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Abstract i

Abstract

To fit the renewed globalized economic environment, enterprises, and mostly SMEs,

have to develop new networked and collaborative strategies, focusing on networked

value creation (instead of the classical value chain vision), fitting the blue ocean context

for innovative products and service development. Even if collaborative organizations

have been studied for decades, the closer connection of information systems involved

by the so-called “Industry 4.0” developed by leading industries in Europe, US and Asia

requires to set new IT models to support agile and evolving collaborative Business Pro-

cess (BP) enactment, integrating both traditional Information Systems (IS) and produc-

tion control processes. By now, these product/service ecosystems are mostly supported

by software services, which span multiple organizations and providers, and on multiple

cloud-based execution environments, increasing the call for openness, agility, interop-

erability and trust for both production and Information System organization. These re-

quirements are well supported by SOA, Web 2.0 and XaaS technologies for Information

Systems. Taking advantage of IoT, services and Cloud technologies, the development

of Cloud of Things (CoT) changes the way control application are engineered and de-

veloped moving from a dedicated design and development of control applications to a

Control as a Service vision. This vision requires developing a new architecture to con-

nect physical and logical objects as well as integrating basic control patterns to organize

a consistent control service orchestration. To fit this challenge, we propose a multi-layer

Control as a Service architecture to describe control systems in a holistic way. Our Con-

trol service model is built according to an event-driven orchestration strategy. Thanks

to the integration of a context manager, analyzing continuously the system environment

as well as the control system behavior, these context-aware control services can be de-

ployed.

Keywords: Control Service, Control as a Service, control ontology, Service Oriented

Control Architecture, Industry 4.0
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Résumé iii

Résumé

Pour s’adapter au contexte de l’économie globalisée, les entreprises, et principale-

ment les PMEs doivent développer de nouvelles stratégies de collaboration. Ces straté-

gies sont axées sur la création de valeur en réseau en remplacement de l’organisation

classique de chaîne de valeur, s’adaptant ainsi au modèle dit de « Blue Ocean » qui

conduit au développement de produits et services innovants. Bien que les organisa-

tions collaboratives aient été étudiées depuis des décennies, l’Industrie 4.0, actuellement

largement développée par les principales industries en Europe, Amérique ou Asie, im-

pose une intégration plus poussée des Systèmes d’Information pour y inclure des pro-

cessus opérationnels collaboratifs, tant pour les activités administratives que pour la

production. En outre, ces processus doivent être adaptatifs pour s’adapter au contexte.

Actuellement, ces écosystèmes de produits/services sont principalement implémentés

par des services logiciels, déployés sur le Cloud et utilisables par différentes organisa-

tions. Pour répondre aux besoins d’agilité, d’ouverture, d’interopérabilité et de confi-

ance, ces services utilisent largement les architectures orientées services, les technologies

Web2.0 et XaaS. Tirant parti de l’IoT, des technologies de services et du Cloud, le Cloud

des objets (Cloud of Things ou CoT) change la manière de concevoir des applications

de contrôle, passant d’une ingénierie traditionnelle à une vision de composition de ser-

vices. Cette vision suppose de définir une nouvelle architecture pour connecter les

objets physiques, leur double virtuel et intégrer des patrons de contrôle pour composer

et orchestrer ces services pour répondre aux besoins. Pour répondre à ce défi, nous pro-

posons uns architecture multi-niveaux de Control as a Service permettant de décrire les

systèmes de contrôle selon une vision holistique. Notre modèle de service de contrôle

est construit pour permettre une exécution pilotée par les événements. L’intégration

d’un gestionnaire de contexte, analysant continuellement l’environnement d’exécution

et le comportement du système, permet d’assurer le déploiement de services de contrôle

contextualisables.

Mots cléfs: Control as a Service, modèle de service, Industrie 4.0, ontologie pour le

contrôle, orchestration pilotée par les événements
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Chapter 1
Introduction
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1.3 Research Issues and Contributions . . . . . . . . . . . . . . . . . . . . . 5

1.1 Context

To fit the renewed globalized economic environment, enterprises, and mostly SMEs,

have to develop new networked and collaborative strategies, focusing on networked

value creation (instead of the classical value chain vision), fitting the blue ocean con-

text for innovative products and service development [63]. Moreover, the fast develop-

ment of Internet of Things, FabLabs and new standalone manufacturing means (such

as 3D printers) allow to bring production means closer to the consumer. This context

challenges for developing new value chain organization and new digitized production

model leading to the so-called “Industry 4.0" developed by leading industries in Europe,

US and Asia. This 4th industrial revolution takes advantage of the Internet of Services,

Internet of Things, Cyber-Physic system models to organize smart factories. These new

production organization challenges IT development to provide agile and on-demand

collaborative process support as well as renewing production operation control on one

hand by integrating production data in the information system and on the other hand by

setting distributed control process, interacting with their environment thanks to smart

devices.

The large adoption of web-service technologies extended to IoT devices as well as

the Cloud-based Everything as a Service (XaaS) model, provide a strong basis to set dis-

1
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2 Chapter 1. Introduction

tributed systems, increasing their flexibility and agility to achieve the Industry 4.0 vision.

Nevertheless, these models and technologies are mostly focused on the way IoT devices

can be interconnected over the Web to exchange data, without paying attention to their

physical characteristics nor paying attention to the way the “smart control process" is

organized. To overcome this limit, dedicated researches have been conducted to set

Sensing as a Service (SenaaS) or Object as a Service models, extending the traditional

web service vision integrating only “logical" functional and non functional properties

to enriched IoT service model integrating both logical and physical properties. Pay-

ing attention to the core control process itself, traditional automation provides a strong

background, including several control patterns, to design and develop complex control

systems. Nevertheless, these systems are set using “hard connections" between compo-

nents. Consequently, they lack of agility and flexibility and do not support context-aware

control applications. functional properties to enriched IoT service model integrating

both logical and physical properties.

To sum-up, while these models are more and more used to manage and deploy

smart objects and provide corresponding services, the way of implementing a traditional

control system or Networked Control System (NCS) has to move from embedded control

to cloud-based control. Integrating both service oriented architecture and traditional

control organisation could provide an efficient and agile support to develop on demand

control applications integrating smart devices. By this way, online available control

services could be mixed with physical smart objects to compose agile control systems.

1.2 Motivation and Challenges

Although in recent years, control systems have assumed an increasingly important role

in the digital transformation [36], traditional control system are less agile such that it

can not meet user’s evolving and multi-functional requirements:

1) since physical devices (i.e., sensor, controller, actuator) can only be leveraged by

owner itself, control devices are lacking of re-usability, which will lead to costs

increasing and even resources wasting;

2) these devices are inter-dependent physically.

This will boost maintenance cost when control system breaks. The improvement of

control level can benefit to individual (better and safer living conditions), environment

(improved traffic regulation, smarter city, reduced energy consumption...) and indus-

try (more efficient production, better product quality and traceability control, reduced
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1.2. Motivation and Challenges 3

wastes...). To achieve this goal new smarter and distributed control models, integrat-

ing various sensors and actuators must be defined. Fortunately, in today’s environment

where Internet of Things (IoT) and cloud computing provide strong basis for the cur-

rent technological infrastructures, the number of smart objects (sensors, actuators, and

even controllers) available and accessible to users grows in an exponential way. This can

shape the way control system is constructed to be promoted to meet the corresponding

objectives from the customers. Subsequently, Cloud Control System [103],[104] (CCS,

or Cloud based Control System [57]) deemed as a natural paradigm for the next gen-

eration of control system is proposed from initially traditional wired control system, to

Networked Control System (NCS). From wired control system to Networked Control

System, the connection way has been shifted to be wireless (Internet, Blue tooth, WIFI),

taking advantage of IoT technique. Cloud control systems extend networked control

system via making use of cloud computing technology. In the cloud control system,

the plant and controllers are both observed as network nodes that are able to perform

certain tasks [71]. Mahmoud Magdi [57] emphasizes the concept of control as a ser-

vice (CaaS) is enforced behind the cloud control system. In summary, our cloud control

system is a system where there are four types of elements, sensor, controller, actuator

and controlled object (plant). Moreover, sensor, controller and actuator could deemed

as individual network nodes able to communicate with each other and carry out their

own tasks. Due to the development of cloud computing and the proposition of fog com-

puting, cloud-fog control system[112] is proposed as well, but essentially it is same with

cloud control system.

Focusing on the IoT and smart device side, IoT system or service should have abilities

of automatic configuration and context awareness. As IoT components have similar

characteristics as services e.g. a unique identification, being discoverable, composable,

modular, and providing network-based connectivity, they provide flexibility and agility

at the device level, supporting efficiently networked control systems.

In addition to ones above inherited from the networked control system, cloud control

systems have the following two advantages.

- Elements in cloud control system can be more fully utilized.

Cloud computing especially public cloud bring a comprehensive services available

categorized into IaaS, PaaS and SaaS. This will boosts the possibility of use of

smart sensors, controllers and actuators, and thus save the fundamental cost and

add the competitive competence for the enterprises.

- Cloud control system can attain the more optimized performance globally.
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4 Chapter 1. Introduction

Thousands types of massive data are collected from sensors and controllers and

then sent to cloud. Big data provides a functionality of data analysis and control in

the cloud. Controllers in the cloud control system might implement an algorithm

of machine learning, deep learning, or reinforcement learning. This makes the

predictability more precise. For instance, car license recognition controller applies

the deep learning method to recognize the car; fault detection of a machine in

advance can also be achieved after feeding masses of historical data, leveraging

the advanced data-driven control policy.

Regarding the cloud control system, the most fundamental but also most significant

question is that how we can implement one? The professor Xia [104] summarizes that

there are four challenges which cloud control systems are faced with at the current stage:

1) How to recognize, process and transfer quantities of data?

2) How to make sure the real-time control could be realized?

3) How to guarantee the control quality and stability of cloud control system?

4) How much is required to develop it as it demands a huge cost?

Cooperative cloud control is pointed out to solve the problems above. It also divides

the implementation of cloud control system into two phases: Initial phase (NCS phase)

and cloud control phase. The first stage is aimed at designing controller taking into

account the time delay and data dropout induced by Internet transfer, in order to meet

the requirements on stability and other control qualities. The second phase is targeted

to allocate the precise controller that can satisfy the requirements of communication,

computation, to perform the given task.

In our research, we only focus on cloud control characteristics that essential to any

IoT system [118] : heterogeneity, autonomy and adaptivity.

• Heterogeneity. In a cloud control system, there are three types of services: sensing,

actuating and controlling services. These services have their own characteristics.

The format, connected way, communication protocol of each of them may be het-

erogeneous. This challenges the way we describe the cloud control system.

• Autonomy. Autonomy is the most fundamental feature of any control system,

including cloud control system. It requires the integration of sensing, controlling

and actuating services automatically. Higher the level of integration is, more ef-

ficient the cloud control system is. This can make sure that cloud control system

can work in an automatic way.
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1.3. Research Issues and Contributions 5

• Adaptivity. In IoT environment, IoT devices change frequently. For example, a

device might often leave and join the network. The computation and storage ca-

pabilities could be no more available as constrained resources are being occupied.

Sometimes, user requirements varies as well. For example, the expected temper-

ature change may cause the replacement of the bound sensing service. So cloud

control system should be context-aware so that it can be adaptive.

1.3 Research Issues and Contributions

Basic assumptions are defined as a rudiment of a classical cloud control systems by

YuanQing Xia [104]:

1) A broadcast domain is involved in this rudiment, in which all nodes can reach

each other by broadcast at the data link layer.

2) All nodes in the broadcast domain mentioned above are intelligent enough to un-

dertake the cloud control task, but their computation abilities are assumed to be

equal to each other, and the available computation resources change unpredictably.

3) The network delivery is not ideal, bounded time delays and data delivery dropout

could occur during any transmission.

4) The network delivery time delays and dropout statistics between any two particu-

lar nodes could be obtained by the same nodes in some ways.

Also, in our work there is a prerequisite that quantities of sensing, actuating, and

controlling services (devices) are available on the Internet. It is noted that our study

does not pay attention on the controller design for the cloud control system. Instead, it

is focused on the cloud control after the complement of controller design.

In chapter 2, we investigate the state of the art regarding both traditional informa-

tion systems, IoT and Cloud control. In fact, Cloud control aims at providing more

autonomy, adaptivity and interoperability for the manufacturing processes and even

the whole industry 4.0. According to this challenge, we develop a research strategy

according to two basic questions: how can we define a Control service and how can

we organize a Service oriented control architecture gathering both physical devices and

control services in Control as a Service vision.

• Firstly, we investigate both traditional enterprise architecture frameworks and ser-

vice oriented architecture to identify whether they can be adapted to fit the Cloud
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6 Chapter 1. Introduction

control requirements. This state of the art research shows that the service field

provides a strong background to support loosely coupled complex systems but it

lacks integrating physical devices and exact control system requirements.

• Secondly, we investigate both IoT and Cloud Control field to identify the way

smart devices and associated control service are defined and modeled. This state

of the art review shows that Cloud Control is a dynamic research field and that

IoT takes an important part. Nevertheless, it lacks of integrating control patterns

to develop efficiently cloud control system.

To overcome these limits, we identify two research questions:

• Q1: What is a Cloud control service: whereas basic sensing services, controlling

services and actuating services are supported by the related physical sensors, con-

trollers and actuators respectively, defining a cloud control system requires a more

generic and precise definition of the control service.

• Q2: Based on the control service definition, how can we define a service oriented

control architecture to support our Control as a Service model: similar to the

IT Service Oriented Architecture organisation, such an architecture is necessary to

define how to select, compose and orchestrate these distributed control services

and their related physical smart devices involved sensing services, control services

and actuating services.

To answer these questions, our contribution is organized into two chapters: chapter

3 presents our Control as a Service model, paying attention to functional and non func-

tional requirements; and chapter 4 is focused on our Service Oriented Control Archi-

tecture (SOCA), provisioning the development steps for a Cloud Control System (CCS).

Each of these contributions have been analyzed and have lead to the following sub-

contributions related to our key research questions (see table 1.1):

Table 1.1 – Relationships between contributions and research questions

No Sub contribution Research question

1 control service functional model
Q12 control service non functional model

3 control ontology
4 multi-layer architecture (SOCA )

Q25 SOCA operation deployment at design time
6 SOCA operation deployment at runtime

• Contribution 1: building a Control as a Service model

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2020LYSEI048/these.pdf 
© [M. LYU], [2020], INSA Lyon, tous droits réservés



1.3. Research Issues and Contributions 7

a) Sub-contribution 1: control service functional model

Setting a control service model starts with identifying the way it can be func-

tionally defined. We propose a control service model built according to con-

trolled object and controlled variable, allowing the interconnection of sensors,

actuators and controllers according to control requirements. Leveraging the

knowledge of control field, a detailed control system model is achieved by

adding other concepts of controlled object, controlled variable, control pat-

tern and environment variable, and corresponding connections of all entities.

Definition of controlling service is defined in a recursive way using the math-

ematical function representation.

b) Sub-contribution 2: control service non functional characteristics

Whereas the functional description allows identifying precisely what the con-

trol service will do, non functional requirements must be integrated as well

to define the context and devices characteristics. Although several ontologies

have been defined for IoT devices, they are devoted to some control charac-

teristics such as precision, device computing capabilities and only few ad-

dress environmental characteristics. To allow a more precise definition of the

control environment, non functional control requirements as well as device

computing capabilities, we propose a global NFP classification to support a

unified NFP ontology

c) Sub-contribution 3: identifying a control ontology

To guide Cloud Control System requirements, we gather the main concepts

related to our control service model, including both functional and non func-

tional characteristics in a single ontology. Paying attention to the “loosely

coupled” requirement while defining control services, we propose to inter-

connect these services thanks to an event-based organisation. By this way,

control services and their interface can be fully defined, allowing an efficient

selection and composition process according to the control system require-

ments.

• Contribution 2: building a Service Oriented Control architecture

a) Sub-contribution 4: designing a multi-layer Service Oriented Control Archi-

tecture

Based on our control service model, we propose a multilayer Service oriented

Control architecture:
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8 Chapter 1. Introduction

- The physical layer is used to manage physical devices (sensor, controller,

actuator, physical object, gateway, and even the whole control system)

and constraints including physical environment (e.g., location) and phys-

ical capabilities (e.g., memory, CPU, connectivity. . . ).

- The micro-service layer is defined as an interface tier. It allows embed-

ding the physical device in a micro-service interface to allow a smoothed

connection to the Cloud Control System.

- The Logical layer is populated logical descriptions and constraints. It con-

sists in controlling service, actuating service, sensing services and other

concepts defined in the service oriented architecture (SOA) and quality of

service (QoS, e.g., precision, availability, security, cost, interoperability.).

b) Sub-contribution 5: operations related to the SOCA deployment at design

time

Based on the traditional Service Oriented Architecture and on our Control

service model, we define service registries and associated service selection

operation. By this way control services (including sensing controlling and

actuating services) can be retrieved and selected thanks to their functional

and non functional characteristics. Then, in order to build an adaptive con-

trol system, we redefine the pre-composition operation to manage candidate

services

c) Sub-contribution 6: operations related to the SOCA deployment at runtime

To support the loosely-coupled control service invocation at runtime, we

adapt the traditional Enterprise Service Bus to our Control service model.

The orchestration step is based on an event-driven organisation. Instead of

routing messages among services, our Control Service Bus is in charge or co-

ordinating control services thanks to events. Then a context manager is in

charge of a late binding process allowing to select the best candidate from the

pre-composition graph according to the precise context constraints. This last

feature increases the Cloud Control System flexibility and agility.

The dissertation is organized as follows (see Fig 1.1.) Totally, there are five chapters,

general introduction, state of the art, Control as a Service model, Service Oriented Con-

trol Architecture (SOCA for short) and conclusion. Chapter 2 presents the requirements

for new model and architecture for cloud control system in the distributed and collab-

orative environment. In the chapter 3, Control as a Service model is designed, ending

with a full-fledged control ontology that describe cloud control system from functional,
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non functional and interactive views. Service Oriented Control Architecture connecting

physical devices and logical services is achieved in chapter 4, allowing to implement

control services selection, composition and orchestration for a cloud control system in a

contextual and event based way. The last chapter is devoted to summarizing the current

work and showing the potential directions of future work.

Figure 1.1 – Dissertation outline
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12 Chapter 2. State Of The Art

2.1 Introduction

The fourth industrial revolution named “Industry 4.0" has been firstly and formally in-

troduced during the Hannover Fair in 2011 [49], [105]. It challenges latest information

and communication technologies (such as cyber-physical systems (CPSs), Internet of

Things (IoT), industrial internet of things (IIOT), cloud computing, cognitive comput-

ing and even artificial intelligence (AI).), to improve automation and data exchanges

in manufacturing processes. Industry 4.0 and the related digital transformation of the

industrial systems are “hot topics", integrating smart factory as well as intelligent pro-

duction system design. It represents the factory of the future shifting centralized pro-

duction to decentralized production, changing popular items to customized items, and

isolated end-users to interconnected end-users. Factory who is able to embed elements

of production or realize the intelligent production needs to attain comprehensive ad-

vantages in productivity, revenue growth, employment, investment [117]. Furthermore,

Entire value chain of a producer will be influenced from design to after-sales service.

Manufacturing processes will be enhanced more flexibility, quickness, productivity and

quality as a result of introducing intelligent machines, automatic robots, and other smart

apparatus.

Paying attention to the smart factory research field, most of works are focused on

networked organisation of CPS (Cyber-Phsyical System) defined by defined by Dr. James

Truchard [91]. It states that virtual space and physical world can be merged together

via allying pervasive sensors, terminal systems, intelligent control system [73]. It can

be seen as a way to map physical objects related to smart devices to their logical func-

tion. Therefore, it is an integration of computation, communication and control. In

addition, computation devices, embedded sensors and actuators in CPS are able to let

the operations monitored, cooperated and controlled in real time. Consequently, cyber

physical system (CPS) and more specific cyber physical production system (CPPS) are

the foundations of industry 4.0 [66], [65].

As stated in a survey [33] on the current researches in the field or in [117] for a

research roadmap, a network of cyber physical system (CPS) should be built for re-

searching two major themes, smart factory and intelligent production. This requires

to implement different integrations, namely, horizontal integration, vertical integration

and end-to-end integration. Meanwhile, eight planning objectives: 1) standardization of
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systems and building a reference architecture, 2) efficient management, 3) establishment

of a comprehensive and reliable industrial broadband infrastructure, 4) safety and se-

curity, 5) organization and design of work, 6) staff training and continuing professional

development, 7) establishment a regulatory framework, 8) improvement the efficiency

of resource use, ought to be achieved.

