Exaltation des différents effets magnéto-optiques à l’aide de réseaux résonants diélectriques basés sur un nano-composite magnétique obtenu par voie sol-gel

par Laure Bsawmaii

Thèse de doctorat en Optique, Photonique, Hyperfréquences

Sous la direction de François Royer.

Soutenue le 26-10-2020

à Lyon , dans le cadre de École doctorale Sciences Ingénierie Santé (Saint-Etienne) , en partenariat avec Laboratoire Hubert Curien (Saint-Etienne) (équipe de recherche) , Université Jean Monnet (Saint-Étienne) (établissement opérateur d'inscription) et de Laboratoire Hubert Curien [Saint Etienne] (laboratoire) .

Le président du jury était Béatrice Dagens.

Le jury était composé de Jean-Emmanuel Broquin, Mathias Vanwolleghem, Olivier Ghibaudo, Emilie Gamet, Damien Jamon.

Les rapporteurs étaient Loïc Mager.


  • Résumé

    Les dispositifs photoniques magnéto-optiques (MO) sont l’objet d’une attention particulière pour leur capacité à améliorer la sensibilité des biocapteurs ou leur sensibilité au champ magnétique. Les effets MO, pouvant se manifester par une rotation de polarisation ou une modification d'intensité de la lumière sous champ magnétique, sont cependant plutôt faibles lors d’interactions simples (réflexion ou transmission) avec les films magnétiques classiques. Le dispositif proposé dans le cadre de ce travail permet d’exalter les effets MO. C’est une structure diélectrique planaire simple formée par un réseau 1D de résine photosensible (PR) déposé à la surface d’un film MO lui-même déposé sur un substrat de verre. Selon les conditions de couplage imposées par le réseau, des modes guidés (TE et TM) sont excités dans le film MO par la lumière incidente, augmentant ainsi l'interaction lumière-matière. Un tel couplage produit ainsi une résonance étroite qui se traduit par un creux (pic) dans le spectre de la transmittance (réflectance). Le film MO est un composite formé par des nanoparticules magnétiques (CoFe2 04) insérés dans une matrice de silice par un procédé sol-gel. Ce composite nano-structurable peut être facilement déposé sur des substrats classiques à faible température de recuit (90°C), ce qui n'est pas le cas de la plupart des matériaux MO utilisés dans les plates-formes d’optiques intégrées. Des exaltations importantes des différents effets de rotation de polarisation (Faraday et Kerr longitudinal) ont été atteintes par les mesures et les simulations grâce à cette structure résonnante toute diélectrique. Les principaux résultats de ce travail concernent cependant l'effet Kerr MO transverse (TMOKE). Cet effet induit un décalage spectral non réciproque de la résonance de transmittance (réflectance) lors de l'inversion de l'aimantation, résultant en une modulation d'intensité. Des valeurs de TMOKE atteignant 9,5% et 18,5% ont été mesurées respectivement en transmission avec T = 80%, et en réflexion avec R = 5%. Ces valeurs très significatives de TMOKE sont principalement dues au facteur de qualité élevé des résonances de transmittance (réflectance) du mode TM. La valeur de TMOKE pour un film MO sans réseau étant d'environ 0,01%, une exaltation de trois ordres de grandeur a ainsi été obtenue grâce à la structure fabriquée. Les valeurs mesurées de TMOKE sont bien positionnées par rapport à la littérature où, à notre connaissance, des valeurs maximales de 1,5% et 15% ont été démontrées expérimentalement par des structures respectivement diélectriques et magnéto-plasmoniques. De plus, des effets magnétiques réciproques inattendus ont été démontrés expérimentalement. Enfin, la structure proposée est un dispositif à faible coût, qui peut être fabriqué sur des substrats à grande échelle, est capable d'exalter tous les effets MO. Cela en fait une structure à fort potentiel pour des applications comme le contrôle non destructif, les capteurs de champ magnétique et même les biocapteurs.

  • Titre traduit

    Enhancement of Every Magneto-Optical Effect with All-Dielectric Guided-Mode Resonant Gratings Based on a Magnetic Sol-Gel Nanocomposite


  • Résumé

    Magneto-optical (MO) photonic devices are currently highly desirable because of their ability to improve the sensitivity of biosensors or their sensitivity to the magnetic field. However, MO effects being rather small through classical magnetic films, it is relevant to find ways to enhance such effects which can manifest as light polarization rotation or intensity modification under magnetic field. The proposed device in this work to enhance MO effects is an all-dielectric planar structure formed by a 1D photoresist (PR) grating deposited on top of a MO film itself deposited on a glass substrate. Under coupling conditions through the grating, guided-modes (TE and TM) with narrow resonances are excited in the MO film by the incident light, increasing hence the light-matter interaction. Such coupling results as a dip (peak) in the transmittance (reflectance) spectrum. The MO film is a composite formed by magnetic nanoparticles (CoFe2 04) embedded in a silica matrix and obtained through sol-gel process. This nano-structurable composite can be easily deposited on common substrates with low annealing temperature (90°C), which is not the case of the most MO materials used within integrated optics platforms. Large enhancements of the different non-reciprocal polarization rotation effects (such as Faraday and longitudinal MO Kerr) were achieved experimentally and numerically through the all-dielectric resonant structure. The main results of this work concern the transverse MO Kerr effect (TMOKE). This effect induces a non-reciprocal spectral shift of the transmittance (reflectance) resonance upon magnetization reversal, resulting in an intensity modulation effect. TMOKE values up to 9.5% and 18.5% were measured respectively in transmission with T = 80% and in reflection with R = 5%. These large TMOKE values are mainly due to the high quality factor of TM transmittance (reflectance) resonances. The TMOKE signal for a single MO film is around 0.01%, hence an enhancement with three orders of magnitude was achieved through the fabricated structure. The reached measured TMOKE values are highly competitive with the literature where, to our knowledge, maximum values of 1.5% and 15% were experimentally demonstrated respectively through all-dielectric and magneto-plasmonic structures. Moreover, unexpected reciprocal magnetic effects were experimentally evidenced. Finally, the proposed all-dielectric structure is a low-cost device, which can be fabricated on large scale substrate, and able to enhance all the MO effects. Hence, it is a promising structure for non-destructive testing, magnetic field sensing and even biosensing.


Il est disponible au sein de la bibliothèque de l'établissement de soutenance.

Consulter en bibliothèque

La version de soutenance existe

Où se trouve cette thèse\u00a0?

  • Bibliothèque : Université Jean Monnet. Service commun de la documentation. Bibliothèque électronique.
Voir dans le Sudoc, catalogue collectif des bibliothèques de l'enseignement supérieur et de la recherche.