Kiureghian, 2000)). Therefore, in the table above, the same conditions, such as the grid, 
the domain of random fields, the partition size, or the size of cell elements for the discretization 
are applied. 

For the parametric study, the two following chosen cases are considered. More precisely, with 
respect to a variance error, 5% the isotropic variability x=y=15m (noted as case study 1) 
and anisotropic variability with x=68m, y=5.05m (case study 2) have the same number N=25. 
Figures 4.1 and 4.2 are presented, respectively, the results of the eigenvalues and the point-
wise estimator for variance errors of these study cases.  

In fact, these two study cases (1 and 2), which have an identical value of expansion order term 
N=25 totally generate 100 random variables in the reliability problem. This large size of 
random variables corresponding to the theoretically limited value that the AK-MCS method 
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can handle, as discussed in many studies in the literature, which performed, however, in some 
academic problems. 

Table 4-15: The expansion order corresponding to the correlation lengths (adaptive to variance error )  
          

Isotropy cases  Anisotropy cases 

No.  x = y 
(m) 

N 
(5%) 

N 
(20%) 

 No.  x 
(m) 

y 
(m) 

N 
(5%) 

N 
(20%) 

1 50.0 6 3  1 50.0 45.0 6 4 
2 40.0 7 4  2 50.0 35.0 6 4 
3 30.0 8 6  3 50.0 30.0 7 5 
4 25.0 11 7  4 50.0 25.0 8 5 
5 20.0 15 9  5 50.0 20.0 9 6 
6 19.0 17 10  6 50.0 15.0 12 7 
7 18.0 18 11  7 50.0 10.0 17 9 
8 17.0 19 11  8 50.0 7.5 21 12 
9 16.0 20 13  9 50.0 5.0 31 18 

10 15.0 25 13  10 50.0 4.0 38 22 
11 14.0 26 15  11 50.0 3.0 50 28 
12 13.0 30 17  12 50.0 2.0 72 43 
13 12.0 37 19  13 50.0 1.5 110 56 
14 11.0 40 21  14 68.0 5.05 25 15 
15 10.0 49 24  15 50.0 5.05 31 18 
16 9.0 58 30  16 30.0 5.05 40 24 
17 8.0 73 37  17 20.0 5.05 50 32 
18 7.0 95 49  18 15.0 5.05 65 37 
19 6.0 124 65  19 10.0 5.05 91 48 
20 5.0 172 92  20 7.5 5.05 116 63 

          

       

       (a)                                                                  (b) 
   Figure 4-1: Eigenvalues w.r.t the index of the expansion order (N) 

(a) Isotropic cases x = y = 15m (case study 1), (b) anisotropic case: x = 68m, y =5.05m (case study 2) 
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(a)                                                                (b) 
 

Figure 4-2: Point-wise estimator for variance errors at all central cells of the mesh 
(a) Isotropic cases x = y = 15m (case study 1), (b) anisotropic case: x = 68m, y =5.05m (case study 2) 

4.3. Primary numerical results  

4.3.1 Results of the deterministic problem 

In this part, we present some representative results of the deterministic problem that were 
conducted with respect to one realization of the discretized random fields of the case studies 1 
and 2. Figure 4-3 below presents as an example of the spatial distribution obtained from a 
realization of the discretized isotropic variability of the COx rock properties (case study 1).   

 

 

 

(a)                                                                (b) 
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(c)                                                                (d) 
Figure 4-3: Spatial distribution of the mechanical properties of COx rock of case study 1 

(a): coefficient A, (b) coefficient B, (c) coefficient C, (d) Young’s modulus E. 

 

(a)                                                                (b) 

 

(c)                                                                (d) 
Figure 4-4: Spatial distribution of the mechanical properties of COx rock of case study 2 

(a) coefficient A, (b) coefficient B, (c) coefficient C, (d) Young’s modulus E. 
 

Figure 4-5 below illustrates the iso values of equivalent stress in the concrete liner of a 
realization in two variability problems (i.e., isotropic and anisotropic correlation lengths). The 
heterogeneous distribution of these parameters, as expected, present the consequence of the 
spatial variability of the COx rock properties. In Fig. 4-6 and Fig. 4-7, we capture the maximum 
equivalent stress in the concrete liner in time and at 100 years in the two cases 1 and 2. These 
results confirm the important dependence of the stress state in the concrete liner with respect 
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to its chosen thickness. Then in Figure 4-8, the effect of the compressibility of the compressible 
material on the maximum stress in the final support of drift is investigated. The results of both 
cases 1 and 2, as well as the ones of the uncertainty problem extracted from the previous chapter 
(Figure 4-8c), are highlighted for comparison purposes. From these results, the spatial 
variability of the host rock reduces the maximum equivalent stress in the concrete liner. 
Nevertheless, it is important to clarify here that, in cases 1 and 2, the obtained results are only 
taken from one realization, and they are not sufficiently representative from a statistical point 
of view to confirm the observed tendency. The probabilistic results from the following 
reliability analysis seem much more appropriate for this task.   

 

(a)                                                                (b) 

 
Figure 4-5: Iso-values of equivalent stress in the concrete liner of a realization in variability problems: 

case study 1 (a), case  study 2 (b) 

        

(a)                                                                (b) 
Figure 4-6: Influence of the concrete liner thickness on the maximum equivalent stress  

for case study 1 with l1=0.2m: (a) versus time (b) at 100 years. 
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(a)                                                                (b) 
Figure 4-7: Influence of the concrete liner thickness on the maximum equivalent stress 

for case study 2 with l1=0.2m: (a) versus time (b) at 100 years. 

 

(a) (b) 

                                    

                                                                       (c) 
Figure 4-8: Influence of the compressibility of the compressible liner and inner liner thickness 

on the maximum equivalent stress in the concrete support element (l1=0.2m) 
(a) case study 1, (b) case study 2, (c) the case of uncertainty problem taken from chapter 3. 

 

4.3.2. Results of the modified AK-MCS reliability analysis  

The modified AK-MCS method is firstly chosen to estimate the probability of exceedance of 
the concrete liner of deep drift in the context of spatial variability of COx host rock. The two 
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cases 1 and 2 are the primary interests because of their significantly high number of random 
variables (100 variables in each case). These case studies allow us to verify the possibility of 
AK-MCS to handle the more complex problem, which, theoretically, can account for up to 100 
variables, according to some scholars (e.g., see (Lelièvre, 2018; Wang and Fang, 2020)).  
Contrary to these last contributions, which limit the academic problems, our numerical study 
shows that the AK-MCS can only be reasonably applied when the maximum number of 
variables is about 50. Beyond this number, we state an increase drastic of the training points in 
the DoE and the time-consuming to construct the Kriging surrogate. 

Figures 4-9 and 4-10 below show the exceedance probability in the concrete liner that is 
predicted as a function of the allowable stress for the two cases 1 and 2. However, in these 
studies, only the spatial variability of the coefficient A and Young’s modulus E are considered 
to limit the total number of random variables at 50 (w.r.t. the truncated order term N=25). More 

precisely, by regarding the formula (4.14 and 4.15), only the random variables  
25 1

A
  and 

 
25 1

E
 are activated while zero value is applied for all the elements of the other random 

variables  
25 1

B
 and  

25 1

C
 . In comparison with the results of the uncertainty problem 

tackled in the previous chapter (see Figure 4.30), it seems that the spatial variability induces a 
higher exceedance probability in the concrete support of drift when its allowable stress is 
chosen at a value inferior to about 30MPa. However, with the limit value lim2=36MPa, in these 
cases results, a much smaller probability in comparison with the uncertainty problem. But the 
observations must be verified in the case of more random fields (i.e., the random fields of the 
two parameters B and C are taken into consideration in these two cases).  

 

 

(a)                                                           (b) 
Figure 4-9: Probability of exceedance at 100 years in the concrete liner (case study 1): 

(a) versus threshold stresses of 2nd liner, (b) versus iteration numbers (lim2=36MPa) 
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(a)                                                                (b) 
Figure 4-10: Probability of exceedance at 100 years in the concrete liner (case study 2): 

(a) versus threshold stresses of 2nd liner, (b) versus iteration numbers (lim2=36MPa) 
 

The effect of all four random fields was then investigated but limited in the case of quite high 
correlation length representing by a moderate value of the order term (i.e., N value). Concretely, 
by keeping the correlation length on X-axis at 50m and the thickness of the concrete liner at 
50cm, different values of correlation length on Y-axis (e.g., y equals 50m, 45m, 35m, 25m, 
and 15m) are undertaken.  

Table 4-17 and Figure 4-11 below are summarized the exceedance probability at 100 years in 
the concrete liner by considering the variation of correlation length in the Y-axis. They 
illustrate that decreasing correlation length reduces the exceedance probability in the final 
support element of drift. Specifically, in the case of isotropic correlation length x = y = 50m, 
the exceedance probability value (Pf=0.098%) is slightly smaller than the relevant case of 
uncertainty problem (Pf=0.11%) evaluated in the previous chapter. By using the anisotropic 
correlation with a smaller correlation length y, the probability decreases significantly to about 
Pf=0.02% with y = 15m. Moreover, the results in Table 4-16 below also show a significant 
increase in the number of call, Ncall, compared to the uncertainty problem.    