However, we need to state that it’s not easy to get to the scene of industry 4.0 and

this will take years due to many challenges experts from the industry and academia

have been facing with and working hard to solve. Industry 4.0 involves defining easy to

design control systems based on the interconnection of reusable smart devices. Smart

Buildings, smart city or any other distributed control system using the Internet of thing

have also the same requirement. This leads to different challenges:

1) Providing a user friendly control system design environment integrating smart

devices. Although smart devices offer a remote access interface be accessed, im-

plement self-awareness functions and may accommodate friendly GUI, setting a

consistent distributed control system remains complex. The first problem is due

to the large variety of these smart devices and second on the way control patterns

can be identified and reused to propose consistent control system. This leads to

two sub-challenges:

a) identifying a pattern-based control system design process can be inspired

by traditional enterprise architecture frameworks, gathering best practices to

design and implement information systems. Adapting these frameworks to

the distributed control needs integrating the control process itself.

b) supporting smart device and control blocks reusability and adaptation: this

challenges for the development of loosely coupled control elements. This

feature has already developed in Service Oriented Architecture. It needs to

be adapted to suit the control field

2) Cyber Physical Systems (CPS for short) couple a real objects from the physical

world with digital artifacts in a virtual space. It takes advantage of communication

technology, computation technology and control technology. Hence, a Cyber Phys-

ical System is a complex system resulting from virtualization and cross-techniques.

An efficient CPS needs to solve the problems that how to connect and control sen-

sors and actuators seamlessly. Moreover, despite the works achieved by different

consortiums, by now, no generic CPS model nor CPS reference architecture have

been developed yet Also, more attention should be paid to the integration, ver-
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ification, testing of CPS. In a word, a long journey is waiting for us to go and

finish.

3) How to interoperate with existing heterogeneous systems and platforms is still

a big problem. Many researchers have applied semantic web technologies to IoT

domains. Though some semantic technologies, such as resource description frame-

work (RDF), RDF scheme (RDFs), web ontology language (OWL), are proved effec-

tively in some projects mostly supported by EU and some standards are achieved

but not recognized and applied globally and pervasively. Within industry 4.0,

manufacturing domain is influenced most and thus will upgrade faster than other

fields. Enterprise architecture as an important part needs to be improved and

adjusted to new business collaborative environment. This is a mean of how busi-

ness organizations challenge latest information technologies to keep competitive

and leading roles. Hence, enterprise organization is bound to be reorganized and

embrace new services.

4) Industry 4.0 as well as other smart-devices related distributed control systems such

as smart buildings or smart city involve the interconnection of smart devices pro-

viding large quantities of heterogeneous data related to devices, machines, prod-

ucts, processes that can be integrated with other data produced by applications

and services, etc. How to collect, analyze, process big data may be dependent on

some artificial intelligent methods. However, the application of artificial intelli-

gent in many aspects are at their initials. At the same time, fast response abilities

required for industry 4.0 and other smart-control applications is hard to realize.

Our work in this dissertation is mainly focused on building a new control model

and an service oriented control architecture for the cloud control system adapted to

the industry 4.0 environment. This will add the control intelligence to Cyber Physical

System (CPS) and contribute to the development of smart devices. It also involves in the

interoperability of devices and real time data processing. In what follows, information

system that calls for the distributed control service architecture and model, and reference

architectures and models that provide the strong basis for them, are reviewed firstly.

Then, control as a service encompassing its predecessor(networked control system) , its

procedure (servilization of control) and cloud control steps (selection, composition and

orchestration), is surveyed.
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2.2 Impact of Industry 4.0 on Information Systems

Industry 4.0 presents us a scene where a product will be manufactured immediately af-

ter the order is placed in the business department from a user. This efficient and highly

customized characteristics requires deep integration of business process and manufac-

turing units. Enterprise architecture guides the design, implementation and deployment

of information system. It allows the different system or applications from heterogeneous

partners communicate with each other. Meanwhile, it needs to deal with the com-

plex business processes. Down to the production side, various manufacturing resources

ought to be combined together to guarantee the lowest cost of workforces, materials,

transportations. Advanced production strategies and means would be applied as much

as possible. For instance, cloud based solution helps to fast construct and deploy an sys-

tem or application, leveraging the cloud based services. This cloud based strategy could

also provide adequate adaptiveness due to the transparent logging information. As a

consequence, cloud manufacturing integrating the business process and cloud comput-

ing needs to be studied.

2.2.1 Traditional Enterprise Architecture Frameworks

Enterprise architecture (EA for short) has been introduced to face the complexity of

information systems. EA frameworks are used to provide a clear vision on informa-

tion system organisation and manage enterprise resources. It allows decreasing time

and efforts while developing information systems and delivering maximum business

value. Enterprise architecture is layered hierarchically by five architectural layers: bot-

tom to up technology (or infrastructure) architecture, software architecture, integration

architecture, process architecture and business architecture [98]. Years ago, four top en-

terprise architectures, Zachman Framework, The Open Group Architecture Framework

(TOGAF), Federal Enterprise Architecture (FEA) and Gartner, have been introduced and

detailedly compared and analyzed [93],[83] [53].

First, in order to mitigate the complexity of information systems and facilitate the

management of software components, John Zachman has proposed an enterprise frame-

work [108], [109]. This enterprise architecture is a taxonomy of corporate artifacts (i.e.,

specific document, report, analysis, model or other tangible files). It also provide a

guidelines to set an information system, known as Zachman grid (see Fig. 2.1). This

grid gathers a stakeholder view (planner, owner, designer, builder, subcontractor and

user) and six fundamental questions frequently used in journalism, namely, what, how,

where, who, when, and why. By this way Zachman’s framework provides a comprehen-
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sive methodology for managing a complex corporate information system, achieving a

great impact on both research and industrial practitioners. A precise use case showing

how the enterprise architecture is defined by using the Zachman framework is discussed

in [70]. However, Zachman’s framework can be seen as a complete Enterprise Architec-

ture framework if and only if all cells in the Zachman’s grid are fully filled. What’s

more, each artifact can only be linked to one cell. These conditions put much difficulty

on creating a new domain-specific enterprise architecture.

Figure 2.1 – Zachman framwork of enterprise architecture [2]

Then a consortium of the main IT companies, the Open Group, has proposed its

own framework : The Open Group Architecture Framework (TOGAF 1) . TOGAF also

guides the Information System engineering and implementation process by providing

four different architectures organized in a top-down way: Business Architecture, Data

Architecture, Application Architecture and Technology Architecture. The Architecture

Development Method (ADM, described in TOGAF part II) (see Fig. 2.2) defines how to

derive an organization-specific enterprise architecture to address business requirements.

This method is supported by ADM guidelines and techniques (part III). Deliverables

produced by the ADM are stored in the repository (part IV) according to the different

deliverables types (process description, data models. . . ). Of course, an enterprise archi-

tecture project cannot be set in a big bang strategy. This involves organizing it according

to enterprise continuum (part V) and also identifying how different enterprise architec-

ture projects can be connected to each other. To support this last feature, the repository

is incorporated within the TOGAF reference model (part VI). Lastly, the architecture ca-

pability framework (part VII) describes the way an enterprise architecture project can be

organized and governed from the first design steps to its deployment.

1https://pubs.opengroup.org/architecture/togaf9-doc/arch/
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Figure 2.2 – Excerpt of TOGAF Content Overview (TOGAF Standard 9.2 p8)

The Federal Enterprise Architecture (FEA) framework 2 is a latest attempt to form

a persuasive architecture more complete methodology due to its integration of both

taxonomy features described in the Zachman’s framework and the process specified in

the TOGAF framework. FEA framework encompasses six reference models, namely,

performance reference model, business reference model, data reference model, applica-

tion reference model, infrastructure reference model and security reference model (see

Fig. 2.3). FEA framework provides a toolset to support a global description of the way

distributed Information Systems interact with each other and with their environment

according to “business goals”. The associated enterprise engineering methodology em-

bedded in FEA framework includes different parts: 1) a perspective on how enterprise

architectures should be viewed, 2) a set of reference models for describing different

perspectives of the enterprise architecture, 3) a process for creating an enterprise archi-

tecture, 4) a transitional process for migrating from a pre-EA to a post-EA paradigm, 5)

a taxonomy for cataloging assets that fall within the purview of the enterprise architec-

ture, and 6) an approach to measuring the success of using the enterprise architecture

2https://obamawhitehouse.archives.gov/sites/default/files/omb/assets/egov_docs/fea_v2.pdf
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to drive business value[83].

Figure 2.3 – Federal Enterprise Architecture [3]

These different enterprise architecture frameworks provide a strong background for

engineering Information Systems thanks to both design and implementation patterns.

Nevertheless, they need to be extended as they do not provide any pattern regarding

the manufacturing processes.

2.2.2 Integration of Manufacturing Requirements and Patterns

As said previously, these frameworks are focused on “Business Information Systems"

and they need to be extended to integrate products and smart production means as

industry 4.0 aims at integrating closely production process. To fit this goal, RAMI 4.0

model (Reference Architecture Model Industry 4.0, see Fig. 2.4) is a service oriented

architecture, which is specified from the aspects of functional layers, value stream and

“hierarchy levels" from “basic" products to the connected world [111], [5]. Vertical layers

consists of from the bottom to top layers of asset, integration, communication, infor-

mation, functional and business. Horizontal layer is Value stream describing the stages

of products from design, verification, production, to maintenance. Hierarchy levels in-

troduces all participants who are able to interact. These participants are product, field

device, control device, station, work unit, enterprise and the connected world. As an IT

model, cyber security of RAMI 4.0 model is also addressed [29]. An I4.0 (Industry 4.0)

component model is also provided to produce I4.0 style components by encapsulating

them with an administrative shell.
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Figure 2.4 – RAMI 4.0 model [7]

RAMI 4.0 model and other existing enterprise architectures allowing distributed

components from different partners interact in the collaborative context, Nevertheless

these information systems are generic without integrating a specific field. Manufactur-

ing as a key domain in the industry 4.0 has been researched for decades.

Collaborative organizations are set to support distributed manufacturing / supply

chain. This involves defining new organizational models (such as VM (virtual manu-

facturing [119])) interconnecting different information systems. At the same time, new

production organisation such as lean manufacturing [100] are developed to set more

efficient organisation. When a large-scale distributed and efficient production organ-

isation like other manufacturing models is required, it is also intended to realize the

goals of TQCSEFK (i.e., fastest Time-to-market, highest Quality, lowest Cost, best Ser-

vice, cleanest Environment, greatest Flexibility, and high Knowledge) [87]. In [101],

key characteristics of cloud manufacturing are summarized: 1) customer centricity, 2)

temporary, reconfigurable, dynamic, 3) turn no job away, 4) demand driven, demand in-

telligent and 5) shared burden, shared benefit. The architecture of cloud manufacturing

is composed of from bottom to up resource layer, perception layer, service layer, mid-

dleware layer, application layer, as well as cloud manufacturing standards and criteria/

communication/ knowledge/ safety and security across the former five layers (see Fig.

2.5). A simplified cloud manufacturing architecture is organized in four layers: manu-

facturing resource layer, virtual service layer, global service layer and application layer

[106]. Attention is paid to the lowest resource and perception layer in paper [88] where

the classification of production resources are completed. Multi-agent system (MAS) be-

cause of its distributed nature and recursive structure has been applied into manufactur-

ing system planning, scheduling, exaction control and material handing by researchers
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and practitioners [19]. An agent is perceived as intelligent manufacturing service able

to communicate with other agents. Data from autonomous agents are acquired to build

control system based on its proposed semi-hierarchical control architecture [80]).

Figure 2.5 – Cloud manufacturing architecture[113]

2.2.3 Conclusion

In this section, we have presented enterprise architecture from Zackman framework,

TOGAF, FEA framework to current RAMI 4.0 model. RAMI 4.0 model provides a con-

ceptual descriptions of how to implement industry 4.0 visions. All these frameworks

and models provide a strong basis to set design and implementation patterns. Then,

a precise cloud manufacturing architecture is dedicated to working out the difficulties

production information system are faced with, leveraging the cloud computing tech-

nique. So in this highly connected but geographically distributed context, architectures

or models of each layer in both enterprise architecture and cloud manufacturing archi-

tecture should not be centralized, and system or application originated from of them

ought to be possessed of features interoperability, together with other qualities, e.g.,

flexibility, agility, reusability, reconfigurability, maintainability and adaptiveness. To fit

this goal, most of the frameworks advocate for Service Oriented Architecture regarding

the implementation.
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2.3 Service-based Architecture and Models

In this globally collaborative and quickly changed environment where there are more

and more interactions and connections among enterprises, agility and flexibility are

more emphasized by them. SOA brings systems or applications much benefits on the

aspects of flexibility. Clear definition of service interface provides users with loosely

coupled feature, and enterprise service bus makes it possible that distributed entities

interact with each other. Business process and enterprise ontologies are dedicated to

achieving the interoperability between collaborative partners. Implementation of logical

layer functionalities depends on the physical tier devices. The description and usage

of physical devices are attained, taking advantage of IoT ontology and reference ar-

chitecture respectively. Sensor and actuators would not be connected without mediate

controllers. As a result, control system or control architecture consisting of controllers is

also necessary as a part of vertical information systems.

2.3.1 OASIS SOA Reference Architecture

In this section, OASIS SOA Reference Architecture3 is used to introduce the relevant

paints of models of service. It it followed by the the subsection which are dedicated to

delineate how to compose services or objects in a dynamic way. Focusing on the service

implementation, different descriptions protocols such as WSDL, RSDL... can be used to

describe the service interface whereas an Enterprise Service Bus can be use to support

the SOA implementation.

Service oriented architecture (SOA) is a paradigm for a set of capabilities distributed

across the network and possibly under the control of different ownership domains.

Thus, the core of SOA is flexibility. It aims at defining the essence of service oriented ar-

chitecture, and delineating a unified vocabulary and a common understanding of SOA.

It provides a normative reference that remains relevant for SOA as an abstract and pow-

erful model, irrespective of the various and inevitable technology evolutions that will

influence SOA deployment. SOA consists of dozens of parts or sub-models and they

are connected and interacted. For example, resource model, service participants model,

general description model, etc.

2.3.1.1 Service Description Model

Service in SOA is specified by service description including service reachability, service

interface, service functionality, metrics, policies and contracts (see Fig. 2.6). Service
3http://docs.oasis-open.org/soa-rm/soa-ra/v1.0/cs01/soa-ra-v1.0-cs01.pdf
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reachability comprises protocols, service presence, and endpoint. Service interface is

mainly represented by behavior model and information model. The former is primarily

embodied by action model and process model while the latter is dominantly related

to contents of semantics and structure. Among service functionality part, there are

functions, technical assumptions and service level real world effect. Real world effect is

produced by one or more functions and must be consistent with technical assumptions.

Policies and contracts have two parts, contracts and service level interaction policies.

Metrics provide evolutions for quality of service.

Figure 2.6 – Excerpt of service description model (OASIS 2008 p42)

Before introducing the service interaction, service visibility should be illustrated as

it is a necessary condition of service interaction. Attaining service visibility means

achieving service awareness, determining service willingness and establishing service

reachability. Service reachability requires finding endpoint, then verifying interface and

eventually establishing presence of service itself. Interaction is the usage of a service to

get a particular goal. Service Participants can receive message from and send messages

to service. Often, one atom service can not meet the user’s intentions, so composition of

service is persuasive. In business environment, a business process (for example, a bank

transaction) is defined as a set of consistent activities. Service composition defines the

service chain and orchestration techniques provide a solution for the execution of this

chain composition via applying a scripting language (such as WS-BPEL, Web Services

Business Process Execution Language).

2.3.1.2 Service Interface Specification

Specifications of interface include Internet protocol, message model (message structure

and semantics), and message exchange pattern (event notification mode in control ser-

vice bus) (see Fig. 2.7). Event notification can be associated to message transfer. This
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event-based mode allows building more reactive systems. Internet protocol and message

model will be described further.

Figure 2.7 – Interface description

Internet exchange protocol depicts how a message is transported between service

interfaces. Logically, application and transport layer protocols (e.g., HTTP, TCP) provide

a formalism of service while Tower Network oriented protocols is physically related to

data linker and network layers(e.g., Ethernet, IP). Protocols applied to physical inter-

faces can affect the characteristics of communication (transmission speed). Message is

exchanged between services. Thus it is an input from the angle of service consumer but

an output form the view of service provider. In order to understand a message, mes-

sage structure and semantics must be both known. The former emphasizes the format

of data while the latter stresses the meaning of data. Regarding the message structure,

different levels of data structure can be applied to the conveyed message, for instance,

the format of encoding character data (e.g., UTF-8), the form of the data (e.g., integer),

representation structure (e.g., XML), and so on. Knowing the representation and format

of message is not enough to interpret it. For example, only numbers as message are ex-

changed between service participants. In this condition, other information (such as unit

and domain) must be given to provide unambiguous data for users. System engineer-

ing interface has been delineated from several points of views, namely, part interface,

layered part interface, interface specification, interface connection, interface object flow,

interface function, interface function occurrence, and performance and limitations on

interfaces [31]. These descriptions are essentially similar with that of WSDL. From the

angle of Interface Specification, it is intended to describe the operation, which belongs

to PortType. Layered part interface is aimed at differentiating the input and output mes-

sage. Then binding interface specification into port with one or more instances makes

the service accessible by several endpoints in an interface view.

• Service interface description using WSDL

The WSDL4 (Web Service Description Language) is the XML-based service repre-

4https://en.wikipedia.org/wiki/Web_Services_Description_Language
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sentation language used to describe the details of the complete interfaces exposed

by web service. It is platform and language independent. A WSDL document

should include not only abstract interface definitions but also concrete implemen-

tation definitions, of a web service. Among interface specifications, there are to-

tally four elements defined in XML, namely, 〈types〉, 〈message〉, 〈operation〉 and

〈portType〉. The 〈types〉 element works as a container collecting all abstract data

types required in the web service. These data types can be basic built-in data

types (e.g., int, string, boolean), or customized data types. The 〈message〉 ele-

ment describes the payload of a message used by a web service. It consists of

〈part〉 elements. The 〈operation〉 element represents the method in the web ser-

vice. It usually requires messages, including input message, output message, or

both of them. This depends on interaction patterns (see table 2.1) between service

provider and consumer. Note that the sequence of input and output is different

so that the operation interaction patterns are not the same. The 〈portType〉 ele-

ment groups all the operations needed. Regarding web service implementation

specifications, there are three XML elements, 〈binding〉, 〈port〉, and 〈service〉. The

〈binding〉 element is the most important because it specify how the elements in an

abstract service interface are converted into concrete representation. The binding

procedure will determine and instantiate protocols, messaging styles, formatting

(encoding) style. The 〈port〉 element defines a web service’s location, which is

expressed by a URL, in general. Moreover, 〈binding〉 element has to be linked to

port itself. The 〈service〉 element groups 〈port〉 elements. It means that a service

can be exposed and located by one or more ports.

Table 2.1 – Relation between message and operation interaction pattern

Operation interaction pattern Message
One-way operation input message

Request/response operation input message, output message
Notification operation output message

Solicit/response operation output message, input message

• REST service interface description using RSDL

The RSDL (RESTful Service Description Language) is a machine- and human-

readable XML description of HTTP-based web applications, intended to simplify

the reuse of web service. In RSDL, there are three key components, 〈link〉, 〈request〉
and 〈response〉. Link is usually expressed in a way of URI (Unified Resource Iden-

tifier). Behind this style REST web service is a ROA (Resource Oriented Archi-

tecture) where almost every thing (figure, computing function, etc.) is perceived
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as a resource. The resource is located by its URI and is invoked by its packaged

methods (HTTP methods, e.g., Get, Post, Put, Delete). Parameters required is in

the 〈request〉 part. Result, if required, will be returned and its format is illustrated

in the 〈response〉 part. In this paper, we applies this style of service interface

description.

2.3.2 Enterprise Service Bus (ESB)

An Enterprise Service Bus (ESB) is a middleware connecting distributed services in a het-

erogeneous environment and an implementation of service oriented architecture (SOA).

ESB is needed when three or more applications or services need to be integrated, espe-

cially ones from the external third party and with requirements of high quality of service

(QoS) integration [51]. Thus, ESB is dedicated to managing service invocation between

service provider and service consumer, making these interactions simple and reliable.

Among ESB, core parts are service registry and mediation service. Service registries are

used to store service description so that services can be discovered and selected [81].

Based on a request, a link connecting service requester and service provider is built.

Mediation service are generally needed to adapt different interface types (data format,

data exchange pattern). In addition, mediation service needs to realize other functions,

such as message transformation, protocol translation. To support the functionalities ac-

commodated by ESB, technologies (i.e., web service, SOA, cloud computing, Internet

of Things (IoT), etc.) are leveraged. Thus, ESB plays a significant role in composing

distributed services or integrating enterprise applications [42]. For example, in a ser-

vice composition architecture (called SynchroESB), ESB layer as lowest one of four tiers

provides the mediated message exchange infrastructure, allowing distributed services

to interoperate with standard-formatted messages [69].

