Thèse soutenue

Simulation de l'écoulement atmosphérique au voisinage d'une tête de tunnel

FR  |  
EN
Auteur / Autrice : Thierry Kubwimana
Direction : Lionel SoulhacPietro Salizzoni
Type : Thèse de doctorat
Discipline(s) : Mécanique des fluides
Date : Soutenance le 28/09/2020
Etablissement(s) : Lyon
Ecole(s) doctorale(s) : Ecole doctorale Mécanique, Energétique, Génie Civil, Acoustique (Villeurbanne ; 2011-....)
Partenaire(s) de recherche : établissement opérateur d'inscription : École Centrale de Lyon (1857-....)
Laboratoire : Laboratoire de mécanique des fluides et acoustique (Rhône)
Jury : Président / Présidente : Ivana Vinkovic
Examinateurs / Examinatrices : Lionel Soulhac, Pietro Salizzoni, Antoine Mos
Rapporteurs / Rapporteuses : Isabelle Calmet, Sylvain Dupont

Résumé

FR  |  
EN

La conception d’un système de ventilation mécanique dans un tunnel nécessite de recenser tous les phénomènes physiques mis en jeu dans le mouvement de l’air dans le tunnel. Et ceci afin d’établir les capacités de ventilation nécessaires au regard d’objectifs règlementaires. On peut compter parmi ces phénomènes les effets atmosphériques, et notamment l’effet du vent, susceptible de générer des surpressions ou dépressions à proximité des ouvertures d’un tunnel et par conséquent d’induire ou de modifier un courant d’air établi à l’intérieur de celui-ci. Le présent travail entend contribuer à une meilleure compréhension ainsi qu’à une meilleure prise en compte de l’écoulement atmosphérique extérieur dans les études de ventilation de tunnel.Modélisations expérimentale et numérique ont été mises en œuvre pour cela. Des essais en soufflerie ont été menés dans la soufflerie atmosphérique de l’École Centrale de Lyon et ont fait appel à différentes techniques (PIV, anémométrie à fils chauds, micromanomètre) pour mesurer les caractéristiques moyennes et turbulentes de l’écoulement atmosphérique au voisinage d’un tunnel. Et nous avons également employé les approches numériques moyenne (RANS) et filtrée (LES) pour simuler l’écoulement atmosphérique autour d’un tunnel.La représentation de l’écoulement atmosphérique, instationnaire et turbulent, en entrée d’un domaine de calcul LES pose des difficultés. Nous avons, au cours de ce travail, implémenté un générateur synthétique de conditions amont dans le code de calcul FLUENT et, à l’appui des résultats expérimentaux, établi le paramétrage optimal d’une simulation LES de couche limite atmosphérique pleinement rugueuse.Deux configurations de tunnel ont ensuite été étudiées par voies numérique et expérimentale. Dans une première série d’essais, le champ de pression sur la tête d’un tunnel assimilée à la section frontale d’une cavité parallélépipédique a été étudié. Les comparaisons entre les différentes approches ont mis en évidence l’influence de la géométrie du tunnel et du bâti environnant, ainsi que la meilleure performance de l’approche LES dans la caractérisation de l’écoulement turbulent. Et dans une deuxième série d’essais, nous nous sommes rapprochés d’une configuration réelle et avons instrumenté une maquette de tête de tunnel ouverte dans lequel nous pouvions créer un courant d’air dirigé vers l’intérieur ou l’extérieur de l’ouvrage. Les résultats ont montré une interaction importante entre la couche limite atmosphérique et le jet pariétal tridimensionnel issu du tunnel.