Table 4-16:  Exceedance probability of concrete liner regarding the correlation length of four random 
fields of COx rock properties (concrete liner thickness l2=0.5m) 

Study case Number of 
variables (4*N) 

Ncall Pf (%) 

Uncertainty (as in Chapter 3) 

Variability (Isotropic) x = y = 50m 

Variability (Anisotropic) x = 50m, y =45m 

Variability (Anisotropic) x = 50m, y =35m 

Variability (Anisotropic) x = 50m, y =25m 

Variability (Anisotropic) x = 50m, y =15m 

4*1 

4*6 

4*6 

4*6 

4*8 

4*12 

388 

488 

512 

532 

548 

696 

0.11 

0.098 

0.094 

0.075 

0.062 

0.019 
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Figure 4-11: Probability of exceedance at 100 years in the concrete liner versus Y (fixed X=50m) 

These studies highlight the spatial variability effect of the COx rock properties on the 
exceedance probability of the concrete liner of drift. In comparison with the uncertainty 
problem, a smaller probability can be stated in this variability problem. However, this 
observation must be strengthened in the intensively numerical investigations taking into 
account different values of correlation length of COx rock properties (e.g., smaller correlation 
length), and of the concrete liner thickness as well as with a more appropriate geometrical 
model of drift (e.g., the total 2D plane strain model without symmetric conditions or in the 
general 3D problems).  Nevertheless, the limit of the AK-MCS to handle the curse of 
dimensionality does not permit to conduct this kind of study, which needs, in fact, an 
appropriate extension of the AK-MCS metamodeling technique. 

4.4. HDMR method  

The high-dimensional model representation (HDMR) method has been largely considered in 
recent years to handle the problem of the curse of dimensionality. The principal idea of this 
method is to approximate a multivariate performance function by a combination of zeroth-, 
first-, second-, and higher-order component metamodels (Li et al., 2001). In other words, 
HDMR is developed as a set of quantitative models to gain the input-output relationships of 
large dimensional physical systems with numerous input variables.  

HDMR was originally introduced by (Sobol, 1993) for the purpose of conducting sensitivity 
analysis and was further investigated (Sobol, 2003). HDMR consists in decomposing a 
performance function G(X) in terms of increasing dimensionality yielding an expression of the 
form:  

1 2 1 2 1 2 1 2

1 2 1 2

0 ...
1 1 1 ...

12... 1 2

( ) ( ) ( , ) ... ( , ,..., )

( , ,..., )

l l

l

m

i i i i i i i i i i i i
i i i m i i i m

m m

G g g x g x x g x x x

g x x x

        

    



  x

 

(4.16) 

 

where g0 indicates a constant term denoting the 0-th order effect. The first-order component 
function gi(xi) is a univariate function that represents an individual contribution to the output 
g(x). The second-order one gij(xi, xj) is a bivariate function describing the interactive effect of 
the input parameters xi and xj upon the output response. 

Some experiences in the literature (Rabitz and Aliş, 1999; Sobol, 2003) shows that the form 
above (Eq. 4.16) can be truncated up to two orders because the high-order interactions among 
input variable of HDMR are negligible. The function is now written as an accurate 

approximation of g(x) with respect to the variable vector  1 2, ,..., ,...,x  
T

i mx x x x , namely, 



   128 

 

 1 2 1 2

1 2

0
1 1

( ) ( ) ( ) ( , )
   

    x x
m

i i i i i i
i i i m

G G g g x g x x
 

(4.17) 

By determining all the summands on the equation above, the HDMR can be used as a 
computationally efficient meta-model for predicting the response. Practically, two techniques 
available in the literature to identify the components of decomposition: cut-HDMR and 
ANOVA-HDMR (also referred to as Random sampling RS-HDMR). The cut-HDMR could 
perform much better than the other metamodeling methods, especially when handling the 
function with weak parameter interaction (Chen et al., 2019).  

The cut-HDMR is considered in this study. Once a cut-HDMR method is applied, an anchor 

point (or a reference point)  1 2, ,...,u  
T

mu u u  needs to be defined. The reference point could 

be selected as either the means of all random variables (e.g., (Wang and Fang, 2020)) or the 
point among the initial DoE being the closest point to the Limit State Function (LSF) (Lelièvre, 
2018). For example, the point provides the minimum absolute value of G(u). The component 
functions of HDMR read as 

 ( ) uog G  (4.18) 

 ( ) ( , ) ui
i i i og x G x g

 (4.19) 
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 (4.20) 

where g0 is the constant value of the performance function measured at the anchor point u is 
the 0-th order component function. Equations (4.19) and (4.20) define the first-, and second-
order component function, respectively. u  denotes the vector being including the remaining 
element of vector u after element i-th of u is replaced by xi (or  xi1, xi2). Specifically,  (xi, u i) 
= (u1, ..., ui-1, xi, ui+1, …, um) and (xi1, xi2, u i1,i2) = (u1, ..., ui1-1, xi1, ui1+1, …, ui2-1, xi2, ui2+1,…, 
um).  

The Cut-HDMR has been proven to be efficient because the functions of higher-order 
components are usually negligible or have fewer effects on the output of a system and can, 
therefore, be ignored (Wang and Fang, 2020). Although the first order HDMR model (noted as 
HDMR1) is obvious, it may not be accurate for some problems. High-order HDMR models, 
such as the second-order HDMR model (noted as HMDR2) written in Eq. (4.17), can be applied 
(Chowdhury et al., 2009).  

4.4.1. AK-HDMR technique  

Recently, different methods can be used to derive each component of HDMR (i.e., surrogate), 
such as polynomial regressions, Kriging, support vector machines, or RBFs. In this work, the 
AK-MCS Kriging metamodel, as introduced in the previous chapters, will be chosen to 
construct each surrogate of the Cut-HDMR, and we note the adopted method as AK-HDMR1 
and AK-HDMR2 corresponding to each configuration of the truncated HDMR method at the 
first or second order. 

In the AK-HDMR1 method, a combination of HDMR1 with the Kriging-based reliability 
analysis, each Kriging metamodels ( , )ui

iG x of the AK-HDMR1 is independently constructed. 

The final approximate performance functions, results of the summands of these surrogates can 
be used to interpolate the result of the performance function at each random point x. More 
precisely, this interpolation leads to the following expression of Kriging prediction and 
variance (Lelièvre, 2018): 
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with m the dimension of the vector of random variables. 

Correspondingly, in the AK-HDMR2 method, the Kriging metamodels ( , )u i
iG x and 

1 2

1, 2( , , )u i i
i iG x x  of the AK-HDMR2 are independently constructed, which leads to the 

following expression of Kriging prediction and variance (Lelièvre, 2018) 
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From these mean (Eq. 4.23) and variance (Eq. 4.24) values of the Kriging prediction, the 
classical criteria U (i.e., Eq. (1.39)) can be rewritten as follows:  
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4.4.2. Construction procedure of AK-HDMR  

The procedure of AK-HDMR can be described as 13 steps as follows (also in Figure 4-12) 

(1) Generation Monte-Carlo population X of NMCS samples (points x(k)) 

(2) Definition of the initial DOE Random selection of N1 points in X to evaluate on G 

Drawing of N1 points from the population of Monte-Carlo above. (N1 = 20 seems a good 
compromise between numerical efforts and efficiency of the method.) 

(3) Selection of an anchor point (u) for HDMR decomposition  

- Assessment of the performance function at these points 

- Selection of the point corresponding to the lowest absolute value of the performance function. 
This point is the so-called “anchor point”. 

(4) Definition of the first DOE by LHS of N2 points 

- Generation by Latin Hypercube Sampling of a set of points in standard space. 

- These points are then projected onto the axes passing through the anchor point. 

- Evaluation of the performance function on these projected points 

(5) Calibration of Kriging np=do metamodels for HDMR1 or  1 2
0 0 p d dn C C  metamodels for 

HDMR2. 

(6) Prediction ,G i , ,G i  of X for each metamodel 

(7) Evaluation of the response Ĝ  of HDMR decomposition using calibrated models. 
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(8) Estimation of exceedance probability (e.g., by MCS with the estimation of the probability 

of exceedance by Eq. (1.23), i.e., 
ˆ

( )

1

1
( )


1

p

G

n
k

f
kp

p x
n

; where 
ˆ

( )( )1
G

kx  is equal to 1 if the 

kriging prediction is negative for the point u(k), and equal to 0 otherwise. 

(9) Evaluation of the enrichment function U (Eq. 4.25). This requires an identification of the 
point of the population of Monte-Carlo being enriched. The learning function U is used with 
the prediction and the variance defined above. The point to enrich is therefore 

 
( )

( )* argminU( ) 1,..., 
k

k
p

x

x x k n
 

(4.26) 

(10) Stop criterion on learning: if this criterion is satisfied, the learning is completed (Step 12). 
Otherwise, the method continues with Step 11. 

(11) Evaluation of x* on G and update the DOE. Here, instead of update np metamodels, one 
can identify only one-dimension metamodel to be enriched. This corresponds to the one with 
the highest variance at the point x*, as follows:  

 
2 ** arg max ( , ),      1,..., u

i
i pG

i
i x i n

 (4.27) 

(12) Checking the condition of reliability analysis by MCS with the formula COV Pf < 0.05 

If this criterion is met, the learning is completed (End). Otherwise, the method continues with 
Step 13 

(13) X is updated by a new population as in Step 1 and go back to Step 8. 
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Figure 4-12: Flowchart of AK-HDMR 
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4.4.3. Numerical application in case of the deep tunnel in the viscoelastic Burgers rock 

We investigate firstly the applicability of the AK-HMDR1 and AK-HMDR2 in the simple case 
of uncertainty problem of tunnel excavated in the viscoelastic Burgers rock. Note that this case 
was deeply studied in the second chapter by comparing the obtained results provided by the 
MCS, classical AK-MCS, and modified AK-MCS methods. 