Essentially, ESB implements a communication system between mutually interacting

software applications in a SOA. However, functionalities of traditional Enterprise Service

Bus (ESB) have to be adapted to integrate specific control requirements.

In summary, this reference architecture provides us a theory of how a service is de-

scribed, of how services interact with one another, and of how services are composed

(process model). However, this architecture has been defined for software components.

Paying attention to devices and control process, device interaction and event-based or-

ganizations should be added. In order to ensure IoT service interaction, a general real-

izable interface description must be given. To manage the event notification message of

IoT services and launch them, Enterprise Service Bus (ESB) is required as well.

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2020LYSEI048/these.pdf 
© [M. LYU], [2020], INSA Lyon, tous droits réservés



26 Chapter 2. State Of The Art

2.3.3 Conclusion

OASIS reference architecture specifies the services functionally and involves in the de-

scriptions of their qualities and security. Services could be developed, deployed and

operated congenitally. Service Oriented Architecture and models increase interoperabil-

ity between systems as service interface are clearly detailed. Moreover, they also provide

loosely coupled features. Thank to the ESB message routing more agile systems can be

built. Nevertheless, a particular attention must be paid on the way data is semantically

defined to support interoperability. To this end, ontologies must be defined.

2.4 Interoperability Management

As stated previously, services and their associated standards only support a technical

interoperability between the different components of the information information sys-

tem. To manage efficiently heterogeneity, ontologies must be defined not only for both

business and manufacturing processes but also for smart devices, i.e. Internet of Things.

2.4.1 Business Process and Enterprise Ontologies

To fit the renewed globalized economic environment, enterprises, and mostly SMEs

(Small and Medium-sized Enterprises), have to develop new networked and collabo-

rative strategies, focusing on networked value creation (instead of the classical value

chain vision), fitting the blue ocean context for innovative products and service devel-

opment. Even if collaborative organizations such as virtual enterprises, collaborative

networks. . . have been studied for decades [35], [95], [15], the closer connection of infor-

mation systems involved by the so-called “Industry 4.0" developed by leading industries

in Europe, US and Asia requires to set new IT models to support agile and evolving

collaborative Business Process (BP) enactment, integrating both traditional Information

Systems (IS) and production. By now, these product/service ecosystems are mostly sup-

ported by software services, which span multiple organizations and providers, and on

multiple cloud-based execution environments, increasing the call for openness, agility,

interoperability and trust for both production and Information System organization.

Control information traditionally managed by Manufacturing Execution Systems must

be extended to integrate various data provided by IoT devices and to provide accurate

data exchange to coordinate collaborative production processes.

Traditional enterprise information systems include various IT components (Enter-

prise Resource Planning, Customer Relationship Management, Supply Chain Manage-
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ment, Product Life-cycle Management, Manufacturing Execution Software. . . ), each of

them devoted to a particular business area and managing its own database. To al-

low consistent and smoothed interactions between these components requires manag-

ing syntactic and semantic interoperability. SOA and its related technologies provides

a strong background to support technological interoperability between IT components

thanks to a “syntactic mediation" achieved in Enterprise Service Bus, routing, adapting

messages through the middleware according to some conditional logic [1]. Nevertheless,

such a syntactic transformation is not enough to allow processing consistently informa-

tion in a collaborative Business Process. Semantic mediation and organizational inter-

operability must be taken into account as well. To this end, ARPA I3 architecture [90]

identifies different services to support this semantic mediation: coordination services

(discovery, invocation), semantic transformation services (ontology translation, process

integration) and adaptation services (event managing, form conversion). Nevertheless,

it does not take into account business interoperability, i.e. integrating business organi-

sation constraints.

To overcome this limit, more precise descriptions of the enterprise and production

system are needed, requiring adapted ontologies. Paying attention to the enterprise

business organisation, the Enterprise Ontology (EO) provides most of the terms nec-

essary to describe business areas, strategy and process organisation (see Fig. 2.8) [94].

Thanks to dedicated sub-ontologies related to activities and processes, organization,

strategy and marketing, the Enterprise Ontology provides a consistent support to de-

scribe the enterprise organisation which is necessary to set consistent Business Process,

integrating different enterprises views. Last but not least, it also provides a meta-

ontology, allowing a more flexible description and efficient integration. Nevertheless,

it is mostly focused on the business and management organisation and is rather poor

concerning product and production processes descriptions. To this end, another ontol-

ogy can be used, ISA S-95 standard [20] which allows describing the product life-cycle,

taking also production models and performance indicators (see Fig. 2.9). It allows in-

tegrating production management systems with other IT related components related to

technical data management or to the production control process itself, mostly interfacing

ERP and MES systems. This fits mostly interfaces between enterprise and production

control systems by specifying which information should be exchanged between ERP

and MES systems. To this end, ISA S-95 standard gathers different models such as

production definition, production scheduling, production performance, production ca-

pacity and maintenance models. Nevertheless, the production organisation part does

not support a precise description of the control system internal organisation, as each

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2020LYSEI048/these.pdf 
© [M. LYU], [2020], INSA Lyon, tous droits réservés



28 Chapter 2. State Of The Art

Figure 2.8 – Main concepts taken from the Enterprise Ontology [23]
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Figure 2.9 – Main concepts taken from the ISA S-95 ontology

part is associated to a resource or an equipment and considered as a black-box. Turn-

ing this black-box description to a white-box one, providing more knowledge on the

production process and a fine-grained control of the equipment requires integrating a

Cyber Physical System model or a dedicated architecture to manage IoT equipments.

2.4.2 IoT Ontology

The concept of IoT (Internet of Things), whose target is to connect things together

through the Internet, is paid attention by more and more enterprises and researchers.

IoT Systems are composed of physical objects and virtual objects where both objects

mean “things" in “Internet of Things". It is with broad use in the industry, for example,

smart city, manufacturing, intelligent transportation and so on. In order to design a
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complete IoT system, some key technologies: system technology, communication tech-

nology and information technology, must be taken into account. Basic IoT characteristics

IoT should include System Characteristics, IoT Service Characteristics, IoT Component

Characteristics, Compatibility, Usability, Reliability, Security & Privacy, etc. IoT services

are connected to physical IoT devices. Thus, composing IoT services means integrating

IoT objects as things in IoT are interconnected via network. All key properties of these

devices must be considered.

In order to implement the composition of IoT devices or their services, main char-

acteristics of them must be taken into consideration. Since ontologies can describe the

main concepts of targeted objects, ontologies for IoT devices, such as sensors, actua-

tors, are necessary to promote the communication smoothly among heterogeneous IoT

devices, and facilitate the integration into platforms and/or applications.

There are already numerous ontologies mostly attained from IoT projects supported

and funded by individual or federated countries or consortium (i.e. US, Europe, W3C

(World Wide Web Consortium), OGC (Open Geospatial Consortium)).

We have identified ontologies classification criteria from the perspectives of target

domain and device view to research and analyze typical IoT ontologies. The details

of category are shown (see Fig. 2.10). Based on the criterion of target domain, IoT

ontology is either generic or domain-specific one. Precisely, generic IoT ontologies are

grouped into generic IoT device ontology, generic IoT middleware ontology and generic

IoT application ontology according to the research objects of them. IoT device is ei-

ther actuator or sensor which has two connection types, wireless connection and wired

connection. Considering IoT application domain, domain-specific IoT ontologies are

partitioned by fields, such as marine, transportation and logistics, health, agriculture,

and so on. From the angles of device view, IoT ontology is either physical, or logical, or

compound (physical and logical). Physical IoT ontologies mainly delineate IoT device

physical capabilities (i.e., memory, CPU (processor), connection, energy) or physical en-

vironment (i.e., location, physical measurand). Note that Logical IoT device ontology is

primarily dedicated to non-physical descriptions, i.e., functionality specification, seman-

tic data interoperability, taxonomy, discovery, composition, etc. Compound IoT device

ontology is principally characterized of key features owned by both physical and logical

IoT device ontologies.

We have identified 12 IoT ontologies listed in 1
st column of table 2.2. In the following,

a brief introduction of them is given.

- Generic IoT ontologies:
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Figure 2.10 – IoT ontology classification criteria [56]

• SensorML Processes is a standard logical and generic ontology designed by

OGC SWE (Sensor Web Enablement). This generic ontology is reused by other

ones such as CISRO (The Commonwealth Scientific and Industrial Research

Organization Sensor ontology) [68], OntoSensor [79], MMI (Marine Metadata

Interoperability) device ontology [38]. Its main orignality relies on the intro-

duction of the process concept [9], [77].

• CSIRO sensor ontology is a generic and compound IoT ontology focused on

sensors. It introduces different key concepts such as sensor, sensing ground

(location), domain of sensing (feature), operational model and process. How-

ever, sensing ground just refers to physical quality, it lacks of details of phys-
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Table 2.2 – IoT ontology

Ontology Name
Sensor actuator

controller Physical Logical

FIPA device ontology sensor actuator capability
CSIRO SENSOR ontology sensor environment functionality

ONTOSENSOR sensor capability functionality
SWAMO ontology sensor composition

SDO sensor semantic data
MMI device ontology sensor actuator interoperability
SENSORML processes sensor functionality

CESN ontology sensor environment semantic data
WISNO sensor semantic data

A3ME ontology sensor actuator taxonomy discovery
ONTONYM SENSOR application(sensor) environment functionality

SSN ontology sensor actuator environment functionality

ical capabilities.

• OntoSensor is also a generic and compound IoT ontology focused on sensors.

It is extended to standard ontologies (i.e. IEEE Suggested Upper Merged On-

tology (SUMO), International Organization for Standardization (ISO) 19115

standards) and thus compatible with other semantic web ontologies. Mean-

while, physical characteristics such as mass, radio frequencies, dimensions,

and supply information for the platform are taken into account [37].

- Agent-based ontologies where device is seen as an agent:

• SWAMO (Sensor Web for Autonomous Mission Operations) ontology is de-

signed to solve interoperability challenges and allow large scale system-wide

resources sharing as well as making distributed decisions and achieving auto-

nomic operations [92], [99]. Although it integrates real time information, such

as position, orientation, it is mostly devoted to a logical organisation of the

system, physical information such as the physical location remaining rather

limited.

• A3ME (Agent-based Middleware Approach for Mixed Mode Environments)

ontology is a basic classification for self-description and discovery of devices

[45], [44]. Devices are classified as tag, mote, mobile, workstation, Server,

vehicle and multimedia. General capabilities classes are namely sensor, actu-

ator, communication, storage, computing, energy. In addition, it also refers to

other two other IoT device ontologies, FIPA Device Ontology and OntoSensor.

• FIPA (Foundation for Intelligent Physical Agents) ontology is a physical and

generic ontology fully focused on devices. It characterizes devices according
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to both hardware and software dimensions. Hardware description contains

specifications related to connection, memory, User Interface (screen) and their

sub-specifications. Software information incorporates descriptions of OS (op-

erating system) and platform.

- Ontologies describing semantically sensors data to manage interoperability:

• MMI (Marine Metadata Interoperability) device ontology is designed for the

marine domain, describing both sensors and actuators. It pays a particular

attention to their interoperability for the collaborations of involved devices.

• SDO (sensor data ontology) is devoted to gaining the interoperability of sen-

sor data from distributed and heterogeneous sensor networks [26]. In this on-

tology, data can be calibration, format, or parameter. Some property names,

such as “Calibartion_Of_Type", “parameter_CanBe",“Format_Has", and their

ranges are defined. For instance, “Calibartion_Of_Type" can be a “Curve",

"Frequency_Response", or "Table". A “Format_Has" is either a “Physical_Unit"

or “prototye". It is a part of Suggested Upper Merged Ontology (SUMO)

where a sensor hierarchy ontology and extension plug-ins ontologies are in-

cluded as well[27].

• CESN ontology (Coastal Environment Sensor Network) is created from the

“CESN Semantic Data Reasoner" project and aimed at describing the rela-

tionships between sensors and their measurements[10]. The main concepts

found in this ontology are similar to the terminology described in SensorML.

• WISNO (Wireless Sensor Network Ontology) is dedicated for processing wire-

less sensor networks data for communicating adaptively among anomalous

and heterogeneous applications [46]. For example, when the density of smoke

is abnormal, the adaptive action will be triggered to deal with it as quickly as

possible.

- Full-fledged ontologies:

• Ontonym is a set of ontologies representing core concepts in pervasive com-

puting (time, location, people, sensing, provenance, events, device, resource)

[24], [84].

• SSN (Semantic Sensor Network) ontology takes into account sensors and their

observations, the involved procedures, the studied features of interest, the

samples, and the observed properties, as well as actuators. Its core ontology
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is called SOSA (Sensor, Observation, Sample, and Actuator). It is a com-

prehensively generic device-cantered and compound ontology supporting a

wide range of applications and use cases as it gathers advantages and dis-

cards disadvantages from all previously presented ontologies.

2.4.3 Conclusion

Business process and enterprise ontologies describe the collaborations between differ-

ent partners horizontally and integrations of business layer and system layer vertically.

These ontologies together with Service Oriented Architecture model show that artifacts

of top layers in the enterprise architecture or cloud manufacturing architecture are rather

complete. Entering into bottom layers, IoT layer is so critical that it not only support the

upper layers with related IoT services but also links the physical devices. Although,

IoT ontologies provide full descriptions of sensors and actuators mainly, including their

NFPs related to physical environment or devices themselves, there is no unified one inte-

grating these key NFPs. Furthermore, none of these ontology allows describing globally

the control system associated to a production process, nor any application using smart

devices.

2.5 IoT-based Architectures

IoT takes advantage of service-based and Internet technologies to extend traditional

embedded and control devices with strong interconnection abilities. Efficient integration

and management of Cyber Physical Systems in distributed control application require a

dedicated architecture to couple these CPS description to higher level service interface,

focusing on the way these CPS exchange information with other components. To reach

this goal the NIST has proposed an IoT reference architecture. By this way, CPS can be

integrated in more complex service oriented control architectures.

2.5.1 NIST IoT Reference Architecture

Typical designs and implementations of architecture of IoT is 3–tier architecture, each

layer: IoT devices, gateway, and cloud [76], [82]. IoT devices layer, consisting of sensors

and actuators, is responsible for collecting data, monitoring environment, operating in-

structions and so on. The tier of Gateway perceived as a node in the internet is possessed

of abilities of communicating with other nodes or platforms, exchanging or sharing in-

formation, accessing to physical devices, controlling the data flow, etc. Cloud, including
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front-end servers and back-end applications provides large storage abilities requested

by the large amount of data collected from the different nodes. It also provides the

necessary computing capabilities to analyze data, make decisions, predict trends. . . A

survey of specific IoT architecture can be analyzed from the aspects of RFID (Radio

Frequency Identification), SOA (Service Oriented Architecture), WSN (Wireless Sensor

Network), supply chain management and industry, health care, smart society, cloud ser-

vice and management, social computing, security and observation [75]. The author also

summarizes the existing IoT cloud platforms[74].

IoT system can be described by IoT Conceptual Model (CM), IoT Reference Model

(RM), and IoT Reference architecture (RA). Hence, IoT CM, RM and RA for IoT should

be discussed necessarily.

In NIST IoT reference architecture5, IoT CM (Conceptual Model) provides common

structure and definitions for describing the concepts of and relationships among the

entities within IoT systems. Key entities of this IoT conceptual model are IoT-user,

digital entity, service, component, virtual entity, digital user, human user, endpoint,

application, IoT device, physical entity, network, IoT gateway, actuator and sensor.

IoT CM provides common structure and definitions for describing the concepts of

and relationships among the entities within IoT systems. It must be generic, abstract

and simple. All key entities: IoT-User, Digital Entity, Service, Component, Virtual Entity,

Digital User, Human User, Endpoint, Application, IoT Device, Physical Entity, Network,

IoT Gateway, Actuator and Sensor, are provided in IoT CM. The relationships among

them are delineated in Fig. 2.11. We can categorize these entities into different groups.

IoT device and physical entity belong to physical part. IoT user (either digital user

or human user) is in the user part. Endpoint, network and IoT gateway exist in the

communication part. Service, application and component are proposed from usage

control view (usage control part). Meanwhile, service, component and digital entity are

classified into digital twin part.

IoT RM is divided into two aspects: entity-based RM and domain-based RM. In

entity-based RM, entities are Application Service System, Operation & Management

System, Resource & Interchange System, IoT User, IoT Gateway, IoT Device, Network,

Physical Entity. One domain includes one or more entities. In domain-based RM, there

are User Domain (EUD), Application Service Domain (ASD), Operation & Management

Domain (OMD), Resource & Interchange Domain (RID), Sensing & Actuating Domain

(SAD) and Physical Entity Domain (PED). The corresponding relationship between the

entity-based RM and the domains in the domain-based RM is specified in table 2.3.

5ISO/IEC 30141: Internet of Things (loT) – Reference Architecture
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Figure 2.11 – Excerpt of NIST IoT RA big picture for IoT concepts of CM

Table 2.3 – Excerpt of relationship between entity and domain (NIST IoT RA p49)

Entity in Entity-based RM Domains in Domain-based RM
IoT User User Domain (EUD)

Application Service System Application Service Domain (ASD)
Operation & Management System Operation & Management Domain (OMD)

Resource & Interchange System Resource & Interchange Domain (RID)
IoT Device Sensing & Actuating Domain (SAD)

IoT Gateway
Physical Entity Physical Entity Domain (PED)

Network Communication and interactions among domains

The IoT RA is with the goals of describing the characteristics and general require-

ments of IoT systems, defining the IoT system domains, representing the Concept Model

(CM) and Reference Model (RM) of IoT systems and showing the interoperability of IoT

system’s entities. It is directly originated from the domain based IoT RM based on en-

tity based IoT RM, which is evolved from IoT CM. For the time being, there are five

main IoT RA views which are IoT RA Functional View, IoT RA System View, IoT RA

Communications View, IoT RA Information View and IoT RA Usage View, illustrating

the IoT RA. The function view is a technology-neutral view of the functions necessary to

form a system (see Fig. 2.12). The system view specifies the generic functional devices

and systems in each domain to form an IoT ecosystem and support of functions compo-

nents in the functional view. The communication view describes concepts for handling

the complexity of communication in heterogeneous IoT context. The information view

analyses the entities from the views of data (data source, data carrier, data destination,

data classification). The usage view emphasizes the concepts of roles, activities, parties,
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etc.

Figure 2.12 – Excerpt of IoT RA Functional View (NIST IoT RA p49)

In NIST IoT RA, sensing and controlling domain or system (see Fig. 2.12) serves as a

whole. So the detail description of IoT services themselves (sensing service, controlling

service and actuating service), of their relationships, of how they are composed to work

as a middleware layer are missing. Instead, Fig. 2.12 just shows that sensing, actuation,

executor and network are inevitable parts of sensing and controlling domain.

2.5.2 “Service" Oriented Control Architecture

Industrial automation system persuasively involves physical devices (such as sensors

and actuators.). As a matter of fact, a technological standard of SOA is web service

owning three cores, Web Service Description Language (WSDL), Simple Object Ac-

cess Protocol (SOAP) and Universal Description, Discovery and Integration(UDDI). The

problem of how to virtualize the physical devices into corresponding web service was

to be solved years ago via cyber physical system technology (CPS). Device Profile for

Web Service (DPWS) language is dedicated to model physical objects to provide abstract

logical web service [52][48]. [21] proposes a service oriented device architecture (SODA)

integrating device and SOA. Real service oriented control architecture are implemented

in two European projects SIRENA6 and SOCRADES7. In the paper[62], a survey on ser-

vice oriented engineering for automation systems is mainly focused on how to connect

“loosely-coupled" entities together from aspects of 1) semantic web service and ontol-

ogy, 2) modeling, orchestration and choreograph, 3) service composition, 4) analysis and

simulation, and 5) collaboration.

6http://www.itea3.org
7http://www.socrades.net
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Semantic web markup and in particular the Web Ontology Language (OWL-S) is

leveraged to assist in automating service selection, invocation and composition in man-

ufacturing [18]. To build a service oriented control architecture [61] for reconfigurable

production system is, the architecture applies process model for service composition,

Petri net model for logical controller, event notification pattern for communication. [43]

integrates a Multi Agent System (MAS) with web service to implement a decision mak-

ing entity in manufacturing system.

Although the idea of SOA is integrated into control system by some control architec-

tures mentioned above, their concentration is still on the level of separated device. In the

roadmap of service oriented control architecture, some experts use service description to

hide the physical device behind for automation service selection. However, web service

description via DPWS does not give enough focus on the NFPs of physical constraints.

These control architectures only implement the specific controllers that can serve in a

remote place.

