Thèse soutenue

Inférence et décomposition modale de réseaux dynamiques en neurosciences

FR  |  
EN
Auteur / Autrice : Gaëtan Frusque
Direction : Paulo Gonçalvès
Type : Thèse de doctorat
Discipline(s) : Informatique
Date : Soutenance le 07/12/2020
Etablissement(s) : Lyon
Ecole(s) doctorale(s) : École doctorale en Informatique et Mathématiques de Lyon (Lyon ; 2009-....)
Partenaire(s) de recherche : établissement opérateur d'inscription : École normale supérieure de Lyon (2010-...)
Laboratoire : Laboratoire de l'informatique du parallélisme (Lyon ; 1988-....) - Dynamic Networks : Temporal and Structural Capture Approach
Jury : Président / Présidente : Nicolas Dobigeon
Examinateurs / Examinatrices : Paulo Gonçalvès, Nicolas Dobigeon, Sophie Achard, David Brie, Pierre Borgnat, Julien Jung, Louise Tyvaert
Rapporteurs / Rapporteuses : Sophie Achard, David Brie

Résumé

FR  |  
EN

Les graphes dynamiques permettent de comprendre l'évolution de systèmes complexes qui évoluent dans le temps. Ce type de graphe a récemment fait l'objet d'une attention considérable. Cependant, il n'existe pas de consensus sur les manières d'inférer et d'étudier ces graphes. Dans cette thèse, on propose des méthodes d'analyse de graphes dynamiques spécifiques. Ceux-ci peuvent être vues comme une succession de graphes complets partageant les mêmes nœuds, mais dont les poids associés à chaque lien évoluent dans le temps. Les méthodes proposées peuvent avoir des applications en neurosciences ou dans l'étude des réseaux sociaux comme Twitter et Facebook par exemple. L'enjeu applicatif de cette thèse est l'épilepsie, l'une des maladies neurologiques les plus rependues dans le monde affectant environ 1% de la population.La première partie concerne l'inférence de graphe dynamique à partir de signaux neurophysiologiques. Cette inférence est généralement réalisée à l'aide de mesures de connectivité fonctionnelle permettant d'évaluer la similarité entre deux signaux. La comparaison de ces mesures est donc d'un grand intérêt pour comprendre les caractéristiques des graphes obtenus. On compare alors des mesures de connectivité fonctionnelle impliquant la phase et l'amplitude instantanée des signaux. On s'intéresse en particulier à une mesure nommée Phase-Locking-Value (PLV) qui quantifie la synchronie des phases entre deux signaux. On propose ensuite, afin d'inférer des graphes dynamiques robustes et interprétables, deux nouvelles mesures de PLV conditionnées et régulariséesLa seconde partie présente des méthodes de décomposition de graphes dynamiques. L'objectif est de proposer une méthode semi-automatique afin de caractériser les informations les plus importantes du réseau pathologique de plusieurs crises d'un même patient. Dans un premier temps on considère des crises qui ont des durées et des évolutions temporelles similaires. Une décomposition tensorielle spécifique est alors appliquée. Dans un second temps, on considère des crises qui ont des durées hétérogènes. Plusieurs stratégies sont proposées et comparées. Ce sont des méthodes qui en plus d'extraire les sous-graphes caractéristiques communs à toutes les crises, permettent d'observer leurs profils d'activation temporelle spécifiques à chaque crise. Finalement, on utilise la méthode retenue pour une application clinique. Les décompositions obtenues sont comparées à l'interprétation visuelle du clinicien. Dans l'ensemble, on constate que les sous-graphes extraits correspondent aux régions du cerveau impliquées dans la crise d'épilepsie. De plus l'évolution de l'activation de ces sous-graphes est cohérente avec l'interprétation visuelle.