Etude numérique de la bulle de Taylor et développement d'un modèle de changement de phase
Auteur / Autrice : | Longkai Guo |
Direction : | Shihe Xin |
Type : | Thèse de doctorat |
Discipline(s) : | Mécanique des fluides |
Date : | Soutenance le 28/10/2020 |
Etablissement(s) : | Lyon |
Ecole(s) doctorale(s) : | École doctorale Mécanique, Energétique, Génie Civil, Acoustique (Villeurbanne ; 1993-....) |
Partenaire(s) de recherche : | établissement opérateur d'inscription : Institut national des sciences appliquées (Lyon ; 1957-....) |
Laboratoire : CETHIL - Centre d'Energétique et de Thermique de Lyon (Villeurbanne, Rhône) - Centre d'Energétique et de Thermique de Lyon / CETHIL | |
Jury : | Président / Présidente : Christian Ruyer-Quil |
Examinateurs / Examinatrices : Shihe Xin, Christian Ruyer-Quil, Virginie Daru, Christophe Josserand, Ronnie Knikker, Aurore Naso | |
Rapporteurs / Rapporteuses : Virginie Daru, Christophe Josserand |
Résumé
Le mouvement d'une bulle d'azote de Taylor dans des solutions mixtes glycérol-eau s'élevant à travers différents types d'expansions et de contractions est étudié par une approche numérique. La procédure CFD est basée sur un solveur open-source Basilisk, qui adopte la méthode du volume de fluide (VOF) pour capturer l'interface gaz-liquide. Les résultats des expansions/contractions soudaines sont comparés aux résultats expérimentaux. Les résultats montrent que les simulations sont en bon accord avec les expériences. La vitesse de la bulle augmente dans les expansions soudaines et diminue dans les contractions soudaines. Le modèle de rupture des bulles est observé dans les expansions soudaines avec de grands taux d'expansion, et un modèle de blocage des bulles est observé dans les contractions soudaines avec de petits rapports de contraction. De plus, la contrainte de cisaillement de la paroi, l'épaisseur du film liquide et la pression dans les simulations sont étudiées pour comprendre l'hydrodynamique de la bulle de Taylor montant par expansions/contractions. Le processus transitoire de la bulle de Taylor passant par une expansion/contraction soudaine est ensuite analysé pour trois singularités différentes: graduelle, parabolique convexe et parabolique concave. Une caractéristique unique de la contraction concave parabolique est que la bulle de Taylor passe par la contraction même pour de petits rapports de contraction. De plus, un modèle de changement de phase est développé dans le solveur Basilisk. Afin d'utiliser la méthode VOF géométrique existante dans Basilisk, une méthode VOF géométrique générale en deux étapes est implémentée. Le flux de masse n'est pas calculé dans les cellules interfaciales mais transféré aux cellules voisines autour de l'interface. La condition aux limites de température saturée est imposée à l'interface par une méthode de cellule fantôme. Le modèle de changement de phase est validé par évaporation de gouttelettes avec un taux de transfert de masse constant, le problème de Stefan unidimensionnel, le problème d'aspiration de l'interface et un cas d'ébullition à film plan. Les résultats montrent un bon accord avec les solutions analytiques ou les corrélations.