2.5.3 Conclusion

NIST IoT reference architecture provides the big picture for IoT and different viewpoints

for it. Nevertheless, the control descriptions from the automation system view are miss-

ing. Existing service oriented control architecture aimed at solving the problems such

as reconfiguration essentially implements a networked control system where device is

considered as a service. What we required is a cloud control system or control service,

instead of networked control system. So a new thoroughly distributed control model

and/or architecture supporting control service is needed.

2.6 Control as a Service (CaaS)

Evolvable and collaborative industrial systems enhancing flexibility and automatic con-

figuration to meet mass customized and rapidly changing user requirements are becom-

ing an emergent paradigm. Service oriented architecture (SOA) is the abstract concept of

a software architecture, where the focus is the offer, search and sue of services over the

network, providing a communication platform, based on open protocols, addressing the

interoperability in heterogeneous system. Consequently, the introduction of SOA into

industrial system can bring service characteristics, e.g., distributed, reusable, loosely

coupled, etc, to automation systems. Cloud control system has evolved from networked

control system (NCS). NCS is developed from the originally physical one as the com-

munication way is changed to network from wired connections. Due to the prominent
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influence of cloud computing, cloud control system (CCS) with the support of control

service or Control as a Service (CaaS) will be the next generation of control system. In

this section, the overviews of network control system, servitization of control and cloud

control steps including service selection and composition, are conducted.

2.6.1 Networked Control System (NCS)

Networked control system(NCS) can be defined as a system whose control loops are

closed through communication networks such that both control signals and feedback

signals can be exchanged among system components (sensors, controllers, actuators and

so on)[116]. Generally, there are three configurations of NCSs, i.e., centralized config-

uration, decentralized configuration, and distributed configuration[32]. In the central-

ized NCS is only a single feedback loop where all sensors and actuators are connected

through one controller (see Fig. 2.13). A decentralized Network Control System inte-

grates several cooperating controllers, each of them linking senors and actuators. As

stability is the most fundamental performance of a control system, analysis of NCS is

accomplished by Zhang et al [114] focused on the solutions for NCS fundamental issues,

e.g., network-induced delay, dropping network packet, and by Walsh et al [97] who in-

troduce a novel control network protocol (try-once-discard (TOD)) for multiple inputs

and multiple outputs (MIMO) NCSs. The scheduling research on NCS is conducted in

the paper [96], given sufficient network speed. Tipsuwan et al [89] reviews NCS control

methodologies, i.e., augmented deterministic discrete-time model methodology, queu-

ing methodology, optimal stochastic control methodology, perturbation methodology,

sampling time scheduling methodology, robust control methodology, fuzzy logic modu-

lation methodology, event-based methodology and end-user control adaptation method-

ology. Event-triggered method applied to solve the problems of NCS one-step packet

dropout [102] and nonlinear NCS [115] is able to reduce the communication traffic as it

will take action when needed. Yuan et al [107] proposes a delta operator approach to

get the optimal control in NCS considering the disturbances.

2.6.2 Servitization of Control

Similar to sensing service and actuating service, control service is supported by the

whole control system for one or more given control objectives. Nowadays, moving con-

troller to cloud become a trend in many domains (e.g., automotive [86]) since more and

more sensing services and actuating services are available in the IoT context and online

control commands are optimal calculated based on global data in cloud. Virtualized
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Figure 2.13 – Three general configurations of NCSs [32]

PLC controlling service is gained and abstracted from physical PLC controller [34], [6].

A typical use case for monitoring and controlling the soil environment for the growth

of grains is analyzed according to acquired kinds of sensor data [47]. Another global

control on IoT service redundancy is implemented in the context of IoT Wireless Sen-

sor Networks (WSNs) [40]. Some control services are characterized thanks to classical

control patterns, such as process control (including continuous control and distributed

control system, [58], [120], [85], adaptive control, optimization control, and even heuris-

tic way [16].

Based on our state of the art review, main characteristics used to compare control

services in table 2.4 are controlled object, controlled variable, control objective, control

pattern, sensing service, actuating service, interface type, implementation. Thus, con-

trol service could be described using these features. Control service in the first two

literatures represent the whole control system while it in the other only means the con-

troller. To distinguish it, we define control service is virtualized from Cloud Control

System (CCS) while controlling service is rooted from controller. From the table, we

notice the difference control service are involved in sensing and actuating services. In

addition, Whether a physical controller does exist or not behind a controlling service is

dependent on the service itself.

2.6.3 Building a Cloud Control System Based on Control Services

In the networked control system, we conduct our research by creating new or improving

existing algorithms to make sure the control performance especially for stability under

various situations. Using controlling service changes the way control elements are con-

nected from networked devices to services. However when there are quantities of IoT
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Table 2.4 – Control Service

Control
service

Controlled
object

Controlled
variable

Control
objective Sensor Actuator Interface

type
implemen-

tation

1[34]
general
object

general
property

general
objective Yes Yes

physical/
logical

virtualized
from PLC

controller/
cloud based

2[47] Soil

soil
environ-

ment
(humidity)

keep
optimal Yes

Yes
(pump)

physical/
logical

software
component/
cloud based
architecture

3[6]
general
object

general
property

general
objective No No

physical/
logical

virtualized
from PLC

controller/
cloud based

4[40]
IoT

services
redun-
dancy decrease No No logical

software
component

5[58] process sequence
keep

optimal No No logical
software

component

6[120]
manufactu-
ring process
and product

sequence
and

quality

operate
well No No logical

software
component

7[85]
multi stage

service
operations

optimize
globally No No logical

software
component

8[16]
control
station action

run in
best way No No logical

software
component

services available, we need to pay attention to the second stage of control service: cloud

control. This step involves in the selection, composition and orchestration of control

elements, i.e., sensing, controlling and actuating services. Service orchestration imple-

mentation relies on the enterprise service bus discussed previously. In this subsection,

service selection, service composition and late binding providing the dynamic feature

for them, are reviewed.

2.6.3.1 Service Selection

Accurate service description of non functional properties (NFPs, i.e., availability, chan-

nels, charging style, settlement, quality of service, security and trust, ownership and

rights) can be used to improve service discovery, service substitution, service compo-

sition and management as specified in [25]. Nevertheless, several NFPs are defined,

providing more or less details on IoT devices or services. Several ontologies have been

defined for sensors and actuators , such as FIPA device ontology, CSIRO SENSOR ontol-

ogy [68], ONTOSENSOR [79], SWAMO ontology [92], [99] SDO [26], [27], MMI device

ontology Ontology [38], SENSORML processes [9], [77], CESN ontology [10], WISNO

[46], A3ME ontology [45], [44], ONTONYM – SENSOR [24], SSN ontology. As syn-

thetized in table 2.5 , some of them propose Non Functional Property (NFP) descriptions.
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Gathering these different NFP definition may allow capturing contextual information.

With the fast development and adoption of IoT devices, the Cloud of Things (CoT)

emerge, extending the resource sharing model used for infrastructures (IaaS), platforms

(PaaS) and software (SaaS) [22] to objects (OaaS) [4]. Meanwhile, some new concep-

tions, for instance, object as a service (OaaS), sensor as a service (SenaaS), are proposed.

CoT provides us an idea of or a model for facilitating the procedures of using physical

things or devices from the cloud end when physical things are becoming smart and thus

possessed of abilities of sensing, actuating, communicating. Service composition where

CoT are involved was and is still a hot research area and the performance of dynamicity

of is dependent on the late binding technology.

2.6.3.2 Service composition

As far as traditional IT process are concerned, Business Process models are analyzed to

select and/or compose services to support a particular business function. While tradi-

tional service composition relies on a dedicated engine analyzing control and data flows

to discover and select concrete services exhibiting the requested properties [30], several

abstract service based composition models are still developed to enhance the adaptation

to user-intentions [28]. In the cloud or web environment, service composition will be un-

avoidable when one expects to reuse others’ services or integrate her or his several sub

ones. It is obvious that web service composition is dependent on service requirements,

both functional requirements and non-functional requirements. Based on requirements,

some concrete services are selected taking into account their functionalities, policies and

contracts. Meanwhile, this requires properties of each service involved, such as service

reachability, service interaction (in both information and behavior way) when selecting

them at the design and running time. Service composition in IoT environment or for

Cloud of Things (CoT) is still a concern of great importance and need to be paid more

attention because of physical constraints being taken into consideration. General re-

quirements for composing service from smart objects are summarized, namely, resource

constraint, low-power and loss communication link, power efficiency, data/event-driven

services, asynchrony, discovery, management requirements, and Quality of service (QoS)

awareness [41]. The difference of classical web service and IoT service is that the latter

pays more attention to the physical constraint. In IoT control context, non functional

properties (NFPs) should be taken into consideration due to physical constraints from

device behind the service. To achieve features of automation and flexibility, composition

rules based on abstract services for a better adaptation to user intentions are proposed
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[28]. Service composition process could be simply divided into two steps, 1) an engine

(or a schema, or a model, or an architecture, etc.) responsible for specifying the con-

trol and data flows between services, 2) concrete services with logical and discoverable

property [30]. Some web composition solutions are discussed in [64], and part of them

can be applied in industrial automation field [60]. In order to adapt to quick change of

ambient environment, dynamicity ought to be attached into service composition.

2.6.3.3 Late Binding

Dynamicity requires late binding, i.e. being able to select the “best" service depending

on the current context at runtime, implemented as a part of service composition/orches-

tration. For a given process composition chain, each process can be instantiated by a con-

crete service at design time or running time. This binding step can be achieved statically

(static binding) or dynamically (late binding strategy integrating execution information

to select the most convenient service). Compared to early binding, late binding increases

adaptability, agility and robustness whereas it requires (1) extra-monitoring services to

capture quality of service parameters (e.g., availability, response time, precision) to de-

tect failed services (compared to the current SLA), identify surrounding environment

changes and, (2) providing an efficient service selection based on a multi-criteria evalu-

ation of Quality of Service preferences. Several research works have already addressed

these requirements:

- Different works have paid attention to the QoS management and SLA violation.

[78] proposes to formalize QoS aggregation as algebraic expressions. Composite

QoS analysis used to integrate late binding in service composition is illustrated in

[14], [50], [11], [12], [67]. identifies SLA violation (e.g., web service failure, web

service performance degradation, etc.) to update automatically processes deploy-

ment whereas [39] integrates non-functional properties related to communication

in service composition achieved in dynamic ad hoc environments.

- As far as selection is concerned, a LCP-net formalism capable of expressing qual-

itatively user preference of different QoS can be used [17]. Some other methods

are also applied for this NP hard problem such as Integer Programming [110], or

Genetic Algorithm [12].

- Considering the way late binding is integrated in the composition process, the ser-

vice planning problem is solved by using Hierarchical Task Network and Partial

Order Casual Link planning techniques [8]. Artificial Intelligence (AI) planning
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and scheduling for workflow is analysed in [72]. Re-planning problem is men-

tioned and triggered by giving an example of response time in [13].

2.6.4 Conclusion

In this Control as a Service section, we firstly review the cloud control system (CCS)

predecessor: networked control system (NCS). Researches on NCS mostly pay attention

on controller design to make sure NCS stability in many cases, such as network-induced

delay, data packet dropout, to mention a few. This provides a strong basis as the first

phase of CCS and a prerequisite for our dissertation. Then, we summarize part of

existing control and controlling services. These services are not generic but accurate.

A generic description of CCS including controlling services should be provided. The

researches on the second phase: cloud control depends on the selection, composition and

orchestration. Selecting and composing IoT services can not neglect the NFPs related to

them.

2.7 Conclusion

Industry 4.0 shows a distributed and collaborative environment, and requires an ad-

vance in all aspects: i.e., standards, smart devices, integration, algorithms, models,

architectures, frameworks, platforms . . . Enterprise architecture plays a critical role in

assuring the operations while increasing the efficiency and lowering the cost. Enterprise

information system makes possible the success of interactions among various compo-

nents to add the value for the enterprises, especially for the small medium enterprises.

Cloud manufacturing helps to achieve the intelligent production and smart factory, tak-

ing advantage of quantities of and numerous types of smart devices and intelligent

Cyber-physical system.

Focusing on the Information System side, Business Processes are defined logically

and enterprise ontology or ISA S95 provides consistent description of the main infor-

mation. Moreover, Service Oriented Architecture has lead to more flexible and agile

Information systems as services can be invoked in a loosely coupled way. Despite their

interest these works do not integrate lower-level devices such as basic CPS systems.

Entering into IoT realm, control processes are not paid enough attention in any IoT

ontology or architecture. From the view of automation processes, networked control

system is targeted at solving the controller design in networked context. However, this

model needs to be adapted to fit the Cloud context and services defined in this Service

oriented Control Architecture must be extended as it only relies on sensors and actuators
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“digital service" twin. Sensors and actuators can be substituted by sensing and actuat-

ing services separately. Controller or the whole control system can be also replaced with

a controlling service and control service thanks to the servilization of control. These

controlling or control services are so specific that they can not used in a generic way.

Hence, a new model for control system should be created. This control service model

should avoid existing IoT ontology limits besides the neglect of control element. There

is no IoT ontology taking into account all physical constraints. Control service is an

composite IoT service. As a result it needs to integrate these key NFPs. Moreover, it

ought to take into consideration the interaction way while traditional ontologies pays

attention to the separated devices. After the describing the control service model, we

need to build a control service. Consequently, a real service oriented control architecture

should be made to develop a context aware and event driven cloud control system. This

architecture is involved in selecting, composing and orchestrating sensing, actuating

and controlling services. Previous selection and composition of web service do not

taking into account key NFPs related to devices. Enterprise service bus can not provide

adaptiveness that control service elements orchestration intends to have.
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3.1 Introduction

Industry 4.0 requires control system to be more agility and flexibility to meet users’

customized requirements. Consequently, traditional control system should be innovated

via shifting the connection way from wired to wireless. This leads to the networked

control system. However, the current collaborative manufacturing environment requires

agile and reusable systems, taking advantage of the loosely coupled feature provided
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48 Chapter 3. Control as a Service Model

by Service Oriented Architecture. This involves extending SOA to low level devices.

Cloud control system that inherits the advantages of networked control system in IoT

environment and owns the inherent features of cloud computing, is deemed as a new

generation of control system. In a cloud control system, services are introduced to

replace the original devices as they are possessed of agility, flexibility and reusability.

To support the cloud control for the cloud control system or control service abstracted

from it, new control service model that is able to ensure these characteristics above for a

control system under the context of IoT and cloud computing, is required.

Control service model should mix both automation and service vision. Focusing on

the functional description, automation view should be used whereas the SOA vision will

contribute to the way services will be selected, composed and orchestrated. This is why,

we use the control vision to set the control service functional description. Before the

discussion of control service functional model, controller and control system models are

introduced firstly according to the experiences from the automatic control system. In the

control system model, entities of sensor, actuator, controller, controlled object, controlled

variable, environment control pattern, control requirements, and their relationships of

them are stated. In order to elaborate the core of control system, a controller model is

developed from the perspectives of input and output. Moreover, definition of control

pattern is specified in a recursive way using the mathematical function representation.

Entering into functionality of control service model, physical devices are replaced by

their correlated services. specifically, sensor, actuator and controller are substituted by

sensing, actuating and controlling services. At the end, a basic service based control

model is built from the automation view.

From the service side, traditional web service approach pays attention on its func-

tional descriptions, QoSs (Quality of Services) and securities. Service based control

model is also attained from the functional view. Nevertheless, control service is a com-

posite IoT service so that it connects the physical devices closely. NFPs related with

these physical devices (i.e., sensor, actuator and even controller) must be integrated in

the control service description. The different ontologies we reviewed in the state of the

art section (see table 2.5) allow describing most of these non functional requirements

and properties. However, we find that some of them (e.g., precision and accuracy) are

similar. These original NFPs are processed to keep some key NFPs. These nine vital

NFPs, i.e., frequency, range, precision, system life time, memory, CPU, location, con-

nection media, transmission latency, are listed in the table of NFPs processed. They

are grouped into four categories, i.e., physical environment, embedded device perfor-

mance, communication and system capability, to ease the management of them. These
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NFPs are used to describe control service, specifically, sensing, controlling and actuating

services, from a non functional view. They are considered as selection criteria of con-

trol service elements. Meanwhile, they defines a fundamental control service execution

environment.

Existing ontologies provide us available NFPs, however, most of them just study the

sensor and or actuator. Although some of them are concentrated on the generic device,

few ontologies pay attention on control engineering from the IoT view. As a result, a

full-fledged control ontology should be developed. Thanks to the sections of control

service functional description and NFPs processed, our control ontology is achieved. In

summary, in our control ontology there are three parts: service based control model,

NFPs and event driven communication.

Conclusively, this chapter is mainly focused on the first research question that what

is a control service. It is organized initially from the three motivating examples in the

aspects of smart home, smart factory and smart transportation. Then, models from the

various views, i.e., control service functional model, non functional requirements, event

driven communication and control ontology integrating the former three parts, are built.

3.2 Motivating Examples

In this section, three motivating examples from the domains of smart home, smart fac-

tory and smart transportation are given to help to model the proposed control service.

Smart home use case focuses on the distributed environment of control system. Atten-

tion is paid to the execution context awareness in the smart factory example. Smart

transportation instance shows us the event driven requirement for the cloud control

system.

3.2.1 Smart Home Motivating Example

Smart building or connected building as an application field of Internet of Things (IoT)

is devoted to adding comfort, increasing security and saving energy. A building can be

separated into rooms that belong to different types, such as office, data center, storage,

production or shopping hall for business and commercial buildings or living room,

bathroom, kitchen, garage, and so forth for houses and residential buildings. There

are different types of sensors (e.g., an ultrasonic sensor detecting the soap level in the

laundry, temperature sensor, humidity sensor, etc.) and actuators (such as motor for

window or door, fan device able to dry the air) deployed in the building. Consequently,
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50 Chapter 3. Control as a Service Model

many control systems are required to connect and manage these sensors and actuators

to provide better living or work experience as well as optimizing energy consumption.

Here a temperature control system for a room as a use case is analyzed to support

the event manager and data manager evaluation. As the temperature of the room can be

changed by many factors (e.g., weather condition, central boiler, room heating device,

etc.), an ideal temperature control system may be too complicated to be controlled when

taking into account all these factors. Trying to save energy, a user wants to design a new

heating control strategy, taking advantage of the available IoT devices. The goal consists

in stopping the heating device while a window is opened and adjusting the required

temperature depending on the forecast external temperature (see Fig.3.1). In sensing

service part, indoor sensing service acquiring the current room temperature may be

supported by a physical temperature sensor. Outdoors sensing service (S3) collecting

the outside real-time temperature may be a web service on the Internet. The sensing

service (S2) detecting the state of window can help to make decisions to save energy. In

the section of actuating service, heating or cooling actuating service receives a command

variable limited to an input power scale. Here a control service is required to manage the

behavior of involved actuating service based on sensing services concerned. Modeling

such a control system involves: 1) coordinating different control services, each of them

associated to a dedicated requirement, 2) setting a consistent data manager to integrate

both sensing and Internet data as valuable inputs of control services and 3) managing

events to decide if the control strategy need to ba adapted or not.

Figure 3.1 – Temperature control use case

3.2.2 Smart Factory Motivating Example

This motivating example is picked from a FabLab, where car-seat moulds prototype are

produced. While using new material, moulds characteristics must be adapted, and in-

jection and press processes must be tuned. Using sensors related to the environment

(temperature, humidity), material quality are used as inputs to control injection and
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press control processes. Actuating system A1 consists in opening/closing material in-

jection, and deburring the parts. The process is shown Fig. 3.2. Different IoT devices and

numeric machines are proposed to implement the different operations. Paying attention

to the place the mould is manufactured and tested, appropriate sensing information

should be sent to the control system. In this example C2 provides information on the

material quality, C1 evaluates the environment context (temperature and humidity) and

C3 provides the injection control. The cost for communication between controllers have

to be considered. The locations, precision of sensors and actuators also have to be taken

into account. To sum up, this use case calls for a context-aware control application.

Figure 3.2 – Car-seat manufacturing example

3.2.3 Smart Transportation Motivating Example

Taking advantage of various interconnected objects allowing to capture various data

such as traffic information, pollution, air quality, humidity, temperature..., smart cities

aim at improving the well-being, providing more efficient transportation, allowing smarter

services for people. By now, more and more information can be collected, stored in

clouds, and used to develop new services or classical automation control. Focusing on

smart mobility management, several sensors are deployed in streets to count cars cross-

ing a given line; cameras can also provide pictures that can be used to identify potential

traffic jams; traffic lights can be managed to select green light duration; dangerous car

drivers behaviors such as red line crossing can also be detected. Moreover, extra infor-

mation can be provided by cars themselves including their current position, forecasted

trip... All these traffic management information can be worthy used to improve traffic

regulation thanks to smarter traffic light control, increasing air global quality, emergency

services efficiency and more globally the well-being. Such smart traffic control appli-

cation can be designed locally, taking advantage of the huge amount of available data,

coordinating these different subsystems to support more reactive and context-aware con-

trol. In what follows, we use a smart traffic control for emergency cars (see Fig. 3.3) with

the intention of letting the emergency car get to the accident point as quickly as possi-

ble. A route planning controller runs to produce the route information based on current
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position and destination while considering the traffic information detected by cameras.