Note that, in this problem, the vector of random variables consists of four parameters of Burgers 
model x = [GM, M, GK, K]. By adopting the AK-HDMR1 for this random vector, one needs to 
construct four Kriging metamodels as follow:  

       0( ) ( ) , , , ,       x x u u u u
M M K KG M M G K G KG G g g G g g G g

 
(4.28) 

whilst for the HMDR2, a total of ten metamodels must be taken place: 
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      (4.29) 

In which, both methods AK-HDMR1 and HDMR2 are developed from 20 initial samples for 
DoE as Step 2 of Figure 4-12.  

Figure 4-13 below is captured the exceedance probability provided by the two methods AK-
HDMR1 and AK-HDMR2. In comparison with the results obtained in the second chapter (the 
first four rows of Table 4.17 below taken from Table 2-9), it can be stated that the AK-HDMR1 
cannot be accurately evaluated the exceedance probability of the deep underground structure. 
More precisely, in comparison with the MCS, the results of AK-HDMR1 and AK-HDMR2 
present a difference of about 16.5% and 0.53%, respectively (Table 4.17 below). Although 
some scholars demonstrated the efficiency of the HDMR1 method (e.g., Lelièvre, 2018; Wang 
and Fang, 2020) by investigating several academic problems, the present numerical 
investigation shows the inaccuracy of such a method to study in the underground structure in 
which the interaction of random variables is important. The AK-HDMR2 method provides an 
appropriate result compared to the modified AK-MCS and MCS methods. However, because 
the number of metamodels that need to be constructed in this method is essential, the number 
of calls (Ncall) to the deterministic problem increases significantly regarding modifying one's 
AK-MCS method. 

 

(a)                                                                (b) 
Figure 4-13: Probability of exceedance in the concrete liner in the viscoelastic rock 

(a) using HDMR1, (b) using HDMR2 
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Table 4-17:  Comparison of the AK-HDMR1 and AK-HDMR2 methods with the MCS, EGA, classical 
and modified AK-MCS methods (Tunnel excavated in viscoelastic Burgers rock) 

Method Type Distribution of 
initial DoE 

Ncall Pf (%) Pf(%) 

Direct MCS 

EGRA 

Classical AK-MCS 

Modified AK-MCS 

AK-HDMR1 

AK-HDMR2 

- 

Quasi-uniform LHS 

Quasi-uniform LHS 

Quasi-uniform LHS 

Quasi-uniform LHS 

Quasi-uniform LHS 

106 

142 

122 

70 

154 

316 

0.377 

0.379 

0.377 

0.375 

0.315 

0.379 

- 

0.53 

- 

-0.53 

-16.47 

0.53 

 

where Ncall, HDMR1=N1 + N2,HDMR1 + Nparallel*Niteration,HDMR1 =20+20*4+3*18=154 (evaluations) 

Ncall, HDMR2=N1 + N2,HDMR2 + Nparallel*Niteration, HDMR2 =20+20*10+3*32=316 (evaluations). 

 

4.4.4. Adaptation of the AK-HDMR2 to the studied problem of deep drift in the COx rock 

This section proposes two approaches to reduce the size of a metamodel for the drift in the COx 
rock problem. Since the previous study confirmed that the first-order Cut-HDMR (i.e., AK-
HDMR1) is not sufficiently accurate to tackle the problem in which the interaction of the 
random variable is high. In such a situation, the second-order Cut-HDMR (i.e., AK-HDMR2) 
is required to improve the accuracy of the obtained results. However, the classical AK-HDMR2 
needs a huge number of metamodels: total (1+m+m(m-1)/2) metamodels to be calibrated (i.e., 
the number of functions need to be identified in Eq. (4.17)) for the vector of m random 
variables. Therefore, once the AK-HDMR2 is adopted, the number of Kriging metamodels 
becomes exceptionally large when the size of the problem increases (e.g., the number of 
random fields, random variables, or DOFs). For example, if m equals 100, one must build 5051 
metamodels, which is unaffordable.  

Regarding the case of deep drift, the discretization of the four random fields of the COx rock 
properties (i.e., coefficients A, B, C, and Young’s modulus E) induces a remarkably high 
dimension of vector of the random variables. From the equations (4.14 and 4.15), this random 

variable vector can be written        
1 1 1 1

, , ,   
   

   x A B C E

N N N N
 with dimension 4 m N  

(i.e., four times of the truncated order term of the expansion, N).  The previous discussion does 
not allow us to apply AK-HDMR2 with respect to each variable of each corresponding vector 
 

1
, A, B,C, E


i

N
i . Instead, we propose to construct the metamodels with respect to each 

variable component vector  
1




i

N
 (i=A, B, C, E) of the global vector x. Thereupon, the 

function of AK-HDMR2 in Eq 4.17 can be rewritten as follow:  
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 (4.30) 

Once the spatial variability of the deep drift by using the Cut-HMDR2 method is applied, ten 
surrogates (w.r.t. ten terms in Eq. 4.30, except g0) is enough to approximate the response.   
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4.4.5. Applicability of the AK-HDMR2 in the case of deep drift in the viscoplastic COx 
claystone  

We present in Figures 4-14 the result of the exceedance probability in the concrete liner of drift 
by ignoring or considering the spatial variability of COx rock properties, which are evaluated 
from the modified AK-MCS and AK-HDMR2 methods. More precisely, the first figure (Figure 
4-14a) is related to the uncertainty problems (i.e., ignoring the spatial variability and the AK-
MCS case was also mentioned in Figure-3.31b in Chapter 4). The right figure (Figure 4-14b) 
is about the isotropic spatial variability problem with the correlation lengths x = y = 50m, the 
term order N=6. In these studies, we consider the thickness of concrete liner l2=0.25(m) while 
the threshold stress is fixed at lim2=36MPa. The comparison of the two methods (e.g., modified 
AK-MCS and AK-HDMR2 methods) exhibits good accordance, which confirms the accuracy 
of the AK-HDMR2 method to treat the uncertainty problem (Figures 4-14a). However, in the 
variability problem (Figures 4-14b), the gap between the two methods is quite large. Notably, 
the initial number of calls (Ncall) to evaluate the deterministic problem (i.e., the evaluation of 
initial DoE) in the AK-HDMR2 method is much more important regarding the necessarily 
constructed surrogates (10 surrogates). Although the more significant number of DoE 
evaluations, the time-consuming to construct the surrogates of the AK-HDMR2 is significantly 
decreased, particularly in the variability problem, thanks to the reduced number of random 
variables being handled in each metamodel. 

 
Table 4-18: Comparison of the AK-HDMR2 methods with the modified AK-MCS methods (Uncertainty 

problem) 

Method Type Distribution of 
initial DoE 

Ncall Pf (%) Pf(%) 

Modified AK-MCS 

AK-HDM2 

Quasi-uniform LHS 

Quasi-uniform LHS 

81 

336 

37.72 

36.71 

- 

-1.09 

 
 

Table 4-19: Comparison of the AK-HDMR2 methods with the modified AK-MCS methods (Isotropic 
variability problem) 

Method Type Distribution of 
initial DoE 

Ncall Pf (%) Pf(%) 

Modified AK-MCS 

AK-HDM2 

Quasi-uniform LHS 

Quasi-uniform LHS 

112 

364 

50.84 

58.77 

- 

15.6 
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(a)                                                                (b) 
Figure 4-14: Comparison AK-MCS to AK-HDMR2 in exceedance probability in the concrete liner 

(a) uncertainty problem, (b) isotropic variability problem 

 

4.5. Concluding Remarks 

In this chapter, the long-term stability of the underground structure is considered in the more 
general context by accounting for the spatial variability effect of the host rock properties. The 
random field concept is adopted to present the variability in the space of each mechanical 
parameter of the host rock. An extension of the well-known EOLE method is presented to 
discretize the cross-correlated random fields. The modified AK-MCS method seems 
appropriate for tackling the variability problem due to the high correlation length represented 
by a low or moderate number of random variables after the discretization. The high-
dimensional model representation (HDMR) approach truncated at the first order (Cut-HDMR1) 
or at the second-order (Cut-HDMR2) is chosen to handle high dimensional problems, known 
as the curse of dimensionality. In this method, the AK-MCS is combined to construct each 
component (i.e., surrogate) of the Cut-HDMR. The numerical investigations show that the 
exceedance probability predicted by the AK-HDMR1 is not accurate, and the AK-HDMR2 
dramatically improves the result. Although the number of built surrogates increases in the AK-
HDMR2, this method significantly reduces the number of random variables and hence the 
necessary time to construct each constituted surrogate. Once the accuracy of this AK-HDMR2 
is demonstrated in the uncertainty problem, its applicability in the variability problem requires 
more improvements.   
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CONCLUSIONS AND PERSPECTIVES 

Evaluation of the impact of uncertainties and spatial variability of the time-behavior properties 
of the host rock owing a high time-dependent behavior on the long-term stability of the 
constructed underground was the principal objective of this dissertation. Because of the studied 
period of hundred of years and the high time-cost of a single numerical simulation of such 
complex problems, an assessment of probability should be performed following a carefully 
chosen methodology, able to quantify the propagation of uncertainty in the exceedance 
probability of structure with a reasonable computational demand accurately and time-cost. This 
work's contribution relates mainly to the selection, adaptation, extension, and validation in 
different contexts of a chosen probabilistic method based on the metamodeling technique.  

