Thèse soutenue

Boîtes quantiques non-intrusives à base de CdSe pour la mesure de la pression et de la température dans des contacts lubrifiés

FR  |  
EN
Auteur / Autrice : Tarek Seoudi
Direction : David PhilipponPhilippe Vergne
Type : Thèse de doctorat
Discipline(s) : Mécanique
Date : Soutenance le 20/02/2020
Etablissement(s) : Lyon
Ecole(s) doctorale(s) : Ecole doctorale Mécanique, Energétique, Génie Civil, Acoustique (Villeurbanne ; 2011-....)
Partenaire(s) de recherche : établissement opérateur d'inscription : Institut national des sciences appliquées (Lyon ; 1957-....)
Laboratoire : LaMCoS - Laboratoire de Mécanique des Contacts et des Structures (Lyon, INSA ; 2007-....) - Laboratoire de Mécanique des Contacts et des Structures [Villeurbanne] / LaMCoS
Equipe de recherche : Tribologie et Mécanique des Interfaces
Jury : Président / Présidente : Robert Dwyer-Joyce
Examinateurs / Examinatrices : David Philippon, Philippe Vergne, Robert Dwyer-Joyce, Martin Hartl, Janet Wong, Alfonso San-Miguel
Rapporteurs / Rapporteuses : Martin Hartl, Janet Wong

Résumé

FR  |  
EN

Cette thèse est dédiée à la mesure des pressions et des températures locales et à la comparaison de la génération de chaleur dans les contacts élastohydrodynamiques (EHD) de type tout acier et hybride (nitrure de silicium-acier). Le but ultime de ce travail est de développer une nouvelle technique in situ non-intrusive, exploitant la sensibilité de la photoluminescence (PL) des boîtes quantiques (QDs) de CdSe/CdS/ZnS aux variations de pression et température, afin de cartographier ces deux paramètres dans les contacts EHD. Dispersible à faible concentration dans les lubrifiants, il est montré que les QDs ne modifient pas le comportement rhéologique du fluide porteur et que le cisaillement n’est pas perturbateur à la réponse en PL. La calibration des QDs en suspension confirme la dépendance de la réponse en PL des QDs à la pression et à la température. Les mesures in situ sont effectuées en utilisant un banc d’essai bille-disque. La comparaison entre les mesures in situ de pression et de température et celles prédites à l'aide d'un modèle éléments finis TEHD interne montre une bonne concordance, ce qui démontre la faisabilité de la méthodologie proposée. Les effets du glissement et du chargement normal sur la pression, la température et la chaleur générée sont reportés. L’effet des propriétés thermiques des solides est souligné et la répartition de la chaleur générée entre les solides en contact est étudiée. L'équilibre énergétique entre l'énergie mécanique et l'énergie thermique interne générée par compression et cisaillement est démontré en comparant les pertes de puissance expérimentales et la chaleur générée issue du modèle numérique, pour des contacts acier-acier et hybrides.