Emergency accident traffic light controller optimizes switch time of all involved traffic

lights according to the real-time car position and dynamic route information and con-

straints of lights themselves. Such a system relies on a distributed control architecture,

taking advantage of cloud services to integrate traffic mining components, image analy-

sis with basic embedded traffic light control systems. It challenges for a new distributed

and reactive control architecture allowing to design loosely coupled control applications,

embedding various sensing and actuating devices in a unified interface and allowing a

more reactive and event-based orchestration of the different control components.

Figure 3.3 – Smart transportation motivating example

3.3 Control Service Functional Model

As shown in the three motivating examples, a new control model that is distributed,

adaptive and reactive is required to adapt to the industry 4.0 requirement. This control

model is aimed at refactoring the control projects leveraging the SOA, IoT, cloud com-

puting and other technologies. This new model is inspired by business process ontology

as automatic process is a specific one. Organizing a collaborative BP (Business Process)

consists in identifying the different tasks and actors involved and then selecting the

convenient IT services used to support each task and to exchange information between

activities. As mentioned in the state of the art, several ontologies and standards are

proposed to support semantic interoperability in a given business area: enterprise or-

ganisation can be used to describe the main actors and process organisation involved in

business process specification. Connecting the enterprise ontology process specification

to the ISA S95 work process segment capability, allows refining the BP specification by

integrating the different production resources, integrating the physical assets capabili-

ties. Finally, these physical assets and work process segment can be related to a control

ontology, allowing to integrate the main characteristics issued from the different IoT

ontologies (see Fig. 3.4).
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Figure 3.4 – Relationships between control ontology and other ontologies

Dedicated to building a control ontology that is able to provides a comprehensive

understanding of control field in the era of IoT and cloud computing, the core of this

ontology relies on the automation knowledge on automatic control system and its con-

troller. Meanwhile, the characteristics that are introduced by services must be incorpo-

rated. Due to the physical features of related devices, i.e., sensors, actuators, controlled

objects and controllers, non functional requirements are worthy of being considered

when selecting and composing their upper layer services. Eventually, the behavior of

control system at running time is specified via the event driven mechanism. In the next

three sections, control service functional model, non functional requirements, and event

driven mechanism will be discussed orderly.

3.3.1 Control System Model

Entering into a control system, we extract some key entities, such as controller, sensor,

actuator, controlled object, controlled variable, controller pattern (or controller function)

and control requirement(or control objective). Based on them, we build a control system

model (see Fig. 3.5) from the point of view of computer science.

Figure 3.5 – Control system model

Focusing on the smart building use case, the temperature regulation example re-
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quires us to build a distributed control application as the formats of sensing services

and/or the locations of all involved services can be heterogeneous. The main definitions

of these critical concepts are following:

- Controller: is a device, historically using mechanical, hydraulic, pneumatic or elec-

tronic techniques often in combination, with a microprocessor or computer, which

monitors and physically alters the operating conditions of a given dynamical sys-

tem. A controller can be also a program implemented by a software component.

A controller requires inputs from sensors and/or human beings. For instance,

a user is necessary to set desired states as inputs expressed by user intention(s).

Meanwhile, it will produce the control signal(s) as output(s) in order to manage

the actuator(s). Its functionality is characterized of a control pattern.

- Sensor: is an electronic component, module, or subsystem whose purpose is to

detect events or changes in its environment and send the information to other

components, frequently a computer-based process. It is always used with other

electronic devices, whether as simple as a light or as complex as a computer. It

usually transforms the physical property into electrical signal. Sensing service

provided by a sensor requires a controlled variable as input and output the mea-

surement value of this controlled variable. From our smart building example, we

use a temperature sensor.

- Actuator: is a physical component that can be integrated in a machine. The ac-

tuator is responsible for moving or controlling a mechanism, or a system, or a

simple physical object. It provides the mechanism by which a control system acts

upon an environment. The actuating service supported by an actuator requires a

control signal from controller and source of energy. The control signal is relatively

low energy. The source of power may be electric voltage or current, pneumatic or

hydraulic pressure, or even human power. From our smart building use case, we

integrate one heating system actuator

- Controlled object: any object or system to be controlled, e.g., a room in the smart

home motivating example, a manufacturing process in the use case of smart fac-

tory, a car route in the smart transportation.

- Controlled variable: is related to a control object. It is defined via selecting one

of the physical properties of a controlled object. Such physical property could

be light, motion, temperature, magnetic fields, gravity, humidity, moisture, vibra-

tion, pressure, electrical fields, sound, and other physical aspects of the external
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environment. The value of controlled variable is detected and changed by using

sensing service and actuating service respectively. From our smart home use case,

the temperature of the room is the controlled variable.

- Control requirement: is the goal of control service, for example, the lowest energy

cost for the temperature control in the first example, an optimal or adaptive control

operation in the second case, and the least of time in the third use case.

- Control pattern: is a model applied into control service for attaining the control

objective. There is a plethora of control patterns, proportional–integral–derivative

(PID) control, fuzzy control, to mention a few. Here, it is associated to control

function for control system (control service) or controller function for controller

(controlling service). Regarding the smart building use case and its temperature

regulating control application, this control service itself is organized by compos-

ing different available controlling services C1, C2, and C3. Target temperature

value can be an input of these sub controlling services. The expression of C1

(see equation.(3.3)) shows that its result will be 1 if window is closed and out-

side temperature is not approximately equal to target value. C2 can be a normal

PD(Proportional and Derivative) control and its result is a command required by

the heating device. C3 (see equation (3.4)) indicates whether the heating device

should work or not, depending on the states of window and outside of tempera-

ture.

s2 =

0,if window state is open.

1,if window state is closed.
(3.1)

f 1 =

0,if outside temperature ≈ target value.

1,otherwise.
(3.2)

C1 = s2∩ f 1 (3.3)

C3 = C1× C2 (3.4)

Control systems are designed to fit control requirements. A control requirement is

a target of controller or the whole control system, describing a property associated to a

controlled object, formalized as a feature of a controlled variable. Focusing on the con-

troller behavior, a sensor sends measurand to the controller which produces a control

signal to operate the actuator. Measuring result (current value) attained by sensor ob-
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servation and changed by actuator action is another characteristic of controlled variable.

Meanwhile, control requirement sends desired value of controlled variable to controller

as well. Semantic of sensor input and output can help controller to connect exact sen-

sors and actuators. Structure of controller is expressed by a function, named as controller

function. Inspired from Matlab Simulink commonly used blocks represented by a func-

tion, some typical and generic control services can be developed directly. When control

parameters are hard to tune, these smart control algorithms can reduce the task of tun-

ing parameters. When the control logic is simple, some control service can be shared by

different control applications, requiring all the same semantic controller inputs.

3.3.2 Controller Model

The most important part of a control system is its controller. In the smart factory use

case, a global controller consists in three sub controllers, C1, C2 and C3. These three

sub controllers coordinate so that the final precise switch control on the operation of

actuator A1. As a consequence, the research on control system is aimed at the design

a controller to meet the various requirements on stability, rapidity and accuracy. A

abstract controller may have multiple inputs and multiple outputs (MIMO, see Fig. 3.6).

Herein, we build an abstract controller model, including control requirements (control

objectives) and three key devices: sensor, controller and actuator.

Figure 3.6 – Controller model

The structure of controller can be represented by a following mathematical function:

Y = F(U), C

U, Y, C and F respectively represent controller inputs, controller outputs, control sys-

tem constraints, and controller function. It is obvious that this kind of description can

hardly be reused as a whole due to its complexity. From the view of each output, a

controller can be described by another function defined previously and perceived as a

sub controller with inputs from sensors and/or control requirements. So the generic

controller is composed of one or more sub-controllers. Output of each sub-controller
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is connected to one or more actuators. According to the information of the actuator,

we can identify what is the controlled variable and which sensor is selected to measure

this variable. Sometimes, besides controlled variables, there are other input variables

detected by sensors as well called environment variables required for making decisions.

If two controlled variables are dependent in a complex system, one is controlled variable

while the other is used as assisted variable in a sub control system. When the controlled

variable is not observable, assisted controlled variables are needed to infer the value of

it.

The controller can be specified by a control pattern. A control pattern definition is

illustrated in Fig. 3.7, leveraging the method of Polish Notations. According to this

recursive definition, a controlling service can produce a result, implement an operator

and use one or more operands. An operand can be associated to a controlled variable

(related to a sensor and actuator), a parameter (related to the controller configuration) or

to another function expression result. The difference between variable and parameter is

that a parameter is fixed value for a given period of time. Moreover, the generation of a

new value associated to a variable (note that this value can be equal to the previous one)

will trigger an event. An operator is associated to a computing function and defines the

way how operands are composed. In addition, a parameter can be tuned to affect the

performance of the control system and its unit is often a prototype (usually the value is

1).

Figure 3.7 – Definition of control pattern

For short, a generic controller composed of sub ones can be applied in any control

project. In a project, there may be one or more controlled objects, of which each can

have one or more controlled variables. For each controlled variable, there is a sensor

and an actuator to be selected to measure and act on it respectively. For each actuator,

there is an output of generic controller. Whereas, an output of generic controller can be

used for one or more actuators. As a consequence, different actuators may have a same

controller (sub controller of generic one). So in a project, provided is each sub controller

where semantics of operands, operators and function result should be attached.
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3.3.3 Service Based Control Model

The idea of service brings into system many benefits, e.g., easing the configuration

and maintenance, improving the flexibility and agility, and lowering the cost. But the

most important reason is that it can match the distributed environment. This results

in integration of control and service. Thanks to the CPS or virtualization technology ,

more and more sensing, actuating and controlling services are available. This leads to

the service based control model being developed [54] (see Fig. 3.8).

Figure 3.8 – Service based control diagram

As said previously, a control system includes different elements: sensor, controller,

actuator and controlled object. A controlled object reflects what is controlled. The con-

trolled variable is a property of the control object. The controlled variable owns infor-

mation of control requirements. A controlled object is described using several proper-

ties, such as temperature, humidity, intensity, location (longitude, latitude and altitude),

speed, and so on. Some of properties can be selected as controlled variables. Hence

a controlled object possesses of at least one controlled variable. A controlled variable

can belong to different controlled objects. Some of attributes of controlled variable class
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are intended to specify the control objective. Desired value is an expected value of con-

trolled variable. As the real steady state value may do not equal to the ideal one, steady

state error reflects the deviation of them. Rise time is used to show the time in transient

process. Peak and valley values set a condition that the changing value of controlled

variable can not be greater than the peak value and less than the valley value. Based on

type of controlled variable and the specific controlled object, sensor and actuator type

will be determined. The type of sensing service can be temperature, speed, position,

and so forth. Nevertheless, there are actuator types of motor, air conditioner, dryer, and

so on. In a control system, its controller is the most significant role that is responsible

for meeting the user control requirements. The structure of controller is specified by a

function of which control pattern can be selected referring to knowledge from the books

or practice. Function is expressed by function tree composed of function node. The

function element of each node is either an operator or operand. A control service is a

composite object composed of at least one sensing service, one controlling service, and

one actuating service. Features of them are distinct, but they are connected and can

not exist individually in a control service. As a consequence, sensing services, control-

ling services and actuating services will be selected and composed from service registry.

Controlling service is characterized of a function explaining how to calculate the data

from sensing service, web service and/or users. Sensing service send measuring results

to one or more controlling service. A controlling service can send a control signal to

an actuator or other controlling services. A service in IoT context owns couple of non

function properties (NFPs, e.g., location, connection, CPU, precision, etc.). One or more

NFPs can be managed by one NFP policy.

3.4 Integration of Non Functional Requirements

In the previous section, attention is paid to the description of cloud control system from

the view of functionality. Generally speaking, control requirements and functional de-

scriptions of sensing, controlling and actuating services as well as their relationships are

discussed. However, these services are IoT services which are associated to the phys-

ical devices closely. In our different use-cases, location of sensors and actuators may

be considered while defining the input / output of controlling services: this location is

important to get the temperature of the room (in the smart building use case) or of the

manufacturing environment (in the FabLab use-case), to identify the traffic light actu-

ating stem (in our smart transportation use case). Other non functional requirements

such as sensing precision (in the Fablab use case) may also be considered as well when
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selecting the proper controller / actuator. These non functional requirements and con-

text related information may also affect the controlling service itself (for example, in the

FabLab use case, the temperature and humidity may affect the injection control element).

Consequently, NFPs related to the physical constraints should be emphasized and

thus studied in a further step. In the state of the art chapter, some key NFPs defined in

the existing ontologies are picked up. Nevertheless, these original NFPs have not been

processed as some of them (e.g., accuracy and precision) are quite identical

Table 3.1 – Device related Non Functional Properties (NFPs)

NFP name Ontology Sensor/actuator/controller NFP group name
Frequency SSN sensor + actuator + controller System capability

Range SSN sensor + actuator + controller System capability
Precision SSN sensor + actuator + controller System capability

SystemLifetime SSN sensor + actuator + controller
Embedded device

performance

Memory FIPA controller (sensor + actuator)
Embedded device

performance

CPU FIPA controller (sensor + actuator)
Embedded device

performance
Location CISRO sensor + actuator (controller) Physical environment

ConnectionMedia FIPA sensor + actuator + controller Communication
TransmissionLatency FIPA sensor + actuator + controller Communication

Nine NFPs are selected and organized into four main groups (see table 3.1): system

capability describing the device capability (frequency, range and precision) associated to

its interaction with its environment, embedded device owning constraints (CPU, mem-

ory and LifeTime), environmental constraints (location and operation conditions), com-

munication system performance (connection media and communication latency). From

the table, we notice that in general these NFPs can be applied all devices, namely, sen-

sor, actuator and controller. Nevertheless, when a NFP does not plays a key role in a

type of devices, the device type for this NFP is represented in a pair of parenthesis. For

instance, Memory is not so critical when describing a sensor and actuator.

These NFPs can be used in two places. First, when selecting sensing, controlling

and actuating services, they are considered as selection criteria. In our smart building

use case, the sensor and actuator locations are necessary to select the convenient device

to control the temperature in a dedicated room. Second, control application context is

defined thanks to them. Based on this NFP classification, we define four policies, each of

them associated to a dedicated group, to describe the control system execution context

so that the context-aware composition process can be managed.
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3.5 Event Driven Communication

Section 3.2 and 3.3 have focused on the static descriptions of control service. In tradi-

tional service based organisation, the message routing feature proposed by ESB increases

the loosely coupled abilities. Paying attention to the distributed control field, we need

to adapt it in order to maintain this “loosely coupled” feature, allowing a same con-

trol service element to be reused in multiple systems and providing on-demand service

interconnection. Moreover, this control service model needs “reaction requirements”,

leading to complex distributed systems. For example, in our smart transportation use

case, the emergency car trip is used to define the way controllers should exchange mes-

sages and “react" according to the traffic information messages. Similar requirements

have been set for decades for complex telecommunication systems. This has contributed

to event-based protocols definition. Hence we apply the same event-based organisation

to support our distributed control service model [55]. The problem of orchestrating these

involved services is solved via this event driven way. Event driven vision can also pro-

vide control system with features of adaptivity and reactiveness (autonomy). These two

characteristics are essential to a cloud control system. Based on this event driven com-

munication mechanism instead of a fixed invocation or remote procedure calls (RPC), a

loosely coupled control system can be implemented as there are no more fixed service

invocation but only event-based coordination between services.

Figure 3.9 – Event class diagram

An event is either a basic event, or a composite one. A composite event is constructed

of at least two events (basic event or another composite event). Generally, these events

are based on data, the outputs of services involved in the control application. Sensing

service outputs are input variables of controlling services. Controlling service outputs
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are input variables of controlling services themselves or actuating services.The class

diagram specifying the relationship of data and event is illustrated (see Fig. 3.9). An

event can bind services from the distinct nodes. Functionalities of services saved in a

node are so similar that only one of them will invoked at running time. This sorting

task is completed in a dynamic way. When an event is triggered, bound services from

separated node service groups with better performance than the other services in the

same group will be invoked immediately. Activating one sub basic event or all sub basic

events is determined by composition function operator related to this composite event.

A service owns an interface composed of two messages (input and output messages).

The output message is populated of one value while input message is constituted of one

or more values. An output value together with time when it is received will construct

a time-stamped data. According to the data flow described in the block/node diagram,

the matching data object will store it. As a result, “Trigger" function which aims at

triggering related basic events will be invoked after “Store" method is conducted. In

the smart transportation use case, when the emergency car position sensing services

produce a new value, a related event will be triggered, leading to invocation of the route

planning controlling service.

3.6 Control Ontology

As stated in the state of the art, none of the IoT ontologies integrate the different con-

trol elements, nor IoT device interface specification. To overcome this limit, we have

designed a control ontology (see Fig. 3.10), gathering concepts issued from both IoT

ontologies (for sensor, actuator and some of the non functional properties description),

IoT reference model (to capture the IoT interface description), service description from

the OASIS reference architecture to capture the service non functional properties and

automation knowledge [56]. By this way, our ontology integrates a logical specification

of the control system and a description of the physical resources involved while imple-

menting it. To this end, a control system is abstracted as a control service. This service

is described functionally, thanks to a control function, similar to traditional automa-

tion transfer function specification. The controlling function is described recursively

as an operator transforming several operands in an output vector gathering the output

variables. An operand can be defined either as a basic input variable associated to a

sensing system or as the result of another control function (called later data variable).

The controlling function can also include computation parameters that are tuned to fit

the current control context and is associated to a computing service. Both sensors, ac-
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tuators and data variables are associated to units and range to precise their value. The

control function is implemented thanks to a controller which can be implemented either

due to a physical device or a dedicated control service called later “logical device". To

address the physical deployment of this “logical device", we introduced three key device

models, namely sensor, controller and actuator, each of them providing sensing service,

controlling service and actuating service respectively. Device constraints limiting the

functionality service or device can offer are physical environment (such as location) and

physical capability (e.g., memory, CPU, connectivity, energy, resolution) are taken from

classical IoT ontologies. Interactions between physical and logical control components

are achieved by events associated to inputs used by controllers or actuators. As a con-

sequence, these events are also associated to data produced as outputs by sensors or

controllers. By this way, control system functional description (what the system does)

and non functional characteristics (related to the way the job will be processed) can be

described. Intended for a comprehensive understanding of cloud control system, control

ontology is achieved.

Figure 3.10 – Control ontology

In brief, our control ontology is composed of three parts: control service functional

model dedicated to describe control service elements (sensing service, controlling ser-

vice, actuating service and controlled object) integrating their functional characteristics,

non functional property part endeavoring to specify the device capabilities and their sur-

rounding environment, and event part intended to delineate the communication mech-

anism.
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3.7 Conclusion

In this chapter, we have defined how to model a control service through building a

control ontology composed of three modules: control service functional model, non

functional requirements, and event driven communication mechanism. This ontology

describes the cloud control system fully from aspects of control service elements (sens-

ing, controlling and actuating services), their relationships, service selection, compo-

sition and orchestration. Service based control model is evolved from control system

model by integrating the service concept and controller model from the automation

view. NFPs play a important role in selecting sensing, controlling and actuating services

and describing the cloud control system execution context. Event driven communication

as an efficient way control service elements are orchestrated, exchanging events between

them, is chosen.

This ontology shows us what is a control service and provides a comprehensive vo-

cabulary for cloud control system. These basic involved concepts promote the building

of Service Oriented Control Architecture which is targeted to facilitate development of

cloud control application and to support our Control Service registries specification in

chapter 4.
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4.1 Introduction

In chapter 3, we focused on the first research question, i.e. defining and modeling a

control service and a cloud control system. Based on the Control as a Service model we

presented in chapter 3, we have proposed a control ontology, integrating both a static

vision based on functional and non functional properties used to describe requirements

and control services’ behaviors, and a dynamic vision of the control system organisa-

tion based on events, interconnecting control services. This first contribution leads to a
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second research question, i.e. designing a service oriented control architecture to imple-

ment a cloud control system, integrating both the logical control vision and the physical

devices in a loosely coupled way.

A Cloud Control System (CCS) is a distributed control organisation that adapts the

traditional XaaS Cloud model to integrate Control services. As stated in chapter 3, a

control service is composed of sensing, controlling and actuating services, gathering

both software and hardware resources. To support this Cloud Control System vision,

control service elements (sensing services, actuating services and controlling services)

are pre-selected at design time, based on functional and non functional requirements so

that a pre-composition graph associated to the control process “workflow” can be set.

