Thèse soutenue

Technologies sémantiques pour la modélisation de la maintenance prédictive pour un réseau de PME dans le cadre de l'industrie 4.0

FR  |  
EN
Auteur / Autrice : Qiushi Cao
Direction : Cecilia Zanni-MerkChristoph Reich
Type : Thèse de doctorat
Discipline(s) : Informatique
Date : Soutenance le 26/06/2020
Etablissement(s) : Normandie
Ecole(s) doctorale(s) : École doctorale mathématiques, information et ingénierie des systèmes (Caen)
Partenaire(s) de recherche : Laboratoire : Laboratoire d'informatique, de traitement de l'information et des systèmes (Saint-Etienne du Rouvray, Seine-Maritime ; 2006-...)
Établissement de préparation : Institut national des sciences appliquées Rouen Normandie (Saint-Etienne-du-Rouvray ; 1985-....)
Jury : Président / Présidente : Samira Si-Said Cherfi
Examinateurs / Examinatrices : Cecilia Zanni-Merk, Christoph Reich, Thomas Guyet, Nada Matta, Anne Håkansson, Ahmed Samet, François de Bertrand de Beuvron
Rapporteur / Rapporteuse : Thomas Guyet, Nada Matta

Résumé

FR  |  
EN

Dans le domaine de la fabrication, la détection d’anomalies telles que les défauts et les défaillances mécaniques permet de lancer des tâches de maintenance prédictive, qui visent à prévoir les défauts, les erreurs et les défaillances futurs et à permettre des actions de maintenance. Avec la tendance de l’industrie 4.0, les tâches de maintenance prédictive bénéficient de technologies avancées telles que les systèmes cyberphysiques (CPS), l’Internet des objets (IoT) et l’informatique dématérialisée (cloud computing). Ces technologies avancées permettent la collecte et le traitement de données de capteurs qui contiennent des mesures de signaux physiques de machines, tels que la température, la tension et les vibrations. Cependant, en raison de la nature hétérogène des données industrielles, les connaissances extraites des données industrielles sont parfois présentées dans une structure complexe. Des méthodes formelles de représentation des connaissances sont donc nécessaires pour faciliter la compréhension et l’exploitation des connaissances. En outre, comme les CPSs sont de plus en plus axées sur la connaissance, une représentation uniforme de la connaissance des ressources physiques et des capacités de raisonnement pour les tâches analytiques est nécessaire pour automatiser les processus de prise de décision dans les CPSs. Ces problèmes constituent des obstacles pour les opérateurs de machines qui doivent effectuer des opérations de maintenance appropriées. Pour relever les défis susmentionnés, nous proposons dans cette thèse une nouvelle approche sémantique pour faciliter les tâches de maintenance prédictive dans les processus de fabrication. En particulier, nous proposons quatre contributions principales: i) un cadre ontologique à trois niveaux qui est l’élément central d’un système de maintenance prédictive basé sur la connaissance; ii) une nouvelle approche sémantique hybride pour automatiser les tâches de prédiction des pannes de machines, qui est basée sur l’utilisation combinée de chroniques (un type plus descriptif de modèles séquentiels) et de technologies sémantiques; iii) a new approach that uses clustering methods with Semantic Web Rule Language (SWRL) rules to assess failures according to their criticality levels; iv) une nouvelle approche d’affinement de la base de règles qui utilise des mesures de qualité des règles comme références pour affiner une base de règles dans un système de maintenance prédictive basé sur la connaissance. Ces approches ont été validées sur des ensembles de données réelles et synthétiques.