Thèse soutenue

Identification rapide d'empreintes digitales, robuste à la dissimulation d'identité

FR  |  
EN
Auteur / Autrice : Joannes Chiderlos Falade
Direction : Christophe Rosenberger
Type : Thèse de doctorat
Discipline(s) : Informatique
Date : Soutenance le 04/12/2020
Etablissement(s) : Normandie
Ecole(s) doctorale(s) : École doctorale mathématiques, information et ingénierie des systèmes (Caen)
Partenaire(s) de recherche : Laboratoire : Groupe de recherche en informatique, image, automatique et instrumentation de Caen (1995-....)
établissement de préparation : Université de Caen Normandie (1971-....)
Jury : Président / Présidente : Jean-Luc Dugelay
Examinateurs / Examinatrices : Christophe Rosenberger, Bernadette Dorizzi, Hubert Cardot, Sandra Cremer, Marc Pic
Rapporteurs / Rapporteuses : Bernadette Dorizzi, Hubert Cardot

Résumé

FR  |  
EN

La biométrie est de plus en plus utilisée à des fins d’identification compte tenu de la relation étroite entre la personne et son identifiant (comme une empreinte digitale). Nous positionnons cette thèse sur la problématique de l’identification d’individus à partir de ses empreintes digitales. L’empreinte digitale est une donnée biométrique largement utilisée pour son efficacité, sa simplicité et son coût d’acquisition modeste. Les algorithmes de comparaison d’empreintes digitales sont matures et permettent d’obtenir en moins de 500 ms un score de similarité entre un gabarit de référence (stocké sur un passeport électronique ou une base de données) et un gabarit acquis. Cependant, il devient très important de déterminer l'identité d'un individu contre une population entière en un temps très court (quelques secondes). Ceci représente un enjeu important compte tenu de la taille de la base de données biométriques (contenant un ensemble d’individus de l’ordre d’un pays). Par exemple, avant de délivrer un nouveau passeport à un individu qui en fait la demande, il faut faire une recherche d'identification sur la base des données biométriques du pays afin de s'assurer que ce dernier n'en possède pas déjà un autre mais avec les mêmes empreintes digitales (éviter les doublons). Ainsi, la première partie du sujet de cette thèse concerne l’identification des individus en utilisant les empreintes digitales. D’une façon générale, les systèmes biométriques ont pour rôle d’assurer les tâches de vérification (comparaison 1-1) et d’identification (1-N). Notre sujet se concentre sur l’identification avec N étant à l’échelle du million et représentant la population d’un pays par exemple. Dans le cadre de nos travaux, nous avons fait un état de l’art sur les méthodes d’indexation et de classification des bases de données d’empreintes digitales. Nous avons privilégié les représentations binaires des empreintes digitales pour indexation. Tout d’abord, nous avons réalisé une étude bibliographique et rédigé un support sur l’état de l’art des techniques d’indexation pour la classification des empreintes digitales. Ensuite, nous avons explorer les différentes représentations des empreintes digitales, puis réaliser une prise en main et l’évaluation des outils disponibles à l’imprimerie Nationale (IN Groupe) servant à l'extraction des descripteurs représentant une empreinte digitale. En partant de ces outils de l’IN, nous avons implémenté quatre méthodes d’identification sélectionnées dans l’état de l’art. Une étude comparative ainsi que des améliorations ont été proposées sur ces méthodes. Nous avons aussi proposé une nouvelle solution d'indexation d'empreinte digitale pour réaliser la tâche d’identification qui améliore les résultats existant. Les différents résultats sont validés sur des bases de données de tailles moyennes publiques et nous utilisons le logiciel Sfinge pour réaliser le passage à l’échelle et la validation complète des stratégies d’indexation. Un deuxième aspect de cette thèse concerne la sécurité. Une personne peut avoir en effet, la volonté de dissimuler son identité et donc de mettre tout en œuvre pour faire échouer l’identification. Dans cette optique, un individu peut fournir une empreinte de mauvaise qualité (portion de l’empreinte digitale, faible contraste en appuyant peu sur le capteur…) ou fournir une empreinte digitale altérée (empreinte volontairement abîmée, suppression de l’empreinte avec de l’acide, scarification…). Il s'agit donc dans la deuxième partie de cette thèse de détecter les doigts morts et les faux doigts (silicone, impression 3D, empreinte latente) utilisés par des personnes mal intentionnées pour attaquer le système. Nous avons proposé une nouvelle solution de détection d'attaque basée sur l'utilisation de descripteurs statistiques sur l'empreinte digitale. Aussi, nous avons aussi mis en place trois chaînes de détections des faux doigts utilisant les techniques d'apprentissages profonds.