This dissertation started with a review of the literature, highlighted the background and the 
state of the art of the reliability analysis application on the construction of underground 
structures in rock masses. A revision of essential concepts of reliability analysis (uncertainty, 
spatial variability, random field, etc.) and the two primary sources of uncertainty, namely 
aleatory and epistemic, was presented. Aleatory uncertainty relates to inherent variability in 
the space of the formation properties, while the uncertainties of knowledge with respect to the 
parameter characterization and/or adopted model belong to the epistemic uncertainty. 
Regarding the methodology of reliability analysis, it showed that the direct sampling Monte 
Carlo Simulation (MCS) had been largely chosen thanks to its simplicity and its capacity to 
provide an accurate estimate of the probability. The results obtained from this method were 
usually considered as the benchmark to validate many other probabilistic methods. However, 
the tremendously required number of evaluations of structure response in the MCS method 
presents its drawback to being applicable in the case of rock formations owing a complex 
behavior. The developments of some advanced probabilistic approaches in the last decades 
allowed us to overcome this disadvantage. In general, these approaches aim at approximating 
the implicit limit-state function (LSF) by a mathematical function (e.g., Kriging, Radial Basis 
Functions (RBF), Artificial Neural Network (ANN), Support Vector Machine (SVM), 
Polynomial chaos,…), the so-called metamodel (or surrogate), through which the prediction of 
the exceedance probability can be conducted. The main challenge of such surrogate-based 
reliability analysis lies in the way to build an adequate metamodel to approximate the LSF 
without wastes of samples and function calls. From this bibliographic survey, it showed that 
the Kriging metamodeling technique could provide high accuracy, notably for nonlinear 
problems. In addition, its flexibility in interpolating the sample points allows combining this 
technique with the classical sampling method, such as the MCS, to measure the exceedance 
probability. A well-known version of such a combination is the AK-MCS method, with some 
eventually recent extension/improvement that was then summarized. Surprisingly, although the 
accuracy and efficiency of the AK-MCS method have been intensively demonstrated in many 
structural design projects, it is rarely applied in geotechnics, particularly in the rock engineering 
field. The bibliographic study also revealed that almost all studies on the stability of deep 
underground structure dealt with the impact of uncertainty and/or variability of host rock 
properties on the underground's short-term stability.  

The adaptation, validation, and efficient investigation of the AK-MCS metamodel were firstly 
undertaken in the context of a deep tunnel excavated in a rock with a viscoelastic behavior of 
Burgers. Based on the hypothesis that the deep tunnel is circular, supported by a system of two 
elastic liners and constructed in a hydrostatic condition stress state at far field, a closed-form 
solution was derived using an integral equation. In this analytical solution, the sequential tunnel 
excavation and the installation in a sequence of two liners can be considered. This analytical 
solution presents an efficient tool to investigate the influence of different factors (e.g., 
excavation rate, the thickness of liners, mechanical properties of host rock) on the tunnel's 
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response and stability. Especially, the reliability analysis based on the direct MCS method 
highlighted the critical effect of the many parameters, notably the uncertainty of the Burgers 
rock properties on the exceedance probability at the long-term of two failure modes: by an 
excessive convergence of tunnel beyond an acceptable value or by stress beyond the allowable 
long-term strength of concrete liner. These results provided by the MCS method were then 
used as the benchmark to validate the chosen Kriging-based reliability analysis. Indeed, the 
Kriging metamodel can be established iteratively through an enrichment process of the Design 
of Experiment (DoE). In order to find out the best candidate points to enrich the DoE, which 
should be not only close to the limit-state but also far away from the training samples of existing 
DoE, we proposed a modification of the well-known AK-MCS method by adding a constraint 
distance on the selection of the new training point of DoE. The validation and significant 
improvement of this modified AK-MCS were demonstrated in an academic problem and the 
case of the deep tunnel in the Burgers rock. Comparing the results provided by the MCS method 
and the modified AK-MCS metamodel revealed a drastic decrease in the required number of 
structure response evaluations in this last method. Our investigations also highlighted the 
advantage of using a subset of new training points to enrich the DoE that could reduce the 
number of iterations to attain the convergence of the exceedance probability. This fact is useful 
for the study in which the numerical evaluations of the performance function can be conducted 
through parallel calculations. 

The efficiency of the modified AK-MCS was then examined in the more complex problem, 
which aims at investigating the long-term stability of deep drift support in the context of nuclear 
waste disposal in the Callovo Oxfordian (COx) claystone. The significant interest in such a 
context lies in the stability analysis of the gallery's concrete support during the period of 
exploitation for about 100 years to ensure the functionality of the mechanical system within 
the tunnel. Especially, a compressible outer liner is considered in the support system of drift. 
It is a highly porous material that allows this compressible outer layer to absorb the host rock's 
convergence over-time and reduce the radial stress transmitted to the inner liner. Due to the 
fact that the study focuses mainly on the effect of the uncertainty of COx rock properties and 
the contribution of the compressible liner on the long-term stability of the concrete inner lining, 
the considered problem is limited only to the purely mechanical behavior of the circular drift. 
In addition, although the developed procedure was performed in the general context that allows 
us to study drifts constructed in different directions with respect to the principal stress state, 
only the case of drift excavated following the major horizontal stress was taken into 
consideration. Indeed, to reduce the overstress on the support element and to limit the inevitable 
fracture zone induced by excavation, drift parallel to the major horizontal stress (so a 
configuration in which cross-section stress is isotropic), is a preferred choice for the long-term 
safety of nuclear waste management. Furthers, in order to characterize the long-term behavior 
of COx host rock, the viscoplastic model of Lemaitre is chosen. This model's capacity to catch 
the essentials of time-dependent behavior of COx rock with a reasonable number of parameters 
to be calibrated significantly facilitates the uncertainty quantification process. The assessment 
of uncertainties of parameters of this model is carried out using data from the laboratory tests 
performed on the samples from the same depth, allows to estimate the epistemic uncertainty of 
the mechanical properties of COx host rock. To limit the problem on the impact of uncertainties 
of COx, the behavior of the compressible material described by a tri-linear elastic model being 
considered as deterministic. The numerical investigations of both the deterministic problem (in 
the 2D plane strain condition using the open-source Code_Aster) and the reliability analysis, 
based on the modified AK-MCS method, elucidated the strong dependence of the stability of 
concrete liner on the uncertainty of rock properties and the compressibility of the outer 
compressible layer. The exceedance probability measured at 100 years of this final support of 
drift decreases when the thickness of the compressible layer increases or when its compressible 
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potential is higher. These numerical results also confirm the tremendous benefit of 
compressible material on drift support's long-term stability from a purely mechanical point of 
view. The result also shows that the exceedance probability of the inner liner is negligible for 
the actual structural design of the considered underground drift. This demonstrates the 
robustness of the design approach for the Cigéo project. 

The consideration of the spatial variability of COx rock properties on the stability of drift 
support was carried out in the last part of this dissertation. The uncertainty of each mechanical 
parameter of the host rock is described by random continuous spatial fields, written as 
correlation functions with respect to the spatial correlation length. The expansion optimal linear 
estimation method (EOLE) was applied for discretizing the random fields to handle the 
continuous uncertainty problems. An adaptation of this EOLE method to take into account the 
correlation of three random fields corresponding to three parameters of the Lemaitre 
viscoplastic model of COx rock was presented. The probabilistic assessment by using the 
modified AK-MCS was then undertaken with respect to the discretized random fields in which 
the similar correlation lengths of all mechanical parameters of COx rock were assumed. Two 
configurations, isotropic and anisotropic space variability with a total of 100 random variables 
generated from the discretization step, were chosen to initiate numerical applications. These 
two case studies allow us to verify the limits of AK-MCS at handling a significant high 
dimensional problem. Our research shows that AK-MCS can only be reasonably applied for a 
maximum number of variables around 50. Beyond that, the number of training points in the 
DoE and the construction of the Kriging surrogate leads to a drastic increase in calculation 
time. According to abundant literature in this active ongoing research topic, an alternative 
approach is then explored, consisting of the use of the dimension reduction methods. Among 
these methods, the applicability of the high-dimensional model representation (HDMR) 
approach truncated at the first order (Cut-HDMR1) or at the second-order (Cut-HDMR2) was 
investigated. In this chosen method, the AK-MCS was used to construct each component (i.e., 
surrogate) of the Cut-HDMR. The numerical investigations showed that the Cut-HDMR1 is 
not sufficient, and the Cut-HDMR2 was necessary to improve the obtained results. The 
accuracy of the AK-HDMR2 was tested in the uncertainty problem of both cases of deep 
tunnels excavated in the viscoelastic and viscoplastic rocks. However, more improvements to 
this AK-HDMR2 are required to handle the variability problem.    

This work, being the first tentative on establishing a methodology for the assessment of long-
term stability of deep underground construction, including the uncertainties and the variability 
of properties of rock host, open many interesting perspectives for future research. Some of 
them are indicated hereafter.  

Firstly, in order to overpass the limits of the time-consumption for a single numerical 
simulation, it could be worthy of looking for a quick deterministic response. The closed-form 
solution of the deep tunnel obtained for viscoelastic rock could be extended to consider more 
realistic conditions such as the anisotropy of the far-field stress, the shape of the cross-section, 
the anisotropy of mechanical properties of the host rock, and/or the coupled hydro-mechanical, 
thermo-hydro-mechanical behavior. In fact, a fully analytic solution considering all these 
elements could be challenging work, but the recent developments in the literature by using the 
complex variable/potential approaches in the Laplace domain demonstrated its feasibility using 
a semi-analytic approach.  