Then, contextual information is used at runtime to select the “best” control service to be

orchestrated dynamically. Thanks to the event-based organisation, control services are

interconnected in a loosely coupled way.

Figure 4.1 – Relationship between control service and cloud control system

To support this Cloud Control System implementation, a service oriented control

architecture for control service is built, gathering both SOA and NIST IoT Reference

Architecture characteristics. On one hand, SOA describes services in an abstract way,

allowing to define logically a control process similarly to business processes, taking ad-

vantage of services reusability to set loosely coupled systems. On the other hand, NIST

IoT reference architecture pays attention to physical characteristics of IoT components,

i.e. sensors and actuators and integrates controlling and sensing modules dedicated to

control description according to its usability. Nevertheless, this reference architecture

lacks of detailing control elements and relationships between them. This may lead to

organize “hard” wired connections between devices, inspired from traditional control

system, or “hard coded” remote procedure calls to implement networked control sys-

tems.

To fill the gap between the NIST “physical” IoT architecture and the SOA logical

world, a Service Oriented Control Architecture will take advantage of the loosely cou-

pled feature provided by services and of the precise physical device model provided by

the NIST RA. Our multi-layer architecture consists in a three main layers:

- The logical layer enriches the NIST IoT reference architecture by organizing devices

logically and providing service artifacts associated to the different components.
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- The Micro service layer implements an interface tier to connect physical devices to

logical services.

- The Physical layer is based on the NIST reference architecture to describe pre-

cisely physical devices. It enlarges the scale of SOA to physical IoT device-based

implementation

To allow context awareness and management, fine-grained device management as well

as contextual adaptation of Cloud Control Systems (CCSs for short) implementation, a

NFP monitoring and governance module is added so that the physical execution context

can be taken into account while orchestrating control services.

Based on this architecture, service selection, composition and orchestration are adapted

to integrate Non Functional Properties, due to the physical control device management.

As discussed in chapter 3, NFPs are introduced to support more precisely control re-

quirements related to the process “hard” characteristics (location, temperature. . . ) that

must be considered while selecting the candidate services to set the pre-composition

graph at design time. At runtime, NFPs are also taken into account to select the “best

candidate” to be orchestrated in a late binding strategy. This requires managing loosely

coupled interactions between control services.

Thanks to our micro-service interface tier, a device artifact is built. This artifact

either produces time-stamped data (for sensing and controlling devices) or consumes

these time stamped data (for controlling and actuating devices). This allows turning

the device hard connection problem to a “soft” and loosely-coupled event-based inter-

connection of control services instead of exact service calls. We organize a centralized

event management for each Cloud Control System, gathering time-stamped data from

the distributed devices, as the micro-service tier provide an interface to the devices.

To support this event-based organisation we adapt the traditional Enterprise Service

Bus to this event-driven control service organisation, including a event manager, used to

generate events from incoming data, a context manager related to our NFP monitoring

and governance module and an event manager in charge of the late binding process,

propagation the different events to the “best” service.

Implementing this Service Oriented Control Architecture, our prototype developed

using Java, MySQL1, MongoDB2, Jena3 and Vertx4 has been used on the different use

cases presented chapter 3. These experiments will be presented throughout this chapter.

1https://www.mysql.com/
2https://www.mongodb.com/
3https://jena.apache.org/
4https://vertx.io/
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Our prototype runs on a MacBook Pro with 2.2 GHz processor, 16 GB Memory, java ver-

sion 1.8.0_171, jena API version 2.6.4, vertx version 3.8.4, mongoDB server version 3.6.5

as well as IntelliJ IDEA 2018.2.5 (Ultimate Edition). Jena is a free and open source Java

framework for building Semantic Web and Linked Data applications. Vertx framework

is selected because it is JVM-based, light-height, reactive and high-performance, and

because it supports reactive programming provides an asynchronous and non-block

communication way. In addition, it owns a basic event bus mechanism and supports

back pressure which is able to manage traffic flow and event congestion. MongoDB as

a NoSQL database that is free and open source cross platform documented oriented is

chosen and its JDBC interface helps to save the data. This chapter is organized in three

parts:

- first we present our multilayer Service Oriented Control Architecture (SOCA for

short) consisting in a logical layer, a micro-service layer and a physical layer,

- second we define the way this SOCA is deployed at design time to achieve the pre-

selection and pre-composition of the sensing, controlling and actuating services

- third, we present the way SOCA is deployed at runtime, using the data manager

to generate events, manage the context and finally orchestrate the services thanks

to a late binding process.

As a result of this architecture and the event-driven orchestration strategy, our SOCA al-

lows designing and orchestrating Cloud Control Systems taking advantage of the loosely

coupled feature.

4.2 SOCA Multi-layer Architecture

We use our ontology to identify the key concepts while designing our Service Oriented

Control Architecture (SOCA for short). To this end, we embed control components

(controllers, sensors and actuators) into micro-services. Micro-service based artifacts

standardizes description of the service interface, i.e. the input data it requires and the

output data it produces. This SOCA (see Fig. 4.2) integrates three layers [55]:

- The physical layer is used to store the control system description based on the

classical automation vision. Besides physical object (controlled object), there are

generic devices associated to infrastructure (gateway) and to traditional control

devices: sensor, controller, and actuator. A physical variable is a property reflecting

the status of the related physical object. From the control point of view, sensor,
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Figure 4.2 – Control as a Service architecture

controller, actuator, physical object are connected using gateways (especially in

the wireless environment) to implement the traditional control loops. Physical

constraints are related to both environmental initial conditions and limitations of

devices’ capabilities.

- The logical layer is populated of services associated to the physical elements such

as control service, sensing service and actuating service. More precisely, a control-

ling service is defined by the mathematical function (transfer function or control

function) specification, its inputs and outputs allowing to connect it to other sens-

ing, controlling and actuating services. The control objective (requirements for

control system and controlled variable) is also connected to the control service.

Service descriptions include both functional information (describing what the ser-

vice implements) and endpoints as well as policies including non functional prop-

erties description. Three IoT services are connected via one controlled variable

belonging to a controlled object. Here, IoT service represents the virtual twin of a

physical CPS device. For instance, one sensing service provides the functionality

of a specific sensor. So do controlling service and actuating service.

- The micro-service layer is used to support the loosely coupled control feature. It

carries out a single point of interaction from the device view. Each micro-service is

associated to a logical service and is generated depending on a project control flow.

Basically, a micro-service behavior consists in 3 steps: waiting for the initial condi-

tion (its input event) associated to the data it has to process, then selecting the best

device depending on the context (late binding feature), to implement the logical

service process and finally checking the device interface to invoke it properly.

Control context consists in both physical and logical contexts. To support Context-
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aware application development, different Control Objectives may be defined to fit dif-

ferent contexts. At runtime, a context manager is in charge of capturing context infor-

mation, consolidating this information to decide if the current control objective must

be tuned or changed. The execution context defined in our architecture is populated

with all context information related to both physical and logical layer entities. Envi-

ronment dependent context is captured in a traditional control engineering approach,

identifying several transfer functions associated to different contexts. In this paper we

focus on NFP-based context description. To support an efficient context management,

we propose to organize these non functional properties (extending the different works

on control ontologies presented in the state of the art section) into five types, namely,

physical environment (e.g., location), embedded device performance (e.g., CPU, mem-

ory, battery life time), communication (e.g., connection media, transmission latency),

data (e.g., realtime controlled variable), system capability (e.g., precision, response time,

frequency). These NFPs are related to both physical constraints and QoS and measured

by NFP monitoring and governance block. A context manager is also included in this

module. When control context is changed, sometimes node instance will be substituted;

sometimes composition graph need to be recomputed.

Persuasively, control does exist in almost every domain and IoT application can be

applied in many fields, such as household industry, manufacturing, transportation (city),

agriculture, medical equipment, and so forth. To apply our service oriented control

architecture in different control applications, three motivating examples are reused and

analyzed in different stages. In the following sections, we will introduce the classical

temperature control as an individual control application in smart home at the design

time. Next, context-awareness control application in smart manufacturing and event

driven interactions in cloud control system in smart transportation are discussed at the

running time.

4.3 SOCA at Design Time

Engineering a control architecture is usually achieved through the following steps: iden-

tifying the requirements, defining the transfer function and organizing the control sys-

tem and the embedded equipment. Compared to this traditional approach, control

service will take advantage of the selection/composition and orchestration of standard-

ized components. Coupled to the Cloud of Thing abilities, this will increase agility,

flexibility, satisfaction. Meanwhile, applying automation method into service leads to

improvement of service composition as composition rule is represented in the form of
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control function. Therefore, control application development process involves in gener-

ating the pre-composition graph and implementing the control service orchestration.

In this section, attention is paid to the pre-composition of the control elements at the

static time. This requires the pre-selection of them and it should be accomplished before

or at the same time. Pre-selection task depends the service registry where services are

stored, control requirements that illustrates the control objectives and block diagram. In

the control objectives, the global control requirements such as response time, static error,

are recorded. In the block diagram, a primitive pre-composition graph is made and each

block in it has its own requirements. To sum up, this section presents service registry,

control requirements and finally the operations of pre-selection and pre-composition.

4.3.1 Service Registry

This subsection is focused on the physical and micro service layers of our service ori-

ented control architecture. These two layers are digital twins. IoT micro services are

encapsulated from the IoT devices. Service registry stores in a centralized way the micro-

services encapsulating the IoT devices. Service registry connects service provider and

service consumer. Service provider publishes services into service registry and service

consumer subscribes for services from it. This service registry is picked from traditional

SOA but has been enriched by integrating control characteristics. It means that service

registry needs to encompass both functional and some of the NFPs. The mechanism of

service registry is implemented thanks to the involved tables, such as “Services", “Sen-

ingServices", “ControllingServices", “ActuatingServices", etc. So we need to discuss the

design of related tables in data base.

Besides the four tables mentioned above (“Services", “SeningServices", “Control-

lingServices", “ActuatingServices"), tables of “ControlPatterns", “NFPs", “Properties",

“R_Services_NFPs" are defined to provide a complete service registry for users to select

services for their control projects. The overview of these eight tables is illustrated in Fig.

4.3.

“Services" (see table 4.1) provides a global identity management for all services.

Service type can be either a sensor, an actuator or a controller. Service endpoint shows

how a service can be accessed. In the table of “R_Services_NFPs" where the identities of

service and NFP are a pair of composite identities. NFPs for each service are described.

Precisely, there are three types of tables, i.e., “SensingServices" (see table 4.2), “Ac-

tuatingServices" (see table 4.3) and “ControllingSerivces" (see table 4.5). The identity of

service (“ServiceID") is the main key in the “Services" and the foreign key in its three
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Figure 4.3 – Basic tables ER diagram

subclasses. The identity of property named after“PropertyID" is defined in the table

of “Properties", a property, e.g., temperature, humidity, must have a unit. The unit of

a property can be a prototype “1". In the “SensingServices" and “ActuatingServices"

tables, “PropertyID" is deemed as a foreign key that shows the property measured and

affected by the sensor and actuator respectively.

Table 4.1 – Services

ServiceID ServiceName ServiceType Endpoint
Service

Provider Note

1 temperature sensor sensor Root/SensingService1/
2 temperature sensor sensor Root/SensingService2/
3 add controller controller Root/ControllingService1/
4 multiply controller controller Root/ControllingService2/
5 humidity actuator actuator Root/ActuatingService1/
6 temperature actuator actuator Root/ActuatingService3/
7 humidity sensor sensor Root/SensingService3/
8 minus controller controller Root/ControllingService3/

Root: http://Localhost:8081/Services

Table 4.2 – Sensing Services

ID ServiceID PropertyID Note
1 1 1 temperature
2 2 1 temperature
3 7 4 humidity

A controlling service can be a single one or the combinations of its sub controlling

services. Its most important feature is control pattern depending on the operators that

are able to connect different operands or other operators’ outputs (see Fig. 3.7 defined
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Table 4.3 – Actuating Services

ID ServiceID PropertyID Note
1 5 4 humidity
2 6 1 temperature

Table 4.4 – Properties

PropertyID PropertyName PropertyUnit Note
1 temperature Celsius
2 displacement meter
3 speed m/s
4 humidity 1

in the chapter 3). In the “ControlPatterns" table (see table 4.6), a control pattern must

own its identity, name and possibly may have a symbol, a fixed number of arities and

a representable function expression. Some basic control patterns (for example, add,

subtract, multiply, divide, and, or, and so on.) and complex ones (such as sigma, pid.)

are defined in it. A service associated to a complex control pattern can be perceived as a

one controlling service and invoked directly. This will simply the pre-selection task for

given complex controllers.

Table 4.5 – Controlling Services

ID ServiceID ConPatID Note
1 3 1 add
2 4 4 multiply
3 8 3 minus

Table 4.6 – Control Patterns

ConPatID ConPatName Symbol Arity
Functional
Expression Note

1 add + 2 a1+a2 plus
3 subtract - 2 a1-a2 minus
4 multiply * 2 a1*a2

6 divide / 2 a1/a2

7 and && 2 a1&& a2

8 or || 2 a1||a2

15 greater > 2 a1>a2

16 greater or equal >= 2 q1>=a2

19 sigma ∑ n a1+a2+. . . +a(n)
20 pid pid 4 PID equation operand *

Conpat : control pattern
PID equation : kp ∗ e(k) + ki ∗∑k

i=0 e(i) + kd ∗ []e(k)− e(k− 1)]
operand * : operand1=e(k), operand2=kp, operand3=ki, operand4=kd, m=1,2. . . n.

In the physical tier of our multi-layer architecture, physical capabilities and envi-

ronment are becoming more and more important to provide adaptive feature for IoT

systems. Based on the Non functional property table (see table 3.1) mentioned in the
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chapter 3, it is easy to design and fill in the “NFPs" (see table 4.7). When a service

is supplied, its NFP descriptions will be included and accessible. Each NFP for each

service, if exist, is specified in the “R_Services_NFPs" (see table 4.8).

Table 4.7 – NFPs (Non Functional Properties)

NFPID Name GroupName Note
1 Frequency system capability
2 Range system capability
3 Precision system capability
4 SystemLifeTime embedded device performance
5 Memory embedded device performance
6 CPU embedded device performance
7 Location physical environment
8 Temperature physical environment
9 ConnectionMedia communication

10 TransmissionLatency communication

Table 4.8 – R_Services_NFPs

ServiceID NFPID NFPValue Note
1 1 1

1 2 -20, 100

1 3 0.1
1 4 2 year
1 5 500

1 6 2 GHz
1 7 30 degree, 40 degree, 5 meter
1 8 WIFI
1 9 0.5 ms
2 1 1

2 2 -20, 100

2 3 0.1
. . . . . . . . .

Our prototype uses MySQL to support the Database storing the registries. In order

to select the data in the data base, data base helper classes are required. Herein we de-

sign a “DBHelper" class (see Fig. 4.4). “GetServices" is designed to select all the services.

“GetServiceIDFromEndpoint" is used to query the service based on the end point ad-

dress. “GetControlPatternIDByConPatName" and “GetControlPatternIDBySymbol" are

used to select the identity of control pattern according to to the control pattern name and

symbol respectively, assisting the pre-selection of controlling services. “GetPropertyID"

can help to match the feature of interest of sensing or actuating service. “GetNFPID-

FromName" is aimed at managing the NFPs via transforming the NFP name to NFP

identity. An example of implementing “GetNFPIDFromName" method is proposed in

Fig. 4.5.

Service registry provides an interface for users to select services they need. It makes

a prerequisite for pre-selecting sensing, actuating and controlling services. Due to it, the
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Figure 4.4 – DBHelper class

Figure 4.5 – Screen shot of “GetNFPIDFromName" method
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pre-selection task of these involved sensing, controlling and actuating services can be

accomplished.

4.3.2 From Control Block Diagram Description to Service Selection Criteria

Service registry shows us where we can find the services. We also need to define the se-

lection criteria first. These selection criteria are extracted from the control requirements.

As a result, this subsection is focused on service requirements, associated to the logical

layer of our SOCA. A block diagram describes the control process initially. For each

block in the block diagram, functional and non functional requirements are set before

carrying out the selection task. In the following paragraphs, we sill use our smart home

use case (see Fig. 3.1 in the chapter 3) to present the control requirements clearly for

temperature control application. As the global controller composed of sub controllers

C1, C2 and C3 is complex, only C2 is focused and considered as the global controller

which applies the proportional control pattern.

In short, requirements for developing a cloud control system consist in a control re-

quirement elaborating the user intentions, and a block diagram describing the primitive

structure of the control application.

4.3.2.1 Control Requirement

Control requirement should explain clearly the following two questions:

1) What is controlled?

2) What is the control objective?

The answer for first question is produced by the controlled object and its properties. The

descriptions of a controlled object are populated its name, location, temperature, humid-

ity, etc. Among them, some named of controlled variables (sometimes environment vari-

ables are necessary) are so predominant that many control objectives are concentrated

about it. The specifications of a controlled variable, including its initial value, steady-

state value, precision, frequency, rising time, peak values including the maximum and

minimum ones, stability extent, are the answer of second question. The relationship be-

tween controlled variable and control objective is that one control objective may involves

more than one controlled variables while controlled variables may have more than one

control objectives.

From our smart home use case, we focus on the temperature control requirement.

Controlled object is room1 and controlled variable is temperature whose unit is Celsius.
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The current temperature is 5 Celsius and steady state value is 25 Celsius. The precision

is 1 Celsius and the steady state error is less than 2 Celsius. The rise time is no more than

5 minutes. The maximum and minimum temperature in the room is 30 and 5 Celsius

respectively. The temperature control system must be stable. In our prototype we use

JSON format to support these different objects description. Fig 4.6 presents the JSON

description of this temperature requirement.

1 { "controlRequirement":
2 { "controlledObject":
3 {"name": "room1",
4 "location":
5 {"longitude":"", "latitude": "", "height": ""}
6 },
7 "controlledVariable":
8 {"type": "temperature", "unit": "Celsius"},
9 "controlObjective":

10 {"domain": "time domain", "timeUnit":"minute",
11 "stability": "stable", "Valuetype":"Integer",
12 "initialValue": 5, "precision":1,
13 "accuracy":
14 {"desiredValue": 25,
15 "stableVauleRange":{"min":23,"max": 27}
16 },
17 "rapidity": {"riseTime":5},
18 "peakValue": {"max":30, "min":0},
19 "frequency":1
20 }
21 }
22 }

1

Figure 4.6 – Control requirement

4.3.2.2 Block diagram

A block diagram works as a business process diagram indicating how data flows in the

control application. A typical block diagram of a single variable (controlled variable)

closed loop control system is presented in Fig. 4.7. Designing a control system consists

in combining sensors, controllers, actuators and a control plant (controlled object) ac-

cording to the user’s requirements. This primitive control block diagram is built based

on the physical characteristics of the control system.

Fig. 4.8 presents the simplified smart home use case, only involving two sensing

services (S1 and S4), one controlling service (C2) and one actuating service (A1). Defini-

tions of S1, C2 and A1 have been presented more precisely (see Fig. 3.1) in the chapter
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1

Target value

1In1 Out1

Controller

In1 Out1

Actuator
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Plant

In1Out1

Sensor 

Figure 4.7 – Block diagram of representation of a typical feedback control system

3. S4 shows the desired value of controlled variable from the user. Possibly, it can be a

web service, such as a web form. So there are only three blocks, a sensor, a controller

and an actuator block (see Fig. 4.9).

Figure 4.8 – Simplified smart home use case

Figure 4.9 – Block diagram for simplified smart home use case

For each block in the block diagram, there are functional and non functional require-

ments. These requirements defines the selection criteria of candidate services for the

block. This leads to the discussion of requirements of sensor, controller and actuator

blocks.

Requirements of Sensor Block. Sensor block is the entrance of block diagram. Re-

quirements of sensor block for our experiment are shown in Fig. 4.10. From the func-

tional view, its feature of interest is temperature. This means that the sensing service

is able to measure the real time temperature. Non functional properties of IoT services

should be taken into account while selecting and composing them. Sensing service S1

should be possessed of at least 500 MHz CPU, 2 MB memory. The Life of it ought to be

one year. It can be connected by WIFI and its transmission latency is around 10 ms.

