Méthodes de points intérieurs et leurs applications sur des problèmes d'optimisation semi-définis

par Amina Zerari

Thèse de doctorat en Mathématiques appliquées

Sous la direction de Adnan Yassine et de Djamel Benterki.

Le président du jury était Bachir Merikhi.

Le jury était composé de Sonia Cafieri.

Les rapporteurs étaient Souad El Bernoussi, Khadra Nachi.


  • Résumé

    Les méthodes de points intérieurs sont bien connues comme les plus efficaces pour résoudre les problèmes d’optimisation. Ces méthodes possèdent une convergence polynômiale et un bon comportement numérique. Dans cette recherche, nous nous sommes intéressés à une étude théorique, algorithmique et numérique des méthodes de points intérieurs pour la programmation semi-définie.En effet, on présente dans une première partie un algorithme réalisable projectif primal-dual de points intérieurs de type polynômial à deux phases, où on a introduit trois nouvelles alternatives efficaces pour calculer le pas de déplacement.Ensuite, dans la deuxième partie, on s’intéresse aux méthodes de type trajectoire centrale primale-duale via une fonction noyau, nous proposons deux nouvelles fonctions noyaux à terme logarithmique qui donnent la meilleure complexité algorithmique, obtenue jusqu’à présent.

  • Titre traduit

    Interior point methods and their applications to semidefinite optimization problems.


  • Résumé

    Interior point methods are well known as the most efficient to solve optimization problems. These methods have a polynomial convergence and good behavior. In this research, we are interested in a theoretical, numerical and an algorithmic study of interior-point methods for semidefinite programming.Indeed, we present in a first part, a primal-dual projective interior point algorithm of polynomial type with two phases, where we introduced three new effective alternatives for computing the displacement step.Then, in the second part, we are interested in a primal-dual central trajectory method via a kernel function, we proposed two new kernel functions with a logarithmic term that give the best-known complexity results.


Il est disponible au sein de la bibliothèque de l'établissement de soutenance.

Consulter en bibliothèque

La version de soutenance existe

Où se trouve cette thèse\u00a0?

  • Bibliothèque : Université du Havre. Service commun de la documentation. Bibliothèque centrale.
Voir dans le Sudoc, catalogue collectif des bibliothèques de l'enseignement supérieur et de la recherche.