On this same idea of considering more realistic behavior for rock masses, the progressive, 
damaging /healing process could be another direction of ameliorating long-term analysis of 
underground structure, presenting another challenge for the reliability analysis problem.  
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Secondly, from the methodological point of view, it is necessary to better consider in the 
methodology presented here a sensitivity analysis. Indeed whilst the efficiency of the Kriging 
metamodeling technique as compared to the sampling MCS technique was demonstrated, a 
sensibility analysis seems necessary. By maintaining only the most sensible parameters/factors, 
this step allows avoiding the curse of dimensionality in the reliability analysis due to a 
significant increase of the random variables when different aspects (coupled phenomena, 
damage mechanism, the anisotropic effect of geometry and/or loading) are handled. This 
sensibility analysis is crucial to reduce the computational demand, particularly in the case that 
the deterministic problem is only accessible by the numerical simulation.      

Thirdly, it is necessary to deeply ameliorate the uncertainty assessment of the behavior of rock 
masses. In this work, this assessment is performed using laboratory data and some observations 
in situ, which were taken into account during the transfer of some properties from laboratory 
ones to the infield. The ad-hoc choice of the constitutive model leads in itself to high 
uncertainties. It is important for the reliability analysis of drift support in COx claystone, the 
developments/improvements of previous propositions (i.e., the consideration of the coupled 
problem, damage mechanism, and the anisotropic effect) to deeply investigate different types 
of drifts and incorporate all huge data from the in-situ measurements, in order to assess in one 
hand, as large as possible the behavior of rock masses and, in the other hand, an objective 
criterion for evaluation of exceedance probability. Indeed, due to the interaction of these 
complex mechanisms, the uncertainty quantification of COx rock properties by exploiting the 
measurements in an underground laboratory can only be operated through the numerical 
inverse procedure. Consequently, it requires in this task a powerful inverse analysis technique 
(such as the Bayesian or Artificial Neuron Network methods) regarding the considerable time-
consuming of each simulation. Through this inverse analysis procedure, we can expect the 
possibility of characterizing the spatial distribution (i.e., the estimation of spatial correlations) 
of the COx rock properties, which remains an unknown value. 

Fourthly, the improvement/development of the Kriging metamodel in combination with the 
HDMR or the other methods to handle the high-dimensional problem is extremely important 
to deeply investigate the spatial variability effect on the stability of the deep underground 
structure. In this context, some other well-known techniques to reduce the dimension of the 
problem, such as the Principal Component Analysis (PCA) or Partial Least Square (PLS), can 
be contemplated to combine with the HDMR method.  

Lastly, further future works can be consist of dealing with spatial-temporal variability. The 
developments/extensions of the metamodeling technique with respect to time variable, as 
proposed in some recent contributions in the literature, present an interesting tool to tackle 
more complex problems, which incorporate, for instance, the unsaturated flow, chemical 
interaction, and degradation mechanism of liners. Moreover, the spatial variability, limited 
until now in 2D conditions for the sake of simplicity, must be revisited in the real 3D context. 
This problem seems only to be overpassed with the help of a high performance computing 
cluster. This developed procedure of reliability analysis can be extended in the long term for 
the real-time risk analysis and optimization design of deep underground structure thanks to the 
capability of uncertainty quantification of the continuous data measurement. This stochastic 
procedure will also provide a useful and performant tool for designing and implementing the 
observation/surveillance in situ and/or in the laboratory. 
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APPENDIX 1: APPENDIX TO CHAPTER 1 

A.1.1. Some deterministic analysis methods for underground excavations 

This section mentions the deterministic approach often used in underground excavations, based 
on partial safety factors, i.e., it does not consider qualitative uncertainty. This step is necessary 
to quickly understand the core of interesting problems before deeply studying the probabilistic 
approach or reliability analysis: quantitative propagation of uncertainty on the probability of 
failure as in the later sections. 

A.1.1.1. Empirical approach 

Since the accumulation of the first-hand experience of engineering practice, the empirical 
method has been developed along with the engineering judgments (Huaxin, 2018). The method 
is widely used in engineering practice with a convenient application, especially for describing 
the domain's rock mass quality and/or support requirements. There are three common empirical 
methods in underground excavation problems based on the ability to quality the rock mass and 
guide the adaptable support selection, namely: Rock Mass Rating (RMR), Q systems, and 
Geological Strength Index (GSI).  

Rock Mass Rating (RMR): The RMR system was first developed by Bieniawski (Bieniawski, 
1973) and developed through several revisions until the latest version in 1989 (Bieniawski, 
1989). The common applications of RMR in underground excavations are: (1) for Rock mass 
classification, (2) estimation of rock mass strength, (3) estimation of the stand-up time and the 
maximum unsupported rock span, (4) preliminary selection of rock supports (see Table A1-1 
and Table A1-2). Note that the recommendation for tunnel supports is constrained to 10 meters 
span only. 

Q systems: The Q system was first found by Barton (Barton et al., 1974) initially intended for 
the support design for tunnels in hard rock. The effective applications of the Q-system can be 
listed as: (1) for Rock mass classification, (2) estimation of rock mass strength, (3) selection of 
underground excavation support (Barton et al., 1975) (see Table A1-2). Its advantages and 
disadvantages are: The Q-system works best in ground conditions where block probably falls; 
the application of Stress Reduction Factor, a vital parameter of Q-system, is unclear for 
buckling, rock burst, and squeezing conditions. The Rock Quality Designation, the first 
parameter of Q-systems provided by Barton (Barton, 2002),  has several limitations in 
characterizing the degree of jointing. As reported by Pells (Pells, 2002), the Q system predicted 
significantly less support than actually adopted in several caverns he studied in Australia ( Cai, 
2011). 

Geological Strength Index (GSI): The GSI, proposed by Hoek (Hoek, 1994), estimates the rock 
mass quality or engineering parameters based on the field observation. The obviously main 
application of GSI lies in its role as an important parameter in the Hoek-Brown (H-B) failure 
criterion (Hoek et al., 2002), besides other engineering parameters such as Mohr-Coulomb or 
rock mass modulus (Cai, 2011). The fact that GSI also can be used as a classification method, 
i.e., high-quality rock masses in the range 60 < GSI < 75, average quality rock masses in the 
range 40 < GSI < 50, low-quality rock masses in the range 25 < GSI < 30 (Alfonso and Veiga, 
2012). 
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Table A1-1. Rock mass classification and guidelines for supports of 10m span rock tunnels with RMR 
system (Bieniawski, 1989)  

 
Table A1-2. Correlation equations between RMR and Q-systems (Zhang and Goh, 2013) 

  

In brief, empirical methods can be widely applied in rock engineering due to the discontinuous, 
heterogeneous, and anisotropic nature of the rock mass. They are simple to apply and usually 
provide safe designs of excavation problems, which have been validated by numerous case 
studies in many countries. Nevertheless, the support selection relies on a finite number of 
parameters which do not ensure to characterize the rock mass properties entirely.  

A.1.1.2. Analytical solutions 

Due to the limited applications of empirical methods beyond the preliminary design phase, 
especially the lack of considering the mode of failure and excavation geometry, analytical 
approaches could be used to get a more exact understanding of the ground response. In 
underground excavation engineering, the induced stresses caused by the digging and 
displacements in the massif are obvious the most interesting aspects. Thus, there various theory 
and solutions have been proposed and investigated for them. These are based on the universal 
rules of mechanics as well as on strong hypotheses concerning the geometry of the problem 
(circular tunnel with the horizontal axis at great depth), stratigraphy (a single homogeneous 
layer), the law of behavior (Tresca or Mohr-Coulomb) and the initial stress state (non-heavy, 
isotropic and homogeneous soil). Based on the assumptions above, and back to a solution 
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proposed by Kirsch (Kirsch, 1898) and (Poulos and Davis, 1974), the tangential/radial stresses 
(r) and the radial displacements (Ur) of an unlined tunnel are defined in a polar coordinate 
system, for the case of linear elasticity, as follows: 
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where σ0 is hydrostatic stress field (σ0 = σv = σh); E and  are Young’s modulus and Poisson’s 
ratio of the rock mass respectively; r0 stands for tunnel radius. 

Similarly, for the lined tunnel, the relevant equations for these stresses (r) and displacements 
(Ur) are found by (Timoshenko and Goodier, 1970) as follows: 
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where Es and s are Young’s modulus and Poisson’s ratio of the liner respectively, r0 is the 
interior radius of the liner, ri stands for the exterior radius, and i is the magnitude of the radial 
compression applied to the liner-rock contact (Bobet, 2010). 

For more complex problem, such convergence-confinement method (CMM) (Panet & Guenot, 
1982; Panet, 1993; Panet, 1995; Carranza-Torres & Fairhurst, 2000; Unlu & Gercek, 2003), 
which correctly simulate the final surface settlement and widely used for preliminary 
assessment of tunnel deformation and support acceptability for simple cases (Langford, 2013). 
This method requires a priori estimation of the stress release coefficient  (or the rate of 
deconfinement or the confinement loss), which represents the relative position of the considered 
tunnel section compared to the tunnel face. Selecting the rate of deconfinement corresponding 
to the convergence occurring before the support starts interacting with the ground is the most 
vital point in the CMM (Panet, 2001). It requires to have a series of pressure-displacement 
curves, namely: the longitudinal displacement profile (LDP), the support reaction curve (SRC), 
and the ground reaction curve (GRC). The LDP shows the radial displacement that occurs along 
the axis of an unlined excavation both ahead of and behind the face (Langford, 2013). The 
solutions for LDP calculation are synthesized by (Paraskevopoulou and Diederichs, 2018) as 
in Table 1-4. Other two curves can be figured out with several assumptions to simplify the 
analysis, namely: hydrostatic stress field (0); circular and deep tunnels (boundary conditions 
of the problem to infinity), continuous, homogeneous and isotropic rock mass behavior; bi-
dimensional problem and plan stress field (Oreste, 2009). 