Requirements of Controller Block. The data of sensor block flows into one or more

controller blocks.Functional description of controller block in the block diagram can be
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1 { "sensor":
2 { "CPU":"500",
3 "memory":"2",
4 "systemLifeTime":"365",
5 "connectionMedia":"WIFI",
6 "transmissionLatency":"10",
7

8 "featureOfInterest":"temperature",
9 "valueSource": "realTime"

10 }
11 }

1 {
2 "CPU":"",
3 "memory":"",
4 "systemLifeTime":"",
5 "connectionMedia":"",
6 "transmissionLatency":""
7 }

1 String str="select ServiceID from R_Services_NFPs where NFPID=’"+nfpID+"’ and
NFPValue <= ’"+nfpValue+"’ and ServiceID in"+

2 "(select ServiceID from R_Services_NFPs where NFPID=’"+nfpID1+"’ and NFPValue
<= ’"+nfpValue1+"’ and ServiceID in" +

3 "(select ServiceID from SensingServices where PropertyID= ’"+propertyID+"’))" ;

1

Figure 4.10 – Sensor block requirement from our smart home experiment

leveraged to specify the control component interface where variables and parameters

are controller inputs and function result is its output. From the view of control compo-

nent, it may be slightly complex so that a basic operator (function) can not completely

describe it. As a result, one control service interface description may be dependent on

more than one function. Each function has a control component (which can result of the

composition of several control components). Slightly complex control component serves

as embedded control system populated with sub elements. To reuse the control compo-

nent especially for a commonly used block, the definition of operator is extended. An

operator can be not only a basic operator (e.g., arithmetic operators or logical operators

), but also typical control pattern (e.g., PID (Proportion, Integration, and Differentia-

tion)). Control pattern of the controlling service can be selected according to the system

characteristics.

An example of controller C2 from our smart home use-case is presented in JSON

format Fig. 4.11. It shows that C2 applies the proportional control pattern represented in

a polish notation way. There are three operands for it. Operand 1 is the output of sensor

block (or sensing service S1). Operand 2 is the desired value of controlled temperature.

Operand 3 is the transmission gain to amplify the difference between operand 1 and

operand 2. Controlling service C2 also has NFPs. To facilitate the selection process, they

are set to be with same sensor block. Note that each operator, operand or the expression

is put in a pair of brackets.

Requirements of Actuator Block. The output of controller block is an input of

another controller block or an actuator block. In the simplified smart home use case

block diagram, there is only one controller. So the controller block (controlling service

C2) produce the input of actuator block. The requirements of actuating service A1 is

specified (see Fig. 4.12). The feature of interest of the actuator block is temperature as
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1 {
2 "controller":
3 {
4 "domain": "time domain",
5 "style": "polish notation",
6 "CPU":"500",
7 "memory":"2",
8 "systemLifeTime":"365",
9 "connectionMedia":"WIFI",

10 "transmissionLatency":"10",
11 "controlPatternName":"p",
12 "mathExp": "((*)((-)()())())",
13 "operandNO":3,
14 "operands":[
15 {"name":"operand1","type":"variable", "semantic":"

output of S1 block"},
16 {"name":"operand2","type":"parameter", "semantic":"

desired value"},
17 {"name":"operand3","type":"parameter", "semantic":"

transimission gain"}
18 ]
19 }
20 }

1 { "controlPattern": {
2 "domain": "time domain",
3 "style": "reverse polish notation",
4 "CPU":"",
5 "memory":"",
6 "systemLifeTime":"",
7 "connectionMedia":"",
8 "transmissionLatency":"",
9 "controlPatternName":"",

10 "controller": { "mathExp": "((*)()(()()(+)))"},
11 "operator": {"name": "multiply", "symbol": "*",
12 "operand1": {"mathExp":"((+)()())",
13 "operator": { "name": "add", "symbol": " + ",
14 "operand1": { "mathExp": "()"},
15 "operand2": { "mathExp": "()"}},
16 "operand2": {"mathExp": "()"}}}
17 }}

1

Figure 4.11 – Controller block requirement from our smart home experiment

well. And non functional requirements of actuator block is the same with sensor and

controller blocks.

1 { "actuator":
2 { "CPU":"500",
3 "memory":"2",
4 "systemLifeTime":"365",
5 "connectionMedia":"WIFI",
6 "transmissionLatency":"10",
7 "featureOfInterest":"temperature"
8 }
9 }

1 { "sensor":
2 { "CPU":"500",
3 "memory":"2",
4 "systemLifeTime":"365",
5 "connectionMedia":"WIFI",
6 "transmissionLatency":"10",
7

8 "featureOfInterest":"temperature",
9 "valueSource": "realTime"

10 }
11 }

1 {
2 "CPU":"",
3 "memory":"",
4 "systemLifeTime":"",
5 "connectionMedia":"",
6 "transmissionLatency":""
7 }

1 String str="select ServiceID from R_Services_NFPs where NFPID=’"+nfpID+"’ and
NFPValue <= ’"+nfpValue+"’ and ServiceID in"+

2 "(select ServiceID from R_Services_NFPs where NFPID=’"+nfpID1+"’ and NFPValue
<= ’"+nfpValue1+"’ and ServiceID in" +

3 "(select ServiceID from SensingServices where PropertyID= ’"+propertyID+"’))" ;

1

Figure 4.12 – Actuator block requirement from our smart home experiment

After introducing the block diagram globally and describing the each sensor, con-

troller or actuator block in it detailedly, we starts to focus on how to represent a block

diagram. The implementation of a block diagram relies on a directed graph showing

the way control data flows In the Fig. 4.13. A graph stores a list of vertexes and a list of

edges. This graph also saves the global control requirement where controlled object and
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control objectives are provided. A vertex is associated to a block in the block diagram.

It is instantiated according to the linked file of requirement, e.g., sensor, controller or ac-

tuator block requirements. The service candidates will store the results of pre-selection

for this block. Edge representing the data flow links two nodes. Head and tail name are

short for starting and ending nodes separately. Based on this use-case, for instance, an

edge shows the data flows from sensing service S1 to controlling service C2. Its semantic

are the output of sensing service S1. An edge will have an bro age if there is another

edge owing the same head name. This linked list can helps to traverse the all edges with

the same starting node. The implementation of this block diagram is shown in Fig. 4.14.

4.3.3 Pre-selection and Pre-composition of Sensing, Actuating and Control-

ling Services

When service registries and requirements of each block in the block diagram are set,

the pre-selection and pre-composition work can be processed. In this subsection, we

need to first select service candidates for each block in the block diagram. One block,

especially for controller block, may be divided into one or more sub blocks. Then, the

pre-composition graph can be produced by completing the edges of newly generated or

originally split blocks.

4.3.3.1 Pre-selection of Sensing, Actuating and Controlling Services

Pre-selection of sensing, actuating and controlling services will associate convenient con-

trol services to vertexes in the block diagram according to the corresponding require-

ments (i.e. requirements associated to the block and globally to the Cloud Control Sys-

tem). Sensor and actuator blocks are elementary blocks and cannot be split. This makes

the pre-selection of sensing and actuating services simple. The pre-selection of con-

trolling service is a recursive procedure as controlling services are defined recursively.

In conclusion, from complexity to simplicity, the pre-selection of controlling services is

discussed first and then that of sensing and actuating services will be analyzed.

Pre-selection of controlling services. According to the definition of control pattern

(see Fig. 3.7 in chapter 3), a controller block requirement (see Fig. 4.11) can be repre-

sented by a tree structure. In this tree organisation, presented in Fig. 4.15, a node is

either an operand or an operator. If it is an operator node, “treeName" may be a com-

posite control pattern (e.g., pid.). So it can be associated to the whole sub tree. Leaf

nodes in the tree are all operands. We use a list to store the different nodes of the tree.

As said previously, we use a recursive process to define the “control pattern tree"
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Figure 4.13 – Block diagram related classes

associated to a controller block. To this end, we have defined a “CreateExprTreeRecur-

sive" method in charge of transforming a controller block requirement into a tree. Based

on the polish notation, separating operators and operands through brackets, it analyses

the control function to identify operators and operand. Each time an operator node is

built, child nodes associated to its operands (either leaf of sub-controller) are set. A final

leaf operand is set when an empty bracket is found. Algorithm 1 defines more precisely
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Figure 4.14 – Screen shot of presenting the smart home use case block diagram

Figure 4.15 – Control Pattern Tree

this process. The final result of constructing this control pattern tree is illustrated in Fig.

4.16.

Based on this expression tree of control pattern, selecting controlling services is also
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Algorithm 1 Create control pattern tree
Input: String mathExp . controller function expression in a Polish notations way.
Output: Node root
1: function CreateExprTreeRecursive(String mathExp)
2: Node root;
3: ArrayList<Node> rootChild;
4: if mathExp.equals(”()”) then . this is a operand leaf node
5: root.symbol = ”operand”; return root;
6: else
7: ArrayList<Integer> splitLoc;
8: Integer bracket=0;
9: operatorFlag=true;

10: StringmathExp1 = mathExp.substring(1, mathExp.length()− 1);
11: . remove an outside pair of brackets.
12: Integerlength = mathExp1.length();
13: for i = 0; i < length; i ++ do
14: if mathExp1.charAt(i) ==′ (′ then
15: bracket ++;
16: else if mathExp1.charAt(i) ==′)′ then
17: bracket−−;
18: if bracket == 0 then . a node or another tree (string) appears.
19: splitLoc.add(i);
20: if operatorFlag then . the first one is an operator due to the usage of polish notation.
21: operatorFlag = f alse;
22: root.symbol = (mathExp1.substring(1, i)); . set the symbol of the operator node.
23: nodeArrayList.add(root)
24: else
25: if mathExp1.length() > i then
26: Integer lowBound = splitLoc.get(splitLoc.size()− 2);
27: String str = mathExp1.substring(lowBound + 1, i + 1);
28: Node operand = CreateExprTreeRecursive(str);
29: rootChild.add(operand);
30: operand.parent = root;
31: end if
32: end if
33: end if
34: end if
35: end for
36: root.childList = rootChild;
37: end if
38: return root;
39: end function

a recursive procedure. The details of this procedure is illustrated in algorithm 2. When

a new vertex is generated and added into the vertex list in the graph, the edge two

controlling vertexes in the graph should be added. For operand node in the control

pattern tree, no vertex will be generated. This may change the edges relationships when

one controlling vertex are divided into several ones. Pre-selection of controlling service

depends the related tables, e.g., “ControlPatterns", “ControllingServices", etc. The result

shows that both multiply controller (identity number is 4) and minus controller (identity

number is 4) are selected. The pre-selection result of controlling service is shown in Fig.

4.20. Controller block has been split into two vertexes C2 and C2-1. Nevertheless, new
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Figure 4.16 – Screen shot of showing the control pattern tree under construction from
the controller requirement in our smart home use case

C2 is only a multiply controller instead of the previous proportional control pattern.

C2-1 is a minus controller. Once the pre-selection task is accomplished, each node in

it should point to one or more services/objects. Sensor S1 has tow service candidates

whose identities are 1 and 2 while actuator A1 has only one service candidate with an

identity of 6. Each of controller vertexes C2-1 and C2 owns one service candidate. C2

vertex stores a multiply controller recognized by service identity 4. An minus controller

whose identity is 8 is saved in the C2-1 vertex. C2-1 is a sub node of C2. This means that

C2-1 points to C2 node. Based on different experiments on our smart home use-case,

the average cost of pre-selecting controlling services is 3.7 ms (see table 4.9).

Pre-selection of sensing services. The selection of sensing services relies on non

functional properties and the controlled variable as the functional descriptions. Con-

trolled variable can be measured by sensing services. A typical selection query of sens-

ing services is shown in Fig. 4.17. The selection pattern explains the standard of pre-

selecting sensing services. The query code in a Java language considers the relationships

of related data tables. An example of pre-selecting sensing service (“GetSensingSer-

vices") involving with two NFPs is illustrated in Fig. 4.18. The result of this operation

used in our smart home experiment is that there are two sensors: one is sensing service

1 while the other is sensing service 2 (see Fig. 4.20). The cost of this procedure is 2.4 ms

(see table 4.9) according to our experiments using the simplified smart home use case.

Pre-selection of actuating services. Selecting actuating services also depends on the
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Algorithm 2 Pre-selection of controlling service
Input: Graph graph, Vertex vertex, Node root . block digram, controller vertex and controller tree
1: function SelectControllingServices(Graph graph, Vertex vertex, Node root)
2: if root == null then return ;
3: end if
4: if root.childList() == null then return ; . an operand leaf node.
5: else
6: String treeName=root.treeName;
7: if treeName.trim().toString()! = ”” then
8: Integer conPatID= DBHelper.GetControlPatternIDByConPatName(treeName);
9: result=GetControlServicesByControlPatternID(conPatID);

10: if 0!=result.size() then
11: vertex.serviceCandidates = result;
12: return ;
13: end if
14: end if . find the current root node and its child nodes
15: StringoperatorName = root.symbol;
16: IntegerconPatID = DBHelper.GetControlPatternIDBySymbol(operatorName);
17: result = GetControlServicesByControlPatternID(conPatID);
18: vertex.serviceCandidates = result;
19: ArrayList < Node > rootChild = root.childList;
20: for k = 0, m = 1; k < rootChild.size(); k ++, m ++ do
21: Edge edge=new Edge();
22: edge.tailName=vertex.verName;
23: if rootChild.get(k).childList.size()>0 then . ensure this is a operator node
24: Vertex vertex1=new Vertex();
25: vertex1.verName=vertex.verName+"-"+m;
26: edge.edgeName =vertex1.verName+"->"+vertex.verName;
27: edge.headName=vertex1.verName;
28: edge.broEdge=vertex1.edgeLinkNext;
29: vertex1.edgeLinkNext =edge;
30: graph.vertexArrayList.add(vertex1); . insert newly generated vertex1 into graph
31: SelectControllingServices(graph, vertex1, rootChild.get(k));
32: else
33: edge.edgeName=rootChild.get(k).symbol; . symbol = "operand"+"k"
34: edge.semantic=ControllerHelper.GetSemantic(edge.edgeName);
35: end if
36: graph.edgeArrayList.add(edge);
37: end for
38: end if
39: end function

both functional and non functional requirements. Controlled variable can be affected

by actuating services. A classical query of selecting actuating services is exhibited (see

Fig. 4.19). The implementations are similar to that of sensor (see Fig . 4.18). Several

“GetActuatingServices" methods are defined to deal with the different number of non

functional property parameters, e.g., 0, 1, 2. There is one temperature actuator available

whose identity number is 6 (see Fig. 4.20). The average cost for the query of actuating

service is 1.6 ms (see table 4.9) according to our experiments using the simplified smart

home use case.
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1 Select services where service type = sensor
2 and property = feature of interest
3 and NFP ...

1 String str="select ServiceID from R_Services_NFPs where NFPID = ’"+nfpID+"’ and
2 NFPValue <= ’"+nfpValue+"’ and ServiceID in"+
3 "(select ServiceID from R_Services_NFPs where NFPID = ’"+nfpID1+"’
4 and NFPValue <= ’"+nfpValue1+"’ and ServiceID in" +
5 "(select ServiceID from SensingServices where
6 PropertyID = ’"+propertyID+"’))" ;

1 String str="select ServiceID from R_Services_NFPs where NFPID = ’"+nfpID+"’ and
2 NFPValue <= ’"+nfpValue+"’ and ServiceID in"+
3 "(select ServiceID from R_Services_NFPs where NFPID = ’"+nfpID1+"’
4 and NFPValue <= ’"+nfpValue1+"’ and ServiceID in" +
5 "(select ServiceID from ActuatingServices where
6 PropertyID = ’"+propertyID+"’))" ;

1

(a) selection pattern.

1 String str="select ServiceID from R_Services_NFPs where NFPID = ’"+nfpID+"’ and
2 NFPValue <= ’"+nfpValue+"’ and ServiceID in"+
3 "(select ServiceID from R_Services_NFPs where NFPID = ’"+nfpID1+"’
4 and NFPValue <= ’"+nfpValue1+"’ and ServiceID in" +
5 "(select ServiceID from SensingServices where
6 PropertyID = ’"+propertyID+"’))" ;

1

(b) query code

Figure 4.17 – Pre selection of sensing services

Figure 4.18 – Screen shot of “GetSensingServices" method

4.3.3.2 Pre-composition of Sensing, Actuating and Controlling Services

The final result of this stage is the pre-composition graph, which is used by the com-

position engine. A pre-composition graph is originated from a block diagram which is

described by a “Graph” data structure. It is generated by the service pre-selection ac-

cording to the control function analysis. After pre-selection of services for each node in

the block diagram, the pre-composition graph is almost built. This means some newly

generated controlling vertexes are added into the block diagram. The edges between

them will be added at the same time. However some edges connecting sensor and con-
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1 Select services where service type = sensor
2 and property = feature of interest
3 and NFP ...

1 String str="select ServiceID from R_Services_NFPs where NFPID = ’"+nfpID+"’ and
2 NFPValue <= ’"+nfpValue+"’ and ServiceID in"+
3 "(select ServiceID from R_Services_NFPs where NFPID = ’"+nfpID1+"’
4 and NFPValue <= ’"+nfpValue1+"’ and ServiceID in" +
5 "(select ServiceID from SensingServices where
6 PropertyID = ’"+propertyID+"’))" ;

1 Select services where service type = actuator
2 and property = feature of interest
3 and NFP ...

1 String str="select ServiceID from R_Services_NFPs where NFPID = ’"+nfpID+"’ and
2 NFPValue <= ’"+nfpValue+"’ and ServiceID in"+
3 "(select ServiceID from R_Services_NFPs where NFPID = ’"+nfpID1+"’
4 and NFPValue <= ’"+nfpValue1+"’ and ServiceID in" +
5 "(select ServiceID from ActuatingServices where
6 PropertyID = ’"+propertyID+"’))" ;

1

(a) selection pattern.

1 String str="select ServiceID from R_Services_NFPs where NFPID = ’"+nfpID+"’ and
2 NFPValue <= ’"+nfpValue+"’ and ServiceID in"+
3 "(select ServiceID from R_Services_NFPs where NFPID = ’"+nfpID1+"’
4 and NFPValue <= ’"+nfpValue1+"’ and ServiceID in" +
5 "(select ServiceID from SensingServices where
6 PropertyID = ’"+propertyID+"’))" ;

1 String str="select ServiceID from R_Services_NFPs where NFPID = ’"+nfpID+"’ and
2 NFPValue <= ’"+nfpValue+"’ and ServiceID in"+
3 "(select ServiceID from R_Services_NFPs where NFPID = ’"+nfpID1+"’
4 and NFPValue <= ’"+nfpValue1+"’ and ServiceID in" +
5 "(select ServiceID from ActuatingServices where
6 PropertyID = ’"+propertyID+"’))" ;

1

(b) query code

Figure 4.19 – Pre selection of actuating services

Table 4.9 – Costs of Pre-selecting services

Service type Sensing service Actuating service Controlling service
Cost (ms) 2.4 1.6 3.7

Figure 4.20 – Screen shot of pre-selection result

troller vertex may be changed. Hence in the pre-composition stage, these relationships

should modified. A “ModifyEdge” method is defined in the class of pre composition

graph. The algorithm of modifying edges to complete a pre-composition graph is illus-

trated in algorithm 3.
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Algorithm 3 Modify edges for nodes in the pre-composition graph
1: function Modify(Block diagram: graph)
2: for each controller block in the block diagram do
3: for each edge pointing to this controller block do
4: if the operand semantic of a new sub controller equals to that of egde then
5: modify the edge tail node to the new controller node.
6: end if
7: end for
8: end for
9: end function

Eventually, a block diagram becomes a pre-composition graph although by chance

they are the same. A pre-composition graph for the simplified smart home use case

(see Fig. 4.21) is produced from its block diagram (see Fig. 4.9) after the pre-selecting

sensing service S1, actuating service A1 and controlling service C2. S1 vertex redirects to

the C2-1 instead of previous C2. C2 receives the inputs from the C2-1 and removes the

connection with S1. Once the composition graph is built, a full pre-composition graph

will be attained (see Fig. 4.21). Information of Vertexes are stored in the “Nodes" data

table. For each node, the service candidates are saved in the “PCR" data table. These

two operations are achieved in the “UpdateDB" function and the implementation details

of pre-composition is exhibited in Fig. 4.22.

Figure 4.21 – Pre-composition graph for simplified smart home use case

4.3.4 Event Management

The event-driven Cloud control system relies on a data manager in charge of generating

events and on an event manager in charge of activating the control services waiting for

events as soon as the corresponding event occurs. An event is either a basic event or a

composite one. The classes defined for them in the format of UML is illustrated in Fig.

4.23. A basic event can be related to more than composite events. An composite event

is involved in at least two basic events. We can see that an event can be subscribed by

one or more groups of service candidates. At running time, only one is chosen to work
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Figure 4.22 – Screen shot of pre-composition result

in each group.

“EventInit” class (see Fig. 4.24) is defined to define basic events and composite events

and bind services candidates to events, based on the pre-composition graph. “input-

Nums” and “outputNums” are two assisted properties aimed at calculating the number

of inputs and outputs for each node in the pre-composition graph. The definition of

basic events are dependent on the number of inputs of a vertex in the pre-composition

graph. If a vertex has an output or if there is an edge starting from the it, a basic event

will be defined for it. The definition of composite events relied on the number of inputs

of a vertex. When there are more than one vertex points to a specific one, a compos-

ite event should be this vertex. Hence the activation of a composite event relies on its

involved basic events.

