Modèles stochastiques sur des échelles résiduelles en LES de pulvérisations pour des conditions de type diesel : formation de pulvérisation, dispersion turbulente et évaporation de gouttelettes
Auteur / Autrice : | Surya Kaundinya Oruganti |
Direction : | Mikhael Gorokhovski |
Type : | Thèse de doctorat |
Discipline(s) : | Mécanique des fluides |
Date : | Soutenance le 08/12/2020 |
Etablissement(s) : | Lyon |
Ecole(s) doctorale(s) : | École doctorale Mécanique, Energétique, Génie Civil, Acoustique (Villeurbanne ; 2011-....) |
Partenaire(s) de recherche : | établissement opérateur d'inscription : École Centrale de Lyon (1857-....) |
Laboratoire : Laboratoire de mécanique des fluides et acoustique (Rhône) | |
Jury : | Président / Présidente : Ricardo Novella |
Examinateurs / Examinatrices : Mikhael Gorokhovski, Noureddine Guerrassi | |
Rapporteur / Rapporteuse : Bénédicte Cuenot, Patrick Jenny |
Mots clés
Mots clés contrôlés
Résumé
Dans le cadre de la simulation à grandes échelles (LES), la thèse aborde la simulation des sprays dans les conditions d’un moteur à injection directe. La vitesse de l’injection des sprays dans ces conditions est très élevée. En conséquence, des structures énergétiques intermittentes aux petites échelles turbulentes peuvent se manifester dans l’écoulement produit. C’est pourquoi l’accent est mis sur la simulation stochastique des effets turbulents aux échelles non-résolues par LES dans les conditions d’un moteur à injection directe. L’impact de ces effets sur l’atomisation primaire et secondaire, la dispersion des gouttelettes et leur vaporisation représente l’élément essentiel de cette thèse. Dans le but de modéliser ces effets d’intermittence aux échelles non-résolues, deux différentes approches ont été proposées récemment dans la littérature. Dans la thèse, l’accent est mis sur leur application et une éventuelle amélioration pour les conditions d’un moteur à injection directe. La première approche est LES-SSAM (Stochastic Subgrid Acceleration Model). Contrairement aux LES classiques, la LES-SSAM modélise l’accélération turbulente non résolue par le forçage de sous-maille des équations de Navier-Stokes. Ce forçage représente un processus stochastique de type Ornstein-Uhlenbeck construit de telle façon que les propriétés stochastiques de l’accélération, observées par les expériences et les simulations directes, sont représentées. Une telle LES-SSAM, où l’expression de la norme de l’accélération de sous-maille est modifiée, a été appliquée et testée pour la modélisation de l’écoulement interne de l’injecteur d’une simple configuration. Les résultats ont démontré l’efficacité de cette approche malgré la résolution grossière du maillage. Une autre application de LES-SSAM, dans la thèse, concerne sa combinaison avec la méthode VoF pour la simulation de l’écoulement à l’interface au voisinage de l’injecteur. Ici aussi, l’efficacité de cette combinaison a été démontrée en comparaison avec l’expérience et les méthodes numériques actuellement employées pour la simulation de l’atomisation primaire. La deuxième approche abordée dans la majeure partie de la thèse, et qui vise aussi à représenter les effets de l’intermittence aux échelles non-résolues, se base sur la formulation stochastique de la dynamique des gouttes en pulvérisation et en vaporisation, tout en couplage two-way avec l’écoulement turbulent. Les travaux contribuent à la vérification et l’amélioration de cette formulation stochastique. Ainsi le modèle stochastique d’atomisation secondaire est contrôlé par le processus stochastique log-normal pour la dissipation visqueuse. La même variable est la variable-clé pour le modèle de dispersion de gouttes, ces dernières étant soit inférieures soit supérieures à l’échelle de Kolmogorov. La dernière situation a été décrite par la modification de l’équation de mouvement d’une goutte. Enfin, un nouveau modèle stochastique de vaporisation des gouttes, dont le mélange turbulent fait partie du modèle, a été proposé et testé. Tous ces modèles stochastiques ont été implantés dans le code OpenFoam puis testés en comparaison avec d’autres modèles et avec les données expérimentales présentées par le réseau Engine Combustion Network (ECN). L’avantage de l’application de ces modèles sur les maillages à la résolution grossière a été clairement démontré.