Based on the analytical solutions above, for an elastic model of tunnel excavation, the released 
deformation at the tunnel face is suggested to be 25% of the total deformation (Panet, 1995). 
Specifically, considering the rate of deconfinement, for unlined tunnels, equations (2-9) and 
(2-10) could be modified as follow: 
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For the lined tunnel, one can refer to Panet’s paper (Panet, 1995) to obtain further details.  
Table A1-3. Analytical solutions for LDP calculation depending on the medium (Paraskevopoulou and 

Diederichs, 2018)  

 

Besides, (Sagaseta, 1987) and (Verruijt, 1997) proposed formulations for surface settlements 
and horizontal displacements within the framework of an elastic medium. (Lee et al., 1992), by 
combining the elastoplastic deformations around the front with the effects of pre-convergence 
and the vacuum of the ground-support contract, has defined an annular vacuum parameter 
called GAP. Based on the GAP parameter, surface settlement can be calculated through 
empirical relationships (Janin, 2012). Also, from this parameter, one can predict the resulting 
ground deformations using 2D finite element methods (Lee et al., 1992). This notion of the 
annular vacuum was then taken up by Loganathan (Loganathan and Poulos, 1998). Besides, 
for circular excavation problems, Mohr-Coulomb (M-C) failure criterion subjected to the 
hydrostatic in situ stress was given by Duncan (Duncan Fama, 1993). Hoek-Brown failure 
criterion can be solved using the formulae by Carranza-Torres (2004). For circular liners with 
particular reference to composite supports in both elastic and elastoplastic porous media can 
be found in Carranza-Torres (2009a, 2009b) and Bobet and Einstein (2011).  

Briefly, there are several advantages and disadvantages to analytical methods. The analytical 
methods make it possible to quantitatively determine the design parameters from a model 
intended to schematize the behavior of the structure under the effect of the stresses applied to 
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it. By analytical solutions, one can quickly obtain orders of magnitude of the calculation 
parameters and to estimate the influence of certain parameters on the response of the whole 
supporting ground. However, their direct field of application is so limited due to many 
restrictive calculation assumptions on which they are based. In this thesis, analytical methods 
refer to closed-form solutions for the viscoelastic problem are illustrated in Chapter 3.  

A.1.1.3. Numerical method 

Numerical methods at present are widely used to simulate underground excavations due to the 
complicated geometries, support sequences, irregular shapes, geological conditions. They have 
the advantage of directly taking into account the response of the terrain and the support, as well 
as a large part of the specific features of the project (both geometry and geotechnics). 
Numerical methods in modeling of geomaterials include finite element method (FEM), finite 
difference method (FDM), finite volume method (FVM), boundary element method (BEM), 
and discrete element method (DEM). All of them can be used for treating engineering problems 
numerically. Thus, no matter what type of them is used, the constitutive model, the relevant 
hypothesis, and simplifying assumptions must be included in the code. In this thesis, we 
consider only the finite element method because of its convenient and quite common available 
methods to interact with the users. Thus, hereafter, the numerical method in our work also 
means the finite element method. It is worth pointing that, while the time consuming is an 
essential issue in numerical modeling, it needs to base on appropriate constitutive behavior 
(i.e., Tresca, Mohr-Coulomb, Hoek-Brown, etc.) to determine the resultant support loads 
(Langford, 2013). That is also a key reason for a new proposed model that is carried out in 
Chapter 4 to fasten the computation in the numerical method.  

A.1.1.4. Observational method 

The observational method in rock and underground engineering, which dates back to the “learn 
as you go” or “design as you go”, was first formally introduced by Peck (Peck, 1969) for 
minimizing risks. This method is briefly mentioned in Eurocode 7, the new  European 
geotechnical design code: “When prediction of geotechnical behavior is difficult, it can be 
appropriate to apply the approach known as “the observational method”,  in which the design 
is reviewed during construction” (Frank et al., 2004). In other words, this code states that the 
observational method is a viable alternative to conventional design when the geotechnical 
engineer is confronted with knowledge-based uncertainties of ground behavior (Nossan, 2006).  

Unlike the three mentioned methods, which predict field behavior in advance, the observational 
one deals with the actual behavior such as stress, strain, or displacement, so forth. If the 
acceptable limit during construction is reached by the modernized measuring instrument, one 
must stop the construction and trigger the pre-defined contingency plan by implying that there 
is no or only a very basic design available prior to the starting of construction (Palmstrom and 
Stille, 2007). It can be highly occurred as subproblems of larger problems, through as the actual 
behavior of the rock masses with excavations frequently differs from the prediction of 
numerical or analytical calculations. Moreover, observations on the behavior served as an 
additional input for the choice of the construction method and determination of lining type and 
thickness (Schubert, 2008). 

A.1.1.5. Conclusions of deterministic analysis methods  

Four mentioned approaches (empirical, analytical, numerical, and observational method) can 
be used while they still lack a standardized method for underground support design. The 
approach for a deterministic problem is successful whenever the model analyses effectively 
and considers both the problem's geological and geometric characteristics (Langford, 2013).  
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In geotechnical engineering, deterministic methods give only a partial representation of the true 
margin of safety (Goh and Zhang, 2012)  and often lead to an extremely conservative design.  
Thus, it is unable to account for uncertainties in material and load properties and cannot reflect 
how safe a geotechnical structure really is. Non-deterministic methods provide a means to 
explicitly treat the uncertainties, and it will be discussed in the next section. 

Before addressing non-deterministic methods, it is useful to revisit the more global vision of 
the mentioned traditional approaches in the process of rock engineering as the Figure A1-1, 
proposed by (Stille and Palmström, 2003).  

 

 Figure A1-1: Relationships between ground behavior and rock engineering (Stille and Palmström, 2003) 

 

A.1.2. Appendix for reliability analysis methods and stochastic stability analysis 
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Figure A1-2: State of the art of AK-based methods 

AK-based methods 
(Active learning and Kriging-based methods) 

Optimization 
Under Uncertainty 

RELIABILITY 
ANALYSIS 

Geometrical 
Conformity analysis 

AK+RBDO 
AK-Reliability-based design 

Optimization 
(Fauriat and Gayton, 2014)  

AK-MCS 
AK-Monte Carlo Simulation 

(Echard et al., 2011) 

Worst case estimator 
AK for interval-uncertainty 

optimization approach 
(Yan Liu et al., 2016) 

AK-IS 
AK-Importance sampling 

(Echard et al., 2013)    

AK-SYS 
AK-System reliability 

method 

Meta AK-IS 
AK-Meta Importance 

sampling (Cadini et al., 

Mixed EGO + AK-MCS 
With time-dependence  
(Zhen Hu and Du, 2015) 

AK-SSIS 
AK-Subset simulations 
Importance sampling 

(Tong et al., 2015) 

AK-LS 
AK-Line sampling 
 (Lv et al., 2015) 

 
AK-SS 

AK-Subset simulations 
(Xiaoxu Huang et al., 2016) 

AK-ILS 
AK-Inspection of Large 

Surface 
(Dumas et al., 2013) 

 

SILK 
AK for time-dependent 

reliability analysis 
(Zhen Hu and Mahadevan, 

2016b) 

AK + PCEs 
AK-Polynomial Chaos 

Expansions  (Schöbi and 
Sudret, 2014) 
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Table A1-4. Summary of contributions for spatial variability of geotechnical engineering problems over the last decade  

No Reference Problem description Performance function Surrogate model & 
software 

Methods for PF 

1 (Haldar and 
Babu, 2009) 

Design of laterally loaded piles in clays based on 
cone penetration test (CPT) data: a reliability-based 
approach (using undrained shear strength) 

 1 aG    
 

 2 max maxRG M M M 
 

The simplified 
subgrade reaction 
method 

FORM, SORM 

2 (Griffiths et al., 
2009) 

Spatial variability on Slope reliability using 2D 
Random field (lognormal distribution) 

Fs(Cu, C’ and tan) - 1 Random field with 
MCS 

FORM 

3 (Cho, 2010) Effect of uncertainty de to spatial heterogeneity on 
the stability of the slope, considering cross-
correlated lognormal random fields.  

Fs(Cu, sat) – 1 

Fs(c, ) - 1 

Karhunen Loeve, 
FDM by FLAC 

FORM, MCS 

4 (Srivastava et 
al., 2010) 

Influence of spatial variation of soil permeability 
properties in the steady-state seepage flow analysis 
as well as on the slope stability problems  

Fs(k,n,d)-1 FDM by FLAC MCS 

5 (Ahmed and 
Soubra, 2011) 

Subset Simulation and its Application to a Spatially 
Random Soil (Random filed: Young_Modulus) 

 

G=Displacement_max-
displacement 

Karhunen Loeve; 

FDM by FLAC-3D 

SS, MCS 

6 (Ji et al., 2012) Spatial variation in slope reliability analysis using 
interpolated autocorrelations.  