The binding process connecting services to events is based on the pre-composition

graph, e.g., a pre-composition graph for simplified smart home use case (see Fig. 4.21).

From the input angle, if there is only one vertex (C2) pointing to this vertex (A1), services

stored in this vertex (A1) will be bound to the basic event (ebC2) defined by previous

one (C2). If there are more than one vertexes flowing to one vertex(e.g., named after

N), a composite event (ecN) must be defined and the services bound to this vertex
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Figure 4.23 – Event structure

will be bound to this composite event. Meanwhile, basic events related to them will

be perceived as input events of this composite one. It is noted that sensing service is

launched by control application itself, and there is no defined event for actuator vertexes

as they have no output. The algorithm of binding services to events is shown in the

below (see algorithm 4). The implementations of defining basic and composite events

and binding services to them is presented in Fig. 4.25 where our prototype is used on

our smart home experiment.

4.4 SOCA at Running Time

To support our SOCA at running time, we need to describe how the sensing, controlling

and actuating services interact, and are orchestrated. Control service bus will specify
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Figure 4.24 – EventInit Class

Algorithm 4 Bind services to events
Input: Graph graph . a pre-composition graph
1: calculate the number of inputs (inputNums) and outputs (outputNums) of each vertex based on

graph.edgeArrayList.
2: for each vertex in the graph do . define basic events
3: if vertex.outputNums >= 1 then
4: define a basic event eb (eb+vertex.verName) and eb.vertexHasOutput=vertex.
5: end if
6: end for
7: for each vertex in the graph do . define composite events
8: if vertex.inputNums > 1 then
9: define a composite event ec (ec+vertex.verName).

10: for each vertex1 points to the vertex do
11: find the basic event eb1 related to the vertex1.
12: ec.basicEvents.add(eb1).
13: end for
14: end if
15: end for
16: for each vertex in the graph do
17: if vertex.inputNums == 1 then . bind services to the basic event
18: find the basic event eb related to the vertex pointing to the current one.
19: eb.boundServices.add(vertex.serviceCandidates);
20: else if vertex.inputNums > 1 then . bind services to the composite event
21: find the composite event ec related to the current vertex.
22: ec.boundServices.add(vertex.serviceCandidates);
23: end if
24: end for

this running time process conceptually. Thanks to our micro-service artifact tier, logical

services do not need to take into account specific interfaces of the CPS devices they

will use. Moreover, to support the loosely coupled feature, we organize the service

orchestration in an event driven strategy. Due to this event-driven strategy and to the

micro-service artifact created for each IoT device that may interact in a Cloud Control

System, services do not invoke each other directly: the data produced by a control
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Figure 4.25 – Screen shot of event initialization

service (sensing service or controlling service) is turned into an event. The context

manager hosts a late-binding function to select the “best" service candidate waiting to

this event and launches it. By this way, our Cloud Control System can fit the context-

aware requirement.

4.4.1 Control Service Bus

From control system design space to runtime space, Control Service Bus (CSB) provides

an implementation for our SOCA. Given the increasing of transmission speed of commu-

nication and computing capabilities of processor in the distributed environment, event-

triggered control instead of traditional periodic control attracts attention from academia

and industry, and it can be applied in IoT context [59]. This event-driven orchestration

“firing" services depending on input events is integrated in our control service bus to

support the distributed control application execution (see Fig. 4.26). Event manager

provides control system a reactive feature. Orchestrator will select the optimal service

for each node in the pre-composition graph, thanks to the decision or constraint from

context manager monitoring services. Sometimes, the control application needs to be re-

composed once execution context change is detected by the context manager, providing
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a self-autonomous control feature.

Figure 4.26 – Control service bus

4.4.2 Event-based Orchestration

When an event is triggered, the late selected service(s) via late binding will be called.

The “Invoke" method defined in the “Event” class will be called by the event manager to

invoke its bound services. In Fig. 4.27, we see that this method depends on the function

“GetHelp” specified in the “ClientHelper" class to implement the RPC (via http).

Figure 4.27 – Event invocation-assisted diagram

Each event manager manages some events shared on the control service bus (see Fig.

4.28). Generally speaking, an event manager is responsible for an individual control

system. Through naming mechanism of events and event managers, we can easily find

the precise event manager based on a event message. Regarding a control system, the

event manager begins with “StartSensingServices” defined in the “EventManagerInit”

class. When these sensing services are invoked, their outputs will trigger all of basic

events related to sensing nodes in the pre-composition graph for the current control

system, leveraging the method “FromDataToBasicEvent”.

The method “FromDataToBasicEvent”is described as follows (see Fig. 4.29).
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Figure 4.28 – EventManager and EventManagerInit classes

Step 1: Event manager receives the data message from a service whose URL is reachable.

Step 2: Through it, the identity of the service could be achieved, making use of the “Get-

ServiceIDFromEndpoint” method in the “Services" data table.

Step 3: The identity of node (vertex) can be retrieved based on the result of step 2, depend-

ing on the “PCR" table where there are a combinational primary key ( ServiceID

and NodeID).

Step 4: The node name can be easily to get leveraging the node identity number in the

“Nodes" table.

Step 5: A basic event name constructed with a prefix “eb” and the node name can be

acquired.

Step 6: Through event registry, the basic event can be selected and triggered.

Figure 4.29 – Workflow of a data triggering the basic event
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To fulfill the loosely coupled event driven principle, we also introduce a data man-

ager in our control service bus. Data manager can store the data sent by sensors or

exchanged by controllers. Then, it will trigger basic events associated to a given data

availability whereas these basic events are used to trigger composite events. For instance

in Fig. 4.30, data manager, run in our smart transportation use case experiment, interacts

with “SensingService1", publishes the basic event related to it and save its data. Basic

events are triggered and published together with data message on the control service

bus leveraging the Event bus provided by the Vertx. The method “Consume” monitors

all events and dispatch them to the corresponding services. If the received event is a

basic one, “PropagateEvent” method will be called to check the triggering condition of

its involved composite events. When the condition is satisfied, the composite event will

be triggered and polished on the control service bus. Another important job is to invoke

the service subscribing to this event. Then according to these outputs, “FromDataToBa-

sicEvent” will be invoked to trigger basic events related to them and publish them on

the service bus. The event interaction diagram is illustrated in Fig. 4.31. Services bound

to events will be launched immediately when the corresponding events are triggered

[55].

Figure 4.30 – Screen shot of data manager

To evaluate the distributed control application applying event driven orchestration,

we also experiment our prototype for the emergency car use case (see Fig. 4.32). Control-

ling services consisting of route planning controlling service and traffic light controlling

service, and control service bus comprised of data manager and event manager are de-

ployed on a cloud server. Virtual Machines (VMs), each of which represents a sensing

or actuating service, communicate with the cloud server through different transmission
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Figure 4.31 – Event interaction diagram

media (e.g., ADSL(Asymmetric Digital Subscriber Line), 4G and wired fiber). Logi-

cally distributed VM 1, 2, 3 are visualized from camera capturing sensing service, traffic

light actuating service, and GPS sensing service respectively. The prototype is imple-

mented under the environment where Idea IntelliJ IDE, Vertx framework and MongoDB

database are selected and installed.

Figure 4.32 – Emergency car leading control prototype

Compared to physically connected control application, our cloud based and event

driven one has to pay attention to delays since control architecture must take into ac-

count the different delays to assess the control system performance and to check if

physical constraints can be met. From our loosely coupled distributed control architec-

ture point of view, three different delays may affect the global control performance: data

communication, data management (i.e. the time necessary to store the data and launch

the first basic event) and event management (i.e. the time consumed by the process in

charge of launching all events that can be activated once a new basic event is produced)

as these three components impacts the control process.

Here, we pay attention to communication delay, which takes a major role in the

control application performance especially when images need to be transferred. Com-

munication time of different transmission media (wired fiber, ADSL 128 k/s and 4G)

are tested. Images manufactured by cameras are transferred through ADSL with the
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speed of 128 k/b and three images are bound as one data package. GPS sensing ser-

vice is mapped from embedded system in the emergence car and is accessed through

4G. Smart lights are configured after receiving control signals through wired fiber. We

take 64 characters as a short message size between cloud server and VM 1, and VM

3. 35 samples are extracted, processed and illustrated in table 4.10. All these measures

show that our distributed event-driven control architecture can fit most of the controlled

systems delays.

Table 4.10 – Delay of communication

test type mean unit variance
Commu-
nication

delay

ADSL 128k/s image 6.2 s 0.6
4G short message 33.5 ms 15.7

Wired fiber short message 9.4 ms 1.9

Delay time of Data Manger and Event Manager must be measured since they will af-

fect the system performance (e.g., stability). The communication between Data Manager

and services is event driven as well and called communication event. In our prototype

for event driven orchestration, Event Manger class is implemented to support the com-

posite event firing. Architecture of prototype (see Fig.4.33) shows that data time is the

delay which data manager uses to store the received data and trigger corresponding ba-

sic event; event time is spent by event manager to trigger one or more composite events

based on the former basic event.

Figure 4.33 – Prototype architecture

As is described in this smart transportation use case, a simplified pre-composition

graph for emergency car use case is shown in Fig. 4.34. S1 represents the position sens-

ing service while S2 stands for camera sensing service. C1 and C2 are route planning

controller and traffic light controller respectively. A1 indicates the traffic light. So the

events defined for this use case and relationships among services, data manager and

event manager is shown in table 4.11. Data Manager subscribe the all sensing and ac-

tuating services. There are four basic events, i.e., eb1, eb2, eb3 and eb4 defined by the

data manager according to the output of “SensingService1", “SensingService2", “Con-

trollingService1",“ControllingService1" respectively. Moreover, two composite events,

ec1 and ec2 generated to invoke “ControllingService1" and “ControllingService2" sepa-

rately, are activated depending on the three basic events, i.e., eb1, eb2, and eb3.
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Figure 4.34 – A pre-composition graph for smart transportation use case

Table 4.11 – Event Relationships among entities in smart transportation use case

Service name Subscribed event name Produced event name
SensingService1 sensingService1

SensingService2 sensingService2

ControllingService1 ec1 controllingService1

ControllingService2 ec2 controllingService2

ActuatingService eb4

DataManager

sensingService1 eb1

sensingService2 eb2

controllingService1 eb3

controllingService2 eb4

EventManager
eb1

ec1

ec2

eb2 ec1

eb3 ec2

Fig. 4.35 reports one of the experiments from our emergency car use case. To mea-

sure the cost of data manager and event manager, we deploy these services locally and

link them in a fixed way, without the loosely coupled RPC invocation. The experiment

result (see table 4.12) shows that on average the delay of Data Manager and Event Man-

ager is 1.0 ms and 0.2 ms. If the control service execution time reaches to 500 ms, the

delay of event manager receiving this controlling service output requires 2 s. In con-

clusion, our solution for designing cloud based control application can be feasible for

most controlling service. For some long lasting controlling service, a delay compensa-

tion block or optimized event management module is recommended and added into the

global control application.

Table 4.12 – Delay of data manager and event manager

delay type mean unit variance
data manager delay 1.0 ms 0.4
event manager delay 0.2 ms 0.2

4.4.3 Context Aware Cloud Control System Context Management

As said previously, the control process is governed according to the context. Thus, we

propose a complete policy file integrating five sub policy files, leveraging all NFPs listed

in the table 3.1. NFPs violation rule is set to evaluate whether there is a conflict between
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Figure 4.35 – Screen shot of reporting one of our smart transportation experiments

different policies and/or between one unified policy and QoS in SLA (Service Level

Agreement) in order to integrate these Non Functional Requirements (NFRs). Including

a context monitoring part and a context-aware control manager, the context manager

takes a major part in our architecture [54]. The context-aware context manager integrates

three functions:

1) NFPs aggregation rule merges NFPs, consolidating NFRs for each node issued

from the whole control system.

2) NFPs violation detection relies on a policy matching process to detect if a service

“promising" a Non Functional property matches the NFRs or if these requirements

are conflicting

3) NFPs priority rule is dedicated to attaching weighed value to each NFP and being

able to sort the service candidates in the pre and final selection steps.

In order to integrate these NFRs in the orchestration processes, our context-aware

orchestration process consists in several steps, deployed either at design time or at run-

time:

1. Attaining a composition graph following control process specification of control

block diagram.

2. Capturing context requirements by aggregating policies to set a consistent require-

ments policy.

3. Achieving policy matching between requirements and QoS policies associated to

the different candidate services for violation detection.
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4. Refining selection according to a matching process between the aggregated re-

quirements policy and the different candidate services non functional policy de-

scription.

5. Ranking the remaining candidates according to the context multi-criteria evalua-

tion function and performing the late binding operation to launch the “best" ser-

vices, paying attention to the integration of the necessary mediation services and

communication services (if necessary) in the composition graph.

6. Selecting and parameterizing the corresponding NFP monitoring services.

Policy aggregation usually happens on “middle nodes" as one policy is required

from the previous node while the other is demanded from the next node, requiring

invoking the NFP aggregation function. At run time, comparing the “promised" NFP

with their current achievement level is achieved thanks to monitoring services, selected

and launched while selecting the service candidate. These monitoring services are used

to capture information on surrounding environment, communication, embedded device

performance, data, system capability, of control system. The aggregation function de-

fined in table 4.13 will be invoked to achieve one merged policy. An example of policy

file (original) is shown in rdf/turtle format (see List 4.1).
<http://somewhere/Service2/>
a usdl:service ;
csiro:hasLocation "30 degree,40 degree,5 meter";
fipa:hasCPU "2 GHz" ;
fipa:hasConnectionMedia "WIFI" ;
fipa:hasMemory "50 MB" ;
usdl:RealtimeControlledVariable
"temperature 2 celsius" ;
usdl:hasTransmissionLatency "0.5 ms"
ssn-system:hasFrequency "2 ms" ;
ssn-system:hasPrecision "0.1" ;
ssn-system:hasRemaningSystemLIfeTime "2 year";
ssn-system:hasResponseTime "0.5 ms";

Listing 4.1 – Example of policy file picked from the smart factory use-case experiment

Table 4.13 – Aggregation functions

NFP name Req Aggregation (Req1, Req2)
frequency return max(Req1.frequency, Req2.frequency)
responseTime return min(Req1.responseTime, Req2.responseTime)
precision Return min( Req1.Precision, Req2.Precision)

remaingSystemLifetime
return max(Req1.remainingSystemLifeTime,

Req2.remainingSystemLifeTime)
memory return max(Req1.memory, Req2.memory)
CPU return max(Req1.CPU, Req2.CPU)
location return Req1.location

connectionMedia
if (Req1.connectionMedia = Req2.connectionMedia)

return Req1.connection
else return communicationServiceMark = 1;

transmissionLatency return min(Req1.transmissionLatency, Req2.transmissionLatency)

Policy matching is similar to policy aggregation. After NFPs aggregation task is fin-
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Table 4.14 – Comparison functions

NFP name bool Comparison (Req, QoS)
frequency return Req.frequency < QoS.frequency
responseTime return Req.responseTime > QoS.responseTime
precision return Req.precision > QoS.precision

remaingSystemLifetime
return Req.remainingSystemLifeTime <

QoS.remainingSystemLifetime
memory return Req.memory < QoS.memory
CPU return return Req.CPU < QoS.CPU
location return Req.location ≈ QoS.location

connectionMedia
if (communicationServiceMark = 1) ‖ (Req.connection ! = QoS.connection)

call communication service; return 0;
else return 1;

transmissionLatency return Req.transmissionLatency > QoS.transmissionLatency

ished, violation detection for every NFP should be accomplished. Violation detection

task relies on comparison function defined in the table 4.14. The comparison function

is called to check whether there is any violation on NFPs. If there is no contradictory

NFP for all NFPs between merged policies from the policy aggregation step and pol-

icy defined in the SLA of the given node. Otherwise, the precise service should be

substituted.

Late binding is intended to bind the node from the composition graph with most ap-

propriate service/object selected from the refined group correspondingly. The optimal

candidate is achieved depending on the ranking function provided by context manager.

Orchestrator will mark the “best" service for each node(see the sequence diagram Fig.

4.36)

Figure 4.36 – Orchestrator working sequence diagram

Based on our prototype, we also experiment context-aware orchestration on the smart

factory use case. We present hereafter the context-aware orchestrator performance analy-

sis. Here, it is used to specify the NFPs from views of requirements and service qualities
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(see List 4.1). Fig. 4.37 presents the screen shot associated to the policies agregation and

matching process.

Table 4.15 shows that the time cost of policy aggregation and matching does not

make much difference when the number of NFPs changes from 1 to 10. The mean time

cost of policy aggregation functions is less than 6 µs while that of policy comparison is

less than 5 µs, invoking them 10 times respectively. In fact, the cost is mostly due to

the database access and NFP instance construction. If just running each policy once, the

result is easy to disturb. Once the policy is built, the policy matching and/or aggregation

costs are very low, allowing the late binding and context-aware orchestrator integration

as a cloud-based component.

Table 4.15 – Costs of aggregation and matching policy

Policy name

Mean time(µs) NFP number
1 5 10

Aggregation policy 5.6 5.9 4.6
Matching policy 4.0 4.0 4.2

Figure 4.37 – Screen shot of reporting the policy aggregation and matching process
execution

4.5 Conclusion

In this chapter, we have presented our multi layer service oriented control architec-

ture. One one hand, it connects logical and physical world closely, integrating different
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architectures, i.e., SOA, enterprise ontology, Business Process, NIST IoT Reference archi-

tecture. On the other hand, it facilitates the development the context aware and event

driven cloud control system.

At design time, we focus the pre-selection and pre-composition of sensing, control-

ling and actuating services. Before selection, service registry and requirements for each

module of them are given. After pre-selecting of each block (sensor, controller and ac-

tuator) in the block diagram, a pre-composition graph where each node stores no less

than one service candidate is attained. , a simplified smart home use case is analyzed

To evaluate pre-selection and pre-composition of invovled sensing, controlling and ac-

tuating services.

At running time, control service bus integrating event manager and context man-

ager is proposed. An event driven cloud control system can be implemented thanks to

the event manger. An adaptive and optimal cloud control system are targeted as the

context manger can help to make the late binding feasible and reorganize the control

application.
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Chapter 5
Conclusion

Industry 4.0 premises the research environment where distributed models, architectures

and systems that can cooperate with each other are required in this collaborative world

thanks to the support of IoT and cloud computing techniques. Entering into control

field, cloud control system as a new generation of control system based on networked

control system is proposed to embrace the idea of control service because of the follow-

ing two reasons: 1) usage rate of devices can reach to its maximum as much as possible

due to the shareability on the Internet; 2) cost of energy / economy may fall to its min-

imum as possible as enterprise requires thanks to global optimization and scheduling.

Cloud control system also brings some challenges: 1) how to model involved sensing,

controlling and actuating services in a unified way; 2) how these services interact to

exchange the information; and 3) how it can be adaptive to meet the customized user’

requirements and fast changing environment. This may be similar to the way traditional

Business Processes are engineered, as shown in chapter 2. On one hand, enterprise ar-

chitecture frameworks and Service Oriented Architecture provide a strong background

to set adaptive and loosely coupled systems. Nevertheless, although products and in-

formation on the production process are introduced in RAMI 4.0, these models lacks of

taking into account the physical devices supporting the control process. On the other

hand, IoT reference architectures and current Cloud Control systems are mostly focused

on CPS description and pay a poor attention on the way they can be composed and

orchestrated to support real reusable Control as a Service feature. To overcome these

limits, we have first defined a Control as a Service model, gathering functional and non

functional requirements. To allow users to identify clearly these CaaS elements, we have

proposed a complete ontology gathering requirements, devices and process information.

Then our Service Oriented Control Architecture integrates both traditional SOA and IoT
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reference models to support a consistent organisation of the Cloud Control System. By

adapting the service selection, composition and orchestration of these control services

to support contextual and event-driven orchestration, our architecture provides a strong

support to design and orchestrate Cloud Control systems.

Based on our current work, there are still aspects that needs to be further investi-

gated:

- First, we have focused on Cloud control without detailing the way controllers are

designed. To overcome this first limit, design of discrete controller in a distributed

environment and complex situations, e.g., data package loss, communication delay,

system frequency, non linear system ought to be researched. This is the prerequi-

site of Cloud control in this thesis.

- Second, the definition of control pattern is limited to one output although an ab-

stract controller may have multi outputs. To solve this limit, the controller model

should be enriched. Currently, state function is persuasively applied to analyze

and design control system. As a consequence, the controller model represented by

state function can be more reasonably.

- Third, our event organization is currently centralized. In order to increase CaaS

reusability and shareability (as for other Cloud components), decentralized event

organisation is requested.
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