Batch steganography et pooled steganalysis dans les images JPEG
Auteur / Autrice : | Ahmad Zakaria |
Direction : | Marc Chaumont, Gérard Subsol |
Type : | Thèse de doctorat |
Discipline(s) : | Informatique |
Date : | Soutenance le 26/11/2020 |
Etablissement(s) : | Montpellier |
Ecole(s) doctorale(s) : | École doctorale Information, Structures, Systèmes (Montpellier ; 2015-....) |
Partenaire(s) de recherche : | Laboratoire : Laboratoire d'informatique, de robotique et de micro-électronique (Montpellier ; 1992-....) |
Jury : | Examinateurs / Examinatrices : Marc Chaumont, Gérard Subsol, Patrick Bas, Philippe Carré, Rémi Cogranne |
Rapporteur / Rapporteuse : Patrick Bas, Philippe Carré |
Mots clés
Résumé
RÉSUMÉ :La stéganographie par lot consiste à dissimuler un message en le répartissant dans un ensemble d’images, tandis que la stéganalyse groupée consiste à analyser un ensemble d’images pour conclure à la présence ou non d’un message caché. Il existe de nombreuses stratégies d’étalement d’un message et on peut raisonnablement penser que le stéganalyste ne connaît pas celle qui est utilisée, mais il peut supposer que le stéganographe utilise le même algorithme d’insertion pour toutes les images. Dans ce cas, on peut montrer que la solution la plus appropriée pour la stéganalyse groupée est d’utiliser un unique détecteur quantitatif (c'est-à-dire qui prédit la taille du message caché), d’évaluer pour chaque image la taille du message caché (qui peut être nulle s'il n'y en a pas) et de faire la moyenne des tailles (qui sont finalement considérées comme des scores) obtenues sur l'ensemble des images.Quelle serait la solution optimale si maintenant, le stéganalyste pouvait discriminer la stratégie d’étalement parmi un ensemble de stratégies connues. Le stéganalyste pourrait-il utiliser un algorithme de stéganalyse groupé meilleur que la moyenne des scores ? Le stéganalyste pourrait-il obtenir des résultats proches du scénario dit ''clairvoyant'' où l’on suppose qu’il connaît exactement la stratégie d’étalement ?Dans cette thèse, nous essayons de répondre à ces questions en proposant une architecture de stéganalyse groupée fondé sur un détecteur quantitatif d’images et une fonction de groupement optimisée des scores. La première contribution est une étude des algorithmes de stéganalyse quantitatifs afin de décider lequel est le mieux adapté à la stéganalyse groupée. Pour cela, nous proposons d’étendre cette comparaison aux algorithmes de stéganalyse binaires et nous proposons une méthodologie pour passer des résultats de la stéganalyse binaire en stéganalyse quantitative et réciproquement.Le cœur de la thèse se situe dans la deuxième contribution. Nous étudions le scénario où le stéganalyste ne connaît pas la stratégie d’étalement. Nous proposons alors une fonction de groupement optimisée des résultats fondés sur un ensemble de stratégies d’étalement ce qui permet d’améliorer la précision de la stéganalyse groupée par rapport à une simple moyenne. Cette fonction de groupement est calculée en utilisant des techniques d’apprentissage supervisé. Les résultats expérimentaux obtenus avec six stratégies d’étalement différentes et un détecteur quantitatif de l’état de l’art confirment notre hypothèse. Notre fonction de groupement obtient des résultats proches d’un stéganalyste clairvoyant qui est censé connaître la stratégie d’étalement.Mots clés : Sécurité multimédia, Stéganographie par lot, Stéganalyse groupée, Apprentissage machine.