Fs-1 LEM, @Risk FORM, MCS 

7 (Jian Ji, 2013) Reliability analysis of earth slopes accounting for 
spatial variation (Ph.D. thesis) 

Slope, shear strength RFEM, Excel, FDM 
by FLAC-3D  

FORM, SORM, 
RSM, MCS 

8 (Zhao et al., 
2013) 

Variability of geotechnical properties of a fresh 
landslide soil deposit 

Fs(density, coefficient 
of uniformity)-1 

Point coefficient of 
variation (COVp) 

- 
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9 (Jiang et al., 
2014) 

Non-intrusive SFEM considering spatially variables  Shear strength  Karhunen Loeve, 
SFEM, SLOPE/W, 
SIGMA/W 

MCS 

10 (Li et al., 2014) Spatially variable shear strength parameters with 
linearly increasing mean trend on the reliability of 
infinite slopes (only variability in the z-axis) 

Fs(z, c, ) - 1 Karhunen Loeve FORM, MCS 

11 (Li et al., 2015) A multiple RSM for slope reliability analysis 
considering spatial variability (cross-correlated non-
Gaussian random fields) of soil properties 

Fs[H(x,y)-1] 

H=[c, , t] 

Slop/W Multiple 
quadratic RSFs, 
MCS, LHS 

12 (Luo et al., 
2016) 

Analysis slope with shear strength reduction method 
combine FEM 

Shear strength RFEM 

mrslope2D 

MCS 

13 (Javankhoshdel 
et al., 2017) 

Probability analysis of simple slopes with cohesive 
soil strength using RLEM and RFEM 

Fs-1 RLEM, RFEM 

mrslope2D 

MCS 

14 (Cao et al., 
2017) 

Effect of Inherent Spatial Variability of Soil 
Property (Random filed: shear strength-Su) 

Fs(Su)-1 MS Excel, Slope/W SS, MCS, 
FORM, FOSM 

15 (Sow et al., 
2017) 

Modeling the spatial variability of the shear strength 
of rock mass. Application to a dam rock mass  

Shear strength reduction 
(SSR) 

Phase2 Point-Estimate 
method (PEM) 

16 (Pedro et al., 
2017) 

Modeling the influence of rock variability on 
geotechnical structures (anisotropic cases) 

Hoek- Brown failure 
criterion 

Gauss-Markov; LAS - 

17 (Huang et al., 
2017) 

Influence of spatial variability of soil Young's 
modulus on tunnel convergence in soft soils 

COV of ΔDx Karhunen Loeve; 
FDM by FLAC-3D 

MCS 

18 (Lü et al., 2018) Probabilistic assessment of tunnel convergence 
considering spatial variability in rock mass 
properties 

Hoek- Brown failure 
criterion; 

FDA, RFEM; 

FDM by FLAC 

RSM, FORM 
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lim 0( ) / R 0Xequ    

19 (Gao et al., 
2018) 

Influence of spatial correlation on rock strength and 
mechanism of failure  

- Type III Extreme 
Value stochastic; 
FDM by FLAC 

- 

20 ( Ji et al., 2018) 2D spatial variability on slope reliability: A 
simplified FORM analysis 

A case study with a test 
function 

LEM with Spencer 
method 

FORM 

21 (Al-Bittar et al., 
2018) 

Kriging-Based Reliability Analysis of Strip 
Footings Resting on Spatially Varying Soils 

Fs(c, ) - 1 EOLE, AK-MCS; 
FDM by FLAC 

MCS 

22 (Chen et al., 
2019) 

Reliability assessment on the stability of tunneling 
perpendicularly beneath an existing tunnel 
considering spatial variabilities of rock mass 
properties 

Hoek-Brown criterion FDM by FLAC-3D, 
MS Excel 

FORM 

23 (Haj et al., 
2019) 

Probabilistic analysis of an offshore monopile 
foundation taking into account the soil spatial 
variability, soil: elastic-perfectly plastic Tresca  

Fs(cohesion) - 1 EOLE, Kriging 
GSA; Abaqus  

MCS, FORM 

24 (Shokri et al., 
2019) 

A review study about spatial correlation 
measurement in the rock mass 

- Method of moments: 
Semivariogram 
analysis (to measure 
correlation lengths) 

- 

25 (Sekhavatian 
and 
Choobbasti, 
2019) 

Application of the random set method in a deep 
excavation: based on a case study in Tehran 
cemented alluvium 

Fs(hmax/H)-1 RS-FDM;   

FDM by FLAC-2D 

- 
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26 (Hu and Wang, 
2019) 

Ground surface settlement analysis of shield 
tunneling under spatial variability of multiple 
geotechnical parameters 

Fs(c, E)-1 Spatial random-
fields - Subset Monte 
Carlo; FLAC3D 

RSM, SS, MCS 

27 (Yu et al., 
2019) 

Probabilistic analysis and reliability-based design of 
Tunnel Liner Performance Using Random Field 
Theory 

Fs(strength, thick.) - 1 EOLE;  

FDM by FLAC3D 

MCS 

28 (Wang et al., 
2020) 

Reliability analysis of slopes considering spatial 
variability of soil properties based on efficiently 
identified representative slip surfaces 

Fs(c,)-1 LEM RSSs and RSM, 
LHS, MCS 

  

Where: Fs: objective function (the factor of safety), computed by deterministic analysis; 

mrslope2D:  An open-source by Griffiths and Fenton (2008); 
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Table A1-5: Two-dimensional autocorrelation functions (Castillo, 2015) 
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Table A1-6. Fundamental equations for probability theory 
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APPENDIX 2: APPENDIX TO CHAPTER 2 

In this appendix, we detail the process to determine the supporting pressures of two elastic 
liners by using the compatibility conditions of displacement at the interface between the rock 
mass and the first liner (Eq. (2.22)) and at the interface of two liners (Eq. (2.23)). 

A.2.1. Determination of supporting pressures after installation of the first liner  

By substituting the Eq. (2.12) and Eq. (2.15) in Eq. (2.22), the incremental radial displacement 
of rock from time t1 to the generic time t > t1 can be written in the integral form: 

 1

1

2 2 2
0 1 0 1 10 0

1

00 1 01 2

1
( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

2

( ) ( ),

t t th h

t
p R H t d p R H t d R p H t d

R

a p t a p t

                

 

  
  (A2-1) 

with: 

2 3 2 2
1 2 1 1 1 2 1 1 2

00 012 2 2 2 2 2 2 2
1 1 2 1 1 2 1 1 2 1 1 2

1 11 1
, ,

2 2
L L

L L L L

R R R R R R R
a a

G R R K R R G R R K R R

  
   

   
  (A2-2) 

Regarding the conditions expressed in Eq.(2.5), the Eq. (A2-1) written for the instant t  with 

1 2t t t   is: 

 1

1

2 2 2
0 1 0 1 11 00 110 0

1

1
( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ),

2

t t th h

t
p R H t d p R H t d R p H t d a p t

R
                     

(A2-3) 

This Eq. (A2-3) results from the second type Volterra equation (Polyanin and Manzhirov, 

2008) for  11p t : 

   1

1

2 21
11 1 0 1 00 0

00 00
1

1

1
( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ,

2 2

t t th h

t

R
p H t d p R H t dp p R H t d

a a R
t                    

(A2-4) 

Substituting Eq. (2. into Eq. (A2-4) yields the following equation: 

 
1

1

1
11

00

2
0 1 10

00 1

2
0

11

1 1 1
( ) ( ) exp ( )

2

1 1 1 1
( ) ( ) ( ) exp ( )

2

1 1 1
( ) ( ) ( ) exp ( )
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  
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t
K

t
M K K M

t h K

M K K M

h K

M K K M

p
R G

p t t d
a G

G
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a R G

G
p R t t

G
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t

d

  (A2-5) 

which can be expanded in the form:    
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(A2-6) 

Supposing now  11 1( ) expB K

K

t p t
G

t

 

  
 

, the following integral equation can be obtained: 
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1 1
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1 1 1 1

00 00 00
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(A2-7) 

Then by defining 1 1 00 1( )/(2 ) M Me RG G a R , we can rewrite Eq. (A2-7) in the form: 
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(A2-8) 

By defining: 
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(A2-9)  

with 
1 1 /B

Ke  and posing: 
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the Eq. (A2-9) can be rewritten as: 
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(A2-11) 

Thus, the function 
1 ( )B t in Eq. (A2-8) can be simplified as: 
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This last equation presents in effect the standard integral equation as shown in (Eq. (2.24)) with 

the free term 
1 ( )Bf t and the Kernel 1 1 exp ( )
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Due to the fact that 0, 0  K M , the discriminant of the quadratic equation (Eq. (2.25) is 

positive ( 0aD  ). Thus the solution 
1 ( )B t takes the same form of Eq. (2.27), which means 

that: 
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Correspondingly, the solution of  11p t can be calculated: 

   111 ( )exp ,B K
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t t
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  

   
(A2-14) 

A.2.2. Determination of supporting pressure after the installation of the second liner 

The determination of the supporting pressure in the liners after the second installation stage 

consists of calculating the pressures 12( )p t and 22( )p t  with 2t t .  

Using the radial displacement in each liner expressed in Eqs.(2.15) and (2.18), the compatibility 
condition of the displacement at the interface of two liners (see Eq.(2.23)) can be rewritten in 
the form:    

 10 12 11 22 10 12 2 2( ) ( ) ( ), ( )a p t a p t a p t t t  
 

(A2-15) 

with: 
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The Eq. (A2-1) written for the instant t  (with 2t t ) has the following form: 
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Using the relationship between 22( )p t and 12( )p t  as shown in Eq. (A2-15), one can deduce the 

following integral equation for 12( )p t :    
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Substituting ( )H t from Eq. (2. into Eq. (A2-18) we have: 
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Defining  12 2( ) expB K

K
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, after some developments, the simplified form of the integral 

equation 
2 ( )B t  can be obtained: 
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where 
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compact form:  
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Therefore, 2 ( )Bf t  can be expressed in the form: 

   

2

1

2 0 2 0
2 1 1 1 22

1

22 0 2
1 2 3 12

1

2 0 2
2 3

( ) ( ) ( ) exp exp ( ) .

( ) exp

exp exp ( ) exp

 
  

   
  

  
    

   
       

   
  

         
   

     
   





h h
B K K

M K K K

h
t

K
fin t

K K K

h
t

K K K

t
K M K M

e p e pG G
f t t t t t t A A

G R

e p G e
A A A R d B

R

e pG G e G
B t t d B ,

 
 
 K

t

        (A2-25) 

We also obtain the following standard integral equation: 
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characteristic equation Eq. (2.25). Thus, the solution of Eq. (A2-26) has the same form as one 
presented in Eq. (2.28), meaning that:  
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From this last solution of  2
B t , one can deduce the solution of  12p t : 
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In which the solution of  22p t  can be determined using the Eq. (A2-15) as shown in Eq.(2.27) 

For simplifying the presentation, the expressions of the supporting pressures, as well as the 
displacements in the rock mass, are written in integral form, but it is worth noting that their 
explicitly analytical expressions can be found without difficulty. The numerical integration is 

only needed for the functions containing the term ( )t determined in the range 0t t (i.e., during 
the excavation stage) such as ones expressed in Eqs. (2.30) and (2.31)) due to the presence of 
time in both the numerator and denominator of the exponential function (see also Eq. A2-10). 
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APPENDIX A3: APPENDIX TO CHAPTER 4 

A.3.1. The coupled mechanical probabilistic model procedure 

The coupled mechanical probabilistic model of the tunnel excavation problem is investigated 
the reliability analysis with some following main steps:  

1. Generating the centroid of the rock cells and its ID of the physical mesh with the scripts 
written by PYTHON. The output will be in the plain-text-form with the 2-D coordinates of the 
ID and the labels of all cells of the rock mass mesh. 

2. Generating the random fields (coefficients: A, B, C, E) by MATLAB software.  

2a. Selecting the boundary dimension for the domain (i.e., considering the acceptance of the 
extension dimension (lac) from the original mesh to artificial mesh where the variance error 
must satisfy a specified threshold for the accuracy of the approximation (e.g., 5%). 

2b. Selecting the suitable value of the partition (Np). 

2c. Selecting the combination of truncated order expansion (N) and the correlation lengths 
(xy). 

This step creates the MAT-file including some necessary parameters: probabilistic values of 4 
random input fields (i.e., the mean and the Std); covariance matrix, the corresponding 
eigenvalues, and eigenvectors 

2d. Representation of random field regarding the number of samples (i.e., NMCS random 
samples for the MCS (training data); or NDOE_ini random ones for the initial DoE). This step 

generates the cross-correlation block sample matrix ( )χD
 (acts as the matrix S for the initial 

DoE or matrix X for NMCS) 

3. For the case of initial DoE, we transmit the matrix S to the rock elements by using Eq. (4.15) 
for coefficients A, B, and C, Eq. (4.7) for modulus E. The output is stored in the text files as 
the source of input material data. Then Code-Aster can read and assign them to every cell of 
the rock mass. After each numerical mechanical computation, the post-processing of the 
mechanical model response is performed using MATLAB. This software can again connect to 
Code-Aster to call the next computations (if the iterations are needed). 

4. The response is stored in MATLAB and used by the modified AK-MCS being mentioned in 
Chapter 2 for reliability analysis. Notice that the active learning and the stopping conditions 
are the same as we investigated in Chapter 3. 

A.3.2.  Selecting prerequisites for the discretization 

A.3.2.1. Boundary dimensions for the domain 

 
Figure A3-1: Conception of extending the boundary for random field mesh 
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First, we assume some other prerequisites for the discretization: the truncated order expansion 
Mterm=20, the isotropic correlation length xy=15m, and partition value Np = 40. 

Table A3-1:  The error variance versus the extension length 

No. case 1 2 3 4 5 6 7 8 

Extension 
length lac (m) 

0.0 1.0 2.0 2.5 3.0 3.5 4.0 5.0 

Max var. 
error (%) 

9.963 7.943 7.058 6.788 6.716 7.198 7.690 8.729 

Mean var. 
error (%) 

3.928 3.841 4.114 4.367 4.687 5.067 5.067 6.485 

 

Table A3-1 above shows that the extension dimension lac=3m can be the best choice. In which 
the maximum of variance error is lower than the prescribed tolerance er = 5%, and the 
maximum variance error, although higher than er, but occurs in the points significantly closer 
to the boundaries (all points in the zone of physical mesh [0.0, 55.0] have the error of variance 
satisfying the requirement of this condition, i.e., lower than er). 

 

(a)                                                                (b) 
Figure A3-2: Random field mesh 2D for the tunnel: 

(a) initial domain (lac=3m), (b) physical domain (the centroid cells of the tunnel mesh) 

A.4.2.2. Partition number for the domain  

Table A3-2:  The error variance versus partition number 

No. case 1 2 3 4 5 6 7 

Np-Partition 40 42 45 48 50 60 100 

Time-consuming (s) 2.830 3.020 3.540 4.040 4.420 6.320 23.140 

Max var. error (%) 6.716 6. 682 6.654 6.664 6. 670 6.698 6. 766 

Mean var. error (%) 4.688 4.666 4.630 4.602 4.585 4.519 4.397 

The best choice of the number depends on the maximum variance error as well as the time-
consuming for each computation. Although all these maximum variance error values are still 
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higher than er, and the partition value is selected at 48, which has low amounts of both the 
mean and the maximum variance error.  

 

(a)                                                                (b) 
Figure A3-3: Contours of variance errors as functions of correlation lengths and expansion terms 

(a): N varies in [8, 20], (b) N varies in [20, 40] (both cases use the isotropic lengths) 
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Ngoc Tuyen TRAN 

EVALUATION DE LA STABILITE à LONG TERME DES OUVRAGES 
SOUTERRAINS AVEC LA PRISE EN COMPTE DES INCERTITUDES 

ET DE LA VARIABILITÉ DES PROPRIÉTÉS DES ROCHES 
Résumé : 

Ce travail de thèse vise à évaluer la probabilité de défaillance à long terme du revêtement en béton des 
tunnels profonds en considérant l’incertitude des paramètres du comportement différé de la roche hôte. 
Pour cela, une extension/modification de la technique d’analyse fiabiliste par le métamodèle de Krigeage 
a été d’abord mise en place. La performance et l’efficacité de ce métamodèle modifié en comparant avec 
la méthode classique MCS a été démontrée dans le cadre d’une construction séquentielle d’un tunnel 
profond dans une roche viscoélastique. Ce métamodèle de Krigeage est ensuite appliqué pour analyser 
la stabilité pendant la période d’exploitation de 100 ans du revêtement en béton d’une galerie construite 
dans la couche argileuse de Callovo-Oxfordien (COx), la formation géologique choisie pour le stockage 
profond des déchets radioactifs en France. La quantification des incertitudes et des corrélations des 
paramètres du modèle de Lemaitre pour la roche hôte a été réalisée en utilisant les résultats des essais 
de fluage au laboratoire. Le soutènement de la galerie étudiée est compressible et son comportement 
décrit par un modèle élastique tri-linéaire. Les résultats montrent l’impact des incertitudes des propriétés 
de la roche hôte et un grand avantage du voussoir compressible sur la stabilité à long terme du revêtement 
en béton. Selon ces études, la stabilité à 100 ans du revêtement est considérablement augmentée en 
fonction de la compressibilité et/ou de l’épaisseur de la couche compressible du système de support de la 
galerie. Une considération de la variabilité spatiale des propriétés mécaniques de la roche hôte a aussi été 
effectuée. Pour traiter le problème de grandes dimensions, associé à la discrétisation des champs 
aléatoires, une adaptation de la méthode Cut-HDMR combinée avec la metamodélisation de Krigeage a 
été proposée dans cette étude et a été ensuite testée à travers des applications numériques. 
Mots-clés: incertitude, variabilité spatiale, analyse fiabiliste, métamodèle de Krigeage, tunnel profond, 
matériau compressible. 

LONG-TERM STABILITY EVALUATION OF UNDERGROUND 
CONSTRUCTIONS BY CONSIDERING UNCERTAINTIES AND 

VARIABILITY OF ROCK MASSES 
Summary: 

This dissertation aims to evaluate the exceedance probability at the long-term of the concrete lining of deep 
tunnels by considering the uncertainty of the time-dependent behavior of the host rock. To this purpose, an 
extension/modification of the reliability analysis technique using the Kriging-based metamodel was carried 
out. The performance and the efficiency of this metamodel compared to the classical Monte-Carlo Simulation 
(MCS) method were demonstrated in the context of a sequential construction of a deep tunnel in a linear 
viscoelastic rock. The metamodel is then applied to analyze the stability of the concrete lining of a gallery 
during a 100-years period of exploitation that is built in the layer of Callovo-Oxfordian (COx) claystone - the 
geological formation chosen for the deep nuclear waste disposal in France (Andra). By analyzing the raw 
database from creep tests performed at Andra, we not only found a significant uncertainty and cross-
correlation of the Lemaitre model’s parameters but also developed an adopted viscoplastic model to 
characterize the creep behavior of COx rock. The reliability analysis exhibited that the long-term stability of 
concrete inner liner has been affected by the host rock properties' uncertainty and the great benefit of the 
compressible layer. According to these studies, the stability can be determined as a function of the 
compressibility and/or the thickness of the compressible layer. Moreover, the spatial variability of the 
mechanical properties of the host rock was also undertaken. To deal with the high dimensional problem 
associated with the discretization of the random fields, an adaptation of the Cut-HDMR method combined 
with the Kriging-based metamodeling technique was proposed in this study. The applicability of this method 
was then tested through numerical applications. 
Keywords: uncertainty, spatial variability, reliability analysis, Kriging metamodel, deep tunnel, compressible 